01: Constructing the Rational Numbers

SETS of RELATIONS

- A set is collection of objects.
egg. $S=\{1, \odot, \square,\{1,()\}\}$
or $S=\{x \underset{\sim}{:} P(x)$ is true $\}$.
eg. "x is kay the nt 2°.
Short hand: $x \in S$ means x is in S
$x \notin S$ means X is nit in S.
ϕ is the empty set.
$A \subset B$ means " A is a subset of B. which means "if $x \in A$ then $x \in B$ ".

$$
(\text { or } x \in A \Rightarrow x \in B)
$$

If $A \subset B$ and $B \notin A$, then A is a proper subset of B.
If $A \subset B$ and $B \subset A$, then wite $A=B$, else $A \neq B$.

Mare sets:
union $A \cup B=\{x: x \in A$ OR $x \in B\}$.
intersection $A \cap B=\{x: x \in A$ AND $x \in B\}$.
complement $A^{c}=\{x: x \notin A\}$.
minus $A \backslash B=\{x: x \in A$ and $x \in B\}$.
product $A \times B=\{(a, b): a \in A$ and $b \in B\}$.

- A (binary) relation R is a subset of $A \times B$.

If $(a, b) \in R$ wite $a R b$.

Ex:

$$
\begin{array}{ll}
A^{\prime \prime} \text { is an ancestor of" is a relation on } & P^{t^{\text {popple. }}} \\
L^{\prime} \text { likes " } & P \times P \\
S^{\prime} \text { is a sibling of" } & P \times P \\
\langle " \text { less than } & \mathbb{P} \times \mathbb{Z}
\end{array}
$$

- An "equivalent relation" on set S is a relation on $S \times S$ s.t. \leftarrow "sech that"
- reflexive (1) aRa
- symmetry (2) aRb $\Rightarrow b R a$
- transitive (8) aRb and bRc $\Rightarrow a R c$
often wite \sim, \approx, \cong etc.
- Aside: A function F from A to B
is a relation s.t.
if $a F b$ and $a F b^{\prime}$ then $b=b^{\prime}$.
write $F(a)=b$

Construction of \mathbb{Q}, the rational numbers.
Assume \mathbb{Z}, the integers, their multiply, order.
What is \mathbb{Q} ? Perhaps, it's the set $\left\{\frac{m}{n}: m, n \in \mathbb{Z}, n \neq 0\right\}$
${ }_{\text {Bid }}{ }^{\text {a }}$ we dint know enoch what it mans.

- Motivation : $\longmapsto 1$ one over three
\mapsto two over six
Write: $(1,3) \sim(2,6)$ is equivalent related pair.
Idea: these belong to come equi class, well call " $\frac{1}{3}$ ".
Let $\mathbb{Q}=$ set of all such equi closes of such pan $\mathbb{Z} \times \mathbb{Z},\{0\}$.
we want this pair to extend \mathbb{Z}. so that " $\frac{n}{1} \in \mathbb{Q}$ comerepals to $n \in \mathbb{Z}^{\prime}$.
- See that $\mathbb{Q}=\left\{\frac{m}{n}: m, n \in \mathbb{Z}, \quad n \neq 0\right\}$.
where $\frac{m}{n} B$ an egurumal dan $A f(m, n)$.
with relation $(p, q) \sim(m, n)$ if $p n=q m$ and $q, n \neq 0$.
- Check \sim is equiv rel'n:
(1) check $(p, q) \sim(p, q)$
(2) check $(p, q) \sim(m, n) \Rightarrow(m, n) \sim(p, q)$
(3) click $(p, q) \sim(m, n)$ and $(m, n) \sim(a, b)$ than $(p, q) \sim(a, b)$
[tory this: use cancellation low in \mathbb{Z}.
if $a b=a c$ and $a \neq 0$, then $b=c$.]

