09: Limit Points

Recall :
$$(X, d)$$
 metric space.
set when:
ex: $(IR^*, Euclidean)$
ex: $(X^*, discrete)$
metric
 $S(p, g) = \begin{cases} e^{-if} p^*g \\ i & if p^*g \end{cases}$
Recall : "Open ball " or "nbhd" $Nr(K)$
 $I = \frac{r}{r}$
 $Ex(X, discrete), open ball are single pts (if $r\leq 1$) - r'
or all X (if $r>1$)
 \textcircled{P} :
 $Mhen does set E approach a pint p ?
 \mathbb{R}^{d} : A pt $p \in X$ is a limit pt of E
if every able at p combins a pint $ge \in g \neq p$.
 \mathbb{E}_X In $IR^*, Ge \in \{\frac{1}{r}: n \in N\}$, 0 is a limit pt .
 \mathbb{E}_X in $IR^*, consider B$:
 $a_i \notin and at$
 $b_i c_i d_i e and at pi .
So A pt p is not a limit pt of E
if $g = if$ is not a limit pt of E
if $g = if$ is not a limit pt of E
if $g = if$ is not a limit pt of E
if $g = if$ is not a limit pt of E
if $g = if$ is not a limit pt of E
if $g = if$ is not a limit pt of E
if $g = if$ is not a limit pt of E
if $g = if$ is not a limit pt of E
if $g = if$ bable N at p s.t. N does not contain any other pt of E.$$$