06: Principle of Induction

INDUCTION

- let $\mathbb{N}=\{1,2,3,4, \cdots\}$, natural numbers.
- Well-ordering property of \mathbb{N} :
(WOP)
\mathbb{N} is well-ordening : every nun-empty subset of \mathbb{N} has a least element.

Remark : Can take WOP to be an axiom of \mathbb{N}.

- Principle of Induction: (POI)

Let S be a subset of \mathbb{N} such that
(a) $1 \in S$
(b) if $k \in S$, then $k+1 \in S$
then $S=\mathbb{N}$
FACT: $W O P \Longleftrightarrow P O I$
proof: $W O P \Rightarrow P O I$
(by contradiction). Suppose S exists with given pupperties in POI, but $S \neq \mathbb{N}$.
Then $A=N \backslash S$, is non-empty, has a least element by woP, call it n.
Notice $n>1$ since $1 \in S$.
Consider $n-1$, it is not in A, so in S, By pap (b), $(n-1)+1 \in S \Rightarrow n \in S$.
Theodore, POI holds. contradict to $n \in A$.

- PROOFS BY INDUCTION:

Let $P(n)$ be statement ordered by $n \in \mathbb{N}$.
Idea: to show $P(n)$ is true for all n,
well show @ $P(1)$ is true
(b) If $P(n)$ is true, then $P(n+1)$ is true Then by $P O I, P(n)$ is true for all n.

Strong Induction : use (b' if $P(1), P(2), \cdots, P(k)$ are true then $P(k+1)$ is true

- STYLE: at start, tell reader" proof by induction on \qquad
-tell reader when you're doing
"base case" \& "inductive step" assume these are understood.
- remind reader of condusion at end.
- Ex Every $2^{n} \times 2^{n}$ chessboard with one square removed. can be tiled by \boxplus.

proof (by induction on n)
- For base case, see \square, \square as desired.
- For n step, we can assume any $2^{n} \times 2^{n}$ board (with 1 removed) conte tiled So consider a $2^{n+1} \times 2^{n+1}$ bard with 1 removed.
Can divide board into 4 ports, one with 1 remind and 3 are $2^{n} \times 2^{n}$ boards The first can be tiled by inductive hypt, the remaining 3 can be tiled once a tile has removed,
let's remove one in an L shape. (figaro
So $2^{n+1} \times 2^{n+1}$ can be tiled. \#.
The: Prove $S_{n}=1+3+5+\cdots+(2 n-1)$ is a prefect square.
prof. - base case $(n=1)$ holds, since $s_{1}=1=1^{2}$ as derived. claim $s_{n}=n^{2}$.
- For ind step, assume s_{n} is square k^{2} for some $k \in \mathbb{N}$.
we mosh to show S_{n+1} is profit squame. $\quad S_{n+1}=1+3+\cdots+(2 n+1)$

$$
=s_{n}+2 n+1
$$

