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1. INTRODUCTION: QUANTAL RESPONSE EQUILIBRIUM (QRE)
AS A GENERALIZATION OF NASH EQUILIBRIUM

Most people, with a few prominent exceptions, will admit to making mistakes. Moreover, it is
apparent from analysis of competitive situations in athletics, business and politics that people
may alter their behavior in anticipation of their own and others’ mistakes. In contrast, standard
game theory is based on the assumption that players are perfect maximizers; that is, they use
their beliefs about uncertain events, including other players’ actions, to make decisions that
are consistent with the maximization of expected payoffs. An equilibrium results if there are
no incentives for learning or change. Thus the initial beliefs about others’ decisions must be
consistent with those decisions, at least in a probabilistic sense.

The idea of modeling imperfect maximization with stochastic choice derives from the
work of mathematical psychologists, such as Thurstone (1927) and Luce (1959). This work
was motivated by choice experiments in which subjects were asked to assess the relative
intensities of two lights or two sounds. Observed choice frequencies tended to be correlated
with the difference in the stimulus intensity, but with some randomness when the intensity
differences were small. The simplest Luce model stipulates that the choice frequency is the
ratio of the stimulus intensity for that choice to the sum of intensities for all possible choices.
In economic models, the stimulus can be measured in expected payoffs. Suppose that there
are two decisiond)1 andD2, with expected payoffs denoted lay andx,, so that the Luce
ratio rule would be that the probability @1 is PrD1) = 71/ (w1 + m2). This rule exhibits
an important responsiveness property in that the probability of choosing a decision is an
increasing function of the expected payoff for that decision. Notice that if the stimuli are
of equal intensity, then the choice probability is 0.5, although other choice functions with this
intuitive symmetry property can be used.

In QRE theory, the basic building block for stochastic choice is the quantal response
function (McKelvey and Palfrey 1995, 1996, 1998; Goeree et al. 2016), of which the Luce
ratio rule is a special case. Consider a simple symmetric game with two players, each with two
decisions. In this game, the expected payoffs could be functions of a pehat represents
a player’s beliefs about the likelihood that the other player chobdeso the Luce quantal
response function would specify:

Pr(D1) = P (Luce ratio probabilistic choice rule. (1.2)

1 (P) + 72(p)

The probabilistic choice function is a quantal response, in contrast with a best response that
would imply a probability 1 associated with the decision with higher payoffs. A quantal
response equilibrium in this symmetric context would require thap tlepresenting beliefs in
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the expected payoffs on the right-hand side of (1.1) be equal to the choice probabilty) Pr(
that is determined by the quantal response function. In equilibrium, there is no opportunity
for learning in that the quantal response probabilities match the beliefs, thaths,)Pe p.

For example, suppose there is congestion in location 1 inth@d = V — p, withV > 1,
whereas there is no congestion in locationt2(p) = 0.5. In this example, PD1) = p =

(V —p)/(V — p+ 0.5. The resulting equilibrium choice probability is increasingvinFor
examplep = 0.5 whenV = 1, which increases tp = 2/3 whenV = 5/3.

The Luce quantal response function is useful in some applications, but it has two
drawbacks. First, it is only defined for positive payoffs and would need to be adjusted if
payoffs can be negative, in order to ensure non-negative choice probabilities. We might think
that simply adding a sufficiently large constant to each payoff so that all payoffs are positive
would solve the problem. Unfortunately, and this is the second drawback of using the Luce
model as a quantal response function: we cannot arbitrarily add constants to payoffs in the
Luce choice model, as the addition of a constant will change all of the choice probabilities.
Another useful feature is to introduce a parameter that determines the amount of noise in
the probabilistic choice, so that the limiting case of no noise (best responses) can represent
the decision rule used in a Nash equilibrium in which each player best responds to the
other’s choices. One way to handle both issues — negative payoffs and inclusion of a response
parameter — is to replace the expected payoffs with exponential functions parameterized by
precision . > 0:2

exp(rmy (p))

P = exp(im1 () + explimz () 1+ e

where x= w1 (p) — 2 (p) (Logit).
(1.2)

