06: Principle of Induction

INDUCTION

$FACT: WOP \iff POI$

- PROOFS BY INDUCTION:

Let P(n) be statement ordered by n GN. Idea: to show P(n) is true for all n, we'll show @ P(1) is true @ If P(n) is true, then P(n+1) is true Then by POI, P(n) is true for all n.

Strong Induction : use (b) if $P(1), P(2), \dots, P(k)$ are true then P(k+1) is true

· STYLE: at start, tell reader poorf by induction on ____ -tell reader when you're doing "base case" & "inductive step" assume these are understood -remind reader of condusion at end.

• Ex Every
$$2^n \times 2^n$$
 chessboard with one square removed.
Can be tiled by \square .
?
Proof (by induction on N)
can do
con do
con do
endo
or do
Prov f (by induction on N)
endo
con do
con do
Prov n step, we can assume any $2^n \times 2^n$ bord (with 1 removed) on letiled
so consider a $2^{n+1} \times 2^{n+1}$ bord with 1 removed.
Can divide band into 4 parts, are with 1 removed and 3 are $2^n \times 2^n$ boonds
The first can be tiled by indective hypl, the remaining 3 can be tiled
orice a tile has removed,
let's remove one in an Li shape. (Figure
So $2^{n+1} \times 2^{n+1}$ can be tiled. #
Thm : Prove $S_n = 1 + 3 + 5 + \dots + (2n-1)$ is a prefect square.
prif - base case $(n=1)$ holds, since $S_1 = 1 = 1^2$ as desired, when $S_n = n^2$.
For ind step, assume S_n is square k^2 for some $k \in N$.
We wish to show S_{n+1} is probat square, $S_{n+1} = 1 + 3 + \dots + (2n+1)$
 $= S_n + 2n + 1$