03: Construction of the Reals

We'll CONSTRUCT IR AND PROVE
Them : R is an ordered field, with lub property.
and R antions R as a subfield.
A set S has the lub property (solicities the completeness axion).
if every non-empty subset of S
that has an upper bound, also, has a lub in S.
Dedekind : A cat d is a cubet of R s.t.

$$O d \neq \phi, Q$$
 [new time]
 $O If P \in d$, $g \in Q$ and $g < p$, then $g \in d$ [closed dummerd]
 $O If P \in d$, $g \in Q$ and $g < p$, then $g \in d$ [closed dummerd]
 $Ex : A (bdw)$ is not a cat.
 $A = R - is a cat.$
 $p = \{r \in Q : r \leq 2\}$ is not a cat.
Let $R \stackrel{def}{=} \{ d : d \text{ is a cut } \}$ some cat, show it has charter.
 Pef order : Soy $d < \beta$ if not only if $d \leq \beta$
. Addition : $d * \beta := \{r * s : r \in d, s \in \beta\}$
choole it $\beta = at$; so $g = ced$. Then $g = ced P^2$
 $d = R^2 - is a cod R = R^2$.
 Pef order : Soy $d < \beta$ if not only if $d \leq \beta$
. Addition : $d * \beta := \{r * s : r \in d, s \in \beta\}$
choole it β cont:
 $-meeting (close)$.
 $-closed down : if $p \in d * \beta$, and $g is $g \in d i \beta$?
 $not = g - S < r$, so $g - s \in d$. Then $g = (r + s : r \in d)$.$$

Show axions
$$AI - A5$$

add inverse for d , $\beta = \{p : \exists r > 0 \ st. -p - r \notin d\}$
add inverse for d , $\beta = \{p : d = 0^{*}\}$
Abultiplication be avelal of reg
Def : if $d, \beta \in \mathbb{R}_{+} \leftarrow (d\beta > 0^{*})$
 $d\beta := \{p : p < rs. \text{ for some } r \in d. s \in \beta\}$
Let $1^{*} = \{g_{<}|: g \in \Omega\}$