03: Construction of the Reals

CONSTRUCT The REAL \#'s.
DEDEKIND "CUTS" 1872.

x^{2} has no solution in \mathbb{Q}
Conisder: $A=\left\{x \in \mathbb{Q}: x^{2}<2\right\}$.

LEAST UPPER BOUND
Def : Say $E \subset S$ ordered.
If there exists $\beta \in S$ st.
for all $x \in E$ we have $x \leq \beta$
then call β an upper bound for E
say E is bounded above.
(lower band: apace \leq by \geq)
$E_{x}: 2$ is an upper bound for A.
$\frac{3}{2}$ is an u.b. for A. (why?. If not $, \exists x \in A, x>\frac{3}{2}$, then $x^{2}>\left(\frac{3}{2}\right)^{2}>2 *$).
Def: If $\exists \alpha \in S$ st.
(1) α is an upper bund of E.
and (2) if $\gamma<\alpha \Rightarrow \gamma$ is not an upper bound of E
then α is called the least upper bound (lab) of E or supremum of E, wite $\alpha=s u p E$
$S=\mathbb{Q} . E x: E=\left\{\frac{1}{2}, 1,2\right\}, \sup E=2$
$E=\mathbb{Q}_{-}$, the neg rational. $\sup E=0$.
$E=\mathbb{Q}, \quad \sup E \operatorname{dos}$ not exist. (It's unduruded above). $\sup E=+\infty$.
$E=A$, (before). sup A dos not e mist

Weill construct \mathbb{R} and Prove
The : \mathbb{R} is an ordered field, with lab papperty and \mathbb{R} contains \mathbb{Q} as a subfield.

A set S has the lab property (satisfies the completeness axiom). if every non-empty subset of S
that has an upper bound, ako, has a lab in S.
Dedekind: A cut α is a subset of \mathbb{Q} s.t.
(1) $\alpha \neq \phi, \mathbb{Q} \quad[$ not trivial $]$
(2) If $p \in \alpha, q \in \mathbb{Q}$ and $q<p$, then $q \in \alpha$ [closed downward]
(3) If $p \in \alpha$, then $p<r$ for some $r \in \alpha$. [no largest number]

Ex: A (before) is not a cut
$\alpha=Q_{-}$is a cut.
$\beta=\{r<Q: r \leq 2\}$ is mot a cut.
Let $\mathbb{R} \stackrel{\text { def }}{=}\{\alpha: \alpha$ is a cut $\} \quad$ some set, show it has structure.

- Def order: Say $\alpha<\beta$ if and oily if $\alpha \leqslant \beta$
- Addition: $\alpha+\beta:=\{r+s: r \in \alpha, s \in \beta\}$
check it B cat:
nom-tivalal (cheek).
clued down : if $p \in \alpha+\beta$, say $q<p=r+s$ is $q \in \alpha+\beta$?
note $q-s<r$, so $q-s \in \alpha$. Then $q=(q-s)+s$ as doing.

Show axioms $A 1-A 5$
add identity $O^{*}=Q_{-}$check $\alpha+0^{*}=\alpha$
add inverse for $\alpha, \beta=\{\rho: \nexists r>0$ s.t. $-p-r \notin \alpha\}$
show $\alpha+\beta=0^{*}$

Multiplication be careful of neg
Def : if $\alpha, \beta \in \mathbb{R}_{+} \leftarrow\left(\alpha \beta>0^{*}\right)$

$$
\alpha \beta:=\{p: p<r s \text { for some } r \in \alpha, s \in \beta\}
$$

Let $1^{*}=\{q<1: q \in \mathbb{Q}\}$

