FACTS (from last time)

- Compact sets are bounded and closed.
- Closed subset of compact set are compact.
- For nested closed intervals in \mathbb{R}, intersection is non-empty.

$$
\left(k \text {-cells in } \mathbb{R}^{k}\right)
$$

- The $[a, b]$ is compact in \mathbb{R}.
(k-cells) (in \mathbb{R}^{k}).
(pf) Suppose not. Then \exists open cover $\left\{G_{\alpha}\right\}$ thas has no finite subcover.
Then $\left\{G_{\alpha}\right\}$ covers $\left[a, c_{1}\right]$ and $[a, b]$. at least one has no finite subbover.
-WLOG, say $\left[a, c_{1}\right]$ has no finite subcower. (denote $I_{1}=\left[a, c_{1}\right]$)
Then subdivide (half) using c_{2}, note at least one of $\left[a_{1}, c_{2}\right],\left[c_{2}, c_{1}\right]$ hos no F.S.
Continue, obtain sequence $I_{1}>I_{2}>I_{3} \supset \cdots$ nested closed intervals.
(exch haltered at each step, with no F.S. of $\left.\left\{G_{a}\right\}\right)$
By nested interval the, $\exists x$ s.t. $x \in I_{i} \forall i$
But $x \in$ some G_{α} of cover. So $\exists r>0$ st. $N_{r}(x) \subset G_{\alpha}$.
Since I_{i} haled in each step, some $I_{n} \subset \operatorname{Nr}(x)$, meaning single G_{α} covers $I_{n} *$

Now, we can show:
[Heine - Goral Thy . In \mathbb{R} (or \mathbb{R}^{n}), K compact $\Leftrightarrow K$ is closed and bounded.
proof (\Rightarrow). already.
(\vDash). Not true in arbitrary metric space
K bounded $\Rightarrow K \subset[-r, r]$ for some $r>0$
Since K is closed and $[-r, r]$ is compact $\Rightarrow K$ is compact \#

Ex: Discrete metric un infinite set A.
A is closed and bounded, but not compact.
$E X: C(\mathbb{R})=$ set of continuous banded function $f: \mathbb{R} \rightarrow \mathbb{R}$.

$$
d(f, g)=\sup _{x \in \mathbb{R}}|f(x)-g(x)|
$$

- Thm. K is compact \Leftrightarrow every infinite subset E of K has a limit point in K.
(pf) (\Rightarrow). If no pt of K is lIp. of E
then each $q \in E$ has noble V_{q} containing exactly one pt q of E.
$\left\{V_{q}\right\}$ cover E with no $F . S$.
(\Leftrightarrow) [proof for \mathbb{R}^{k}, but true for all metric space]
(Well show K is closed \& bounded.
starch.
- Suppose K is not bounded, choose x_{n} s.t. $\left|x_{n}\right|>n$.
there has no lip. (check).
suppose K is closed, $\exists P \notin K$ sit. p is lop. of K
chosen x_{n} s.t. $d\left(x_{n}, p\right)<\frac{1}{n},\left\{x_{n}\right\}$ has lip. at p.
- Cor (Bolzano - Weierstrass Thm)

Every bounded infinite subset of \mathbb{R}^{n} has a limit point. pf. If subset E is bounced, then $E \subset$ compact k-cell, so has lip. in k-cell \#.

- Thm (Corlas, Finite Intersection Property).
$\left\{K_{d}\right\}$ compact subsets of metric space X.
If any finite subcollection has non empty intersection,
then $\bigcap_{\alpha} k_{\alpha} \neq \phi$.
(pf) Let $u_{\alpha}=K_{\alpha}^{c}$ open.
Fix one K in $\left\{K_{\alpha}\right\}$.
If $2 K_{\alpha}=\phi$, then $\left\{u_{\alpha}\right\}$ cover K compact
$\Rightarrow \exists$ finite $\left\{u_{\alpha_{1}}, \cdots, u_{\alpha_{\alpha}}\right\}$ cover K
so $K \cap K_{\alpha_{1}} \cap \cdots K_{\alpha_{N}}=\phi$

