Convergence of sequences

(Lout)

Example:
$$P_n = \frac{n+1}{n}$$
 in \mathbb{R} .
Claim $P_n \rightarrow 1$.
(The challenge of choosing $P_n \rightarrow P$ is finding on N for each \mathcal{E})
(p_1): Note that (i) $d(P_n, 1) = \left\lfloor \frac{n+1}{n} - 1 \right\rfloor = \frac{1}{n}$.
(ii) For every $\mathcal{E} > 0$, $\exists N \in \mathbb{N}$ set. $\frac{1}{N} < \mathcal{E}$.
Therefore, given $\mathcal{E} > 0$, choose $N = \lceil \frac{1}{2} \rceil$.
Then for $n \ge N$, $d(P_n, 1) = \lceil \frac{1}{n} \rceil = \frac{1}{n} \le \frac{1}{N} < \mathcal{E}$
TRUE or False ?
(A) $P_n \rightarrow P$ (B) $P_n \rightarrow p' \Rightarrow p = p'$
(B) $\{P_n\}$ bounded $\Rightarrow P_n$ converges.
(C) $\{P_n\}$ bounded $\Rightarrow P_n$ converges.
(C) $\{P_n\}$ bounded $\Rightarrow P_n$ converges.
(C) $\{P_n\}$ converges $\Rightarrow \{P_n\}$ bounded
(P) $P_n \rightarrow P$ $\Rightarrow P$ is limit point of range of $\{P_n\}$.
(E) p is limit point of range of $\{P_n\}$.
(F) $P_n \rightarrow P$ $\Rightarrow P$ is limit point of range of $\{P_n\}$.
(F) $P_n \rightarrow P$ $\Rightarrow Every resplayhold of p centains all but fixthly many P_n .
(The means that $V = N(P_n)$, ndy fixthy many P_n .
Think object if Answer is in the following project.$

T (A) $P_n \rightarrow p \otimes P_n \rightarrow p' \Rightarrow p = p'$ Assume $p_n \rightarrow p$, $p_n \rightarrow g$ $d(p,g) = \varepsilon > 0$ $(p \neq g)$ Then $\exists Np \ s.t. \ n \ge Np \ implies \ d(p_n, p) < \frac{\varepsilon}{2}$ Also = Ng st. n = Ng implies d(pn,g)< = Let N = max {Np. Ng} n > N implies $\mathcal{E} = d(p, g) \leq d(p_n, p) + d(p_n, g) < \frac{2}{3} + \frac{2}{3} = \mathcal{E} - x$ Pak = 1 . Paker = 0 for k=0,1,2,... fpn } bounded but not converge F B {Pn} bounded ⇒ Pn converges. T (C) {Pn} converges ⇒ {Pn} bounded (pf). Use $\mathcal{E}=1$, then $\exists N \in L$, $n \ge N \Rightarrow d(p_n, p) \le 1$ n ≤N (finite) Let R = max {1, d(P, Pi), ..., d(P, PN)} Then $\{P_n\} \subset B_R(P) \#$ $F \oslash Pn \rightarrow P \implies P$ is limit point of range of $\{Pn\}$. Pn=1 ∀n. T \bigcirc P is limit point of ECX \Rightarrow 3 seg {Pn} in E s.t. Pn \rightarrow P Take point $p_i \in N_1(p)$ in E, $p_s \in N_{\underline{d(P_{s,p})}}(p)$ in E,..., $P_n \in N_{\underline{d(P_{n+1},p)}}(p)$ in EEvery neighborhood of p contains all but finitely many Pn. T @ Ph→P