10: The Relationship Between Open and Closed Sets

 $\begin{array}{rcl} \hline Thm : E \ closed & \Longleftrightarrow \ E = E \\ (pf) & (\Rightarrow) : E' \subseteq E & \leftarrow E \cup E' \subseteq E & \leftarrow E \subseteq E \\ & & & & & & \\ & & & & &$

Thm: If $E \subset c | ord set F$, then $E \subset F$. (pf). p is lp of $E \Rightarrow p$ is lp of F. But F contains its $lp \Rightarrow F$ contain lp's of $E \Rightarrow F \subset F_{\#}$.

RELATIONSHIP BETWEEN OPEN & CLOSED SETS Thm : E is open \Leftrightarrow E^c is closed. (E': the complement of E, E'=XIE={PEX: PEE}) T metric space pf: E open \iff any $pt \ x \in E$ is an interior pt $\iff \forall x \in E, \exists n b h d N of x s.t.$ I nbhd N of x s.t. N is disjoint from E^c $\Leftrightarrow \forall x \in E, x \text{ is not } l.p. of E^{c}$. ⇐ E^c contains all its l.p.'s. #

Unions & Intersections.

Lemma :
$$i \in a i$$
 collection of etc.
($i \notin E_a$)^c = $\Omega \in a^c$
(if) $x \in LHS \iff x \notin ony \in A$
 $\iff x \in C \in V d$
 $\iff x \in \Omega \in a^c \forall d$
(b) Arbitrory union of open eels is open.
(b) Arbitrory intersection of open sets is open.
(c) Finite union elsed closed
(c) Finite union elsed closed
(c) Finite union $elsed$ closed.
(d) Finite union $elsed$ so x has abbd $N \in t$. $N \in Uda \Rightarrow N \in Uda$.
(b) Say B_{ab} closed. Then $Ua = Ba^c$ is open.
Use lemma, $Ua^c = Ba = \bigvee Ba^c$ is open.
Use lemma, $Ua^c = Ba = \bigvee Ba^c$ is open.
(c) $\exists Nr_i(X)$ for each U_i
Let $r = \min(r_1, \dots, r_n)$
 $Nr(X) \in a^c U_0$.
• E is dense in metric space X .
if every pt of X is $l p$ of E or in E.
 $\iff E = X$
 $\iff Every open at of X extrins $P \in E$.$