The logit quantal response function in (1.2) is positively responsive to payoffs. Moreover,
it is defined for both positive and negative payoffs, is strictly positive for all actions and it
satisfies symmetry, since the choice probability is 0.5 when the expected payoffs are equal,
or equivalently, when the payoff differenceis 0. Figure 1.1 shows the logit probabilistic
choice rule as a function of the expected payoff difference on the horizontal axis. The flatter
curve with the S shape was constructed with a precision ef 0.2, whereas the sharper
curve was generated with a high precisioniof= 2. The high-precision, sharp function
puts a probability of almost 1 on decisi@il when it has the higher payoff, that is, when

1 (p) —m2 (p) > 0. The logit rule has long been widely applied in economics in the analysis
of individual decisions, for example, the choice of a commuting route (McFadden 1976), and
itis now commonly used in the analysis of QRE for games that are implemented in laboratory
experiments.

Quantal response equilibrium preserves the underlying structure of classical game theory,
but adds stochastic choice to the decision-making process. This modification is implemented
in a manner ensuring that smaller, relatively inconsequential errors are more likely than costly
errors. Expected payoff-maximizing best responses are replaced by better responses. A QRE
is a fixed point of quantal response functions, just as Nash equilibrium is a fixed point of best
response functions. Hence the distributions representing players’ beliefs are consistent with
the quantal responses to those beliefs. A fixed point theorem was used to prove existence in
the original paper on QRE by Richard McKelvey and Thomas Palfrey, publish€&aines
and Economic Behavian 1995. Thus QRE is a generalization of the standard notion of Nash
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Figure 1.1 Logit probabilistic choice for decision D1

equilibrium, and it can be shown that quantal response equilibria converge to Nash equilibria
as noise is diminished at the limit (see McKelvey and Palfrey 1995, theorem 2; Goeree et al.
2016, ch. 1).

A natural question to ask is, why is generalization necessary? After all, the standard
analysis of equilibrium in games, which began with the seminal work of von Neumann and
Morgenstern (1944) and Nash (1950), has been extended to include restrictions on rational
choice in dynamic settings (Selten 1965) and stochastic effects caused by privately known
individual differences (Harsanyi 1973)Game theory has provided important insights for
the development of new auction and mechanism designs (Vickrey 1961; Roth 1992), and
for the analysis of issues of industrial organization, regulation and public policy (Tirole
1988). Applications to other fields, such as political science and law, are extensive. Indeed,
a great deal of the early work in the mid-twentieth century was motivated by (and funded
to deal with) bargaining between nation states in the shadow of conflict. Political scientists
have developed a variety of useful paradigms, for example, the Baron and Ferejohn (1989)
legislative bargaining game and Elinor Ostrom’s (1990) analysis of common pool resource
games in small societies. Game theory and its behavioral extensions currently constitute the
closest thing there is to a unifying theory of social science.

Although game theory has been used to structure empirical work using naturally occurring
data, most careful testing of the Nash equilibrium and related theory has involved controlled
experiments, either in the laboratory (for example, Selten and Stoecker 1986; Roth 1995) or
in the field (Ostrom et al. 1994). Here the message is mixed. One of the most widely used
paradigms in the social sciences, the prisoner’s dilemma, is a model that had its beginnings
in a 1950 laboratory experiment designed to show that the equilibrium prediction (to defect)
is not a likely outcome with repeated plays of the gdnMoreover, Nash recognized that
bargaining theory was not very useful in studying negotiations in the laboratory (there
was no explicit consideration of fairness or inequity aversion in those days). Selten’s
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path-breaking theoretical work on subgame perfection was initially a response to the need
to eliminate the many irrelevant Nash equilibria for an oligopoly model used in one of his
early laboratory experiments. Even with subgame perfection, results of simple ultimatum
bargaining experiments are sharply at odds with theoretical predictions (Gith et al. 1982;
and as described by Selten in Svatnand Mass 2016, pp. 155-6).

