01: Constructing the Rational Numbers

SETS of RELATIONS
- A set is collection of objects.
eg.
$$S = \{ I, \bigoplus, \square, \{I, \bigoplus\} \}$$

or $S = \{ x : P(x) \text{ is true} \}$
with that P is me about shad x.
eg. is the or 21:
shout hand : $X \in S$ means X is in S
 $X \notin S$ means X is in S
 $X \notin S$ means X is met in S.
 ϕ is the empty set.
A C B means A is a object of B, which means if $x \in A$ then $x \in B$.
(a $x \in A \Rightarrow x \in B$)
If $A \in B$ and $B \notin A$, then A is a proper subset of B.
If $A \in B$ and $B \notin A$, then write $A = B$, else $A \neq B$.
More sets:
antion $A \cup B = \{ x : x \notin A \text{ of } x \notin B \}$
intersection $A \cap B = \{ x : x \notin A \text{ of } x \notin B \}$
intersection $A \cap B = \{ x : x \notin A \}$.
minus $A \setminus B = \{ x : x \notin A \text{ and } x \notin B \}$.

• A (binary) relation R is a subset	of A×B.
If (a, b) ER write aRb	
	L people.
Ex: A "is an ancestor of " is a relation on	P×P
Li likes "	PxP
S is a sibling of "	P× P
< "less than "	2/ × 2/
• An "equivalent relation" on set S is	
a relation on SXS s.t. (-"such that"	
- reflexive O aRa	
- symmetry ② aRb ⇒ bRa	
- transitive ③ a Rb and bRc ⇒ aRc	
often write \sim , \approx , \cong , etc.	

Aside: A function F from A to B
 is a relation s.t.
 if a F b and a F b' then b = b'.
 Write F(a) = b

Construction of
$$\mathbb{Q}$$
, the rational numbers.
Assume Z, the integers, this multiply, order.
What is \mathbb{Q} ? Perhaps, it's the set $\{\frac{m}{n}: m, n \in \mathbb{Z}, n \neq 0\}$.
So as deli how any dati it mans.
Motivation : \longrightarrow one can three
 \longrightarrow to over ix
Write: $(1,3) \sim (2,b)$ is equivalent indeted pair.
Idea: these belong to come equi class, we'll cull " $\frac{1}{3}$ "
Let $\mathbb{Q} = \text{set of all such equi classes of such pass $\mathbb{Z} \times \mathbb{Z} \setminus \{0\}$.
Wre wont this pair to extend \mathbb{Z} , so that " $\frac{n}{T} \in \mathbb{Q}$ corresponds to $n \in \mathbb{Z}^n$.
See that $\mathbb{Q} = \{\frac{m}{n}: m, n \in \mathbb{Z}, n \neq 0\}$
where $\frac{m}{n}$ is an equivalent class of (m, n) .
where $\frac{m}{n}$ is an equivalent class of (m, n) .
where $\frac{m}{n}$ is an equivalent class of (m, n) .
 \dots where $\frac{m}{n}$ is an equivalent class of (m, n) .
 \dots where $\frac{m}{n}$ is an equivalent class of (m, n) .
 \dots if m relation $(p, g) \sim (m, n)$ if $pn = gm$ and $g, n \neq 0$.
Check $(p, g) \sim (p, g)$...
 \mathfrak{D} check $(p, g) \sim (m, n)$ and $(m, n) \sim (2, b)$ than $(p, g) \sim (2, b)$.
It must his use availation for in \mathbb{Z} .
 \widehat{f} abe as and as p , then $b \in \mathbb{C}$.$