The failures of subgame perfection are apparent for a centipede game, which was devised
by Rosenthal (1982) to demonstrate the implausibility of the backward induction rationality
in the presence of a large number of stages. The centipede game involves passing a tray with
increasing and unequal payoffs back and forth between two players until one of them takes,
which implements the payoffs at that point. Payoffs are augmented with each pass, but the
relative payoffs are reversed. For example, the initial payoffs of $4 for A and $1 for B in the
first stage are changed to $2 for A and $8 for B in the second stage, and so on. Thus A should
take at the first stage if B is expected to take at the second stage. With a finite, known number
of stages, a process of backward induction implies that A take at the very first stage and stop
the game at that point. In contrast, take decisions at the very first stage are uncommon (less
than 10 percent) in laboratory experiments, even with repeated random matching (McKelvey
and Palfrey 1992.

Theorists have long recognized that an overhaul of game theory is needed, but the news
from controlled experiments is not uniformly bad, since observed patterns suggest some
important features that should be captured by a more behaviorally relevant theory. Human
subjects typically do show systematic correlations between observed behavior and changes
in payoff incentives, although central tendencies can be far from the mark in some cases. In
centipede experiments with potential payoffs in thousands of dollars, for example, take rates
are increased, although take rates near the predicted probability of 1 in the first stage are still
not the norm (Parco et al. 2002). So theory should be responsive, that is, sensitive to payoff
differences. Moreover, the noise in the data is inconsistent with point predictions that emerge
from simple game-theoretic models, which highlights the need for a statistical theory that
assigns positive probabilities, however small, to all outcomes.

Quantal response equilibrium theory handles interactions by incorporating probabilistic
choice functions into the equilibrium analysis of games. The frequencies determined by these
guantal choice models show some spread that depends on the balance between incentives
(differences in stimuli) and noise — owing either to bounded rationality or to unobserved
latent variables, which is the more common view in economic applications. Regardless of
the source, the resulting distribution around central tendencies in simple decision problems
can be magnified owing to cascading effects that shift the entire choice distribution in
games with interdependent payoffs. Quantal response equilibrium builds on Harsanyi's (1973)
path-breaking work on games with incomplete information, by letting agent-specific shocks
represent the effects of the latent variables that inject noise into the system. This approach was
also used in the theoretical analysis of learning in games (Fudenberg and Kreps 1993). The
specific nature of the distributions of payoff disturbances, for example, logit or probit, results
in game-theoretic QRE models that are natural generalizations of widely used logit and probit
econometric models of individual decisions.

If payoffs are perceived with error, which can be modeled by adding epsilon errors to
actual payoffs, then one issue is whether the added flexibility provided by error specifications
provides so much flexibility that the model has no empirical content. It is essential that
a theory that permits deviations from perfect rationality maintains a degree of payoff
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responsiveness that preserves predictive power. This question was raised by Haile et al.
(2008):

The quantal response equilibrium (QRE) notion of Richard D. McKelvey and Thomas R. Palfrey
(1995) has recently attracted considerable attention, due in part to its widely documented ability
to rationalize observed behavior in games played by experimental subjects ... However, even
with stronga priori restrictions on unobservables, QRE imposes no falsifiable restrictions: it can
rationalize any distribution of behavior in any normal form game.

Their argument is based on QRE in its most general form, for which an existence proof
does not require that payoff disturbances be independent and identically distributed. It is
easy to understand how this can happen if random disturbances are not independent, for
example, if the random payoff disturbance associated with one decision is systematically
higher than that for another, even though both distributions have a zero mean. For example,
suppose that decision®1 and D2 have payoffs of 1 and 2 (a difference of 1), but

the disturbance for the high-payoff decisi®@? is always 0, whereas the disturbance
realization for the low payoff decisioB1 is 2 with probabilityp, except on a correction
interval of size 1— p, where the disturbance realization fBxl is an amount, x The
magnitude ofx is chosen to ensure that the expected value of that disturbance equals 0.
With disturbances that are not identically distributed in this sense, the choice probabilities
for inferior decisions can be enhanced to any desired extent. A similar argument can
be made when the disturbances are not independently distributed. These counterintuitive
results are not possible with independent and identically distributed (i.i.d.) disturtfances.
The empirical content critique is irrelevant in that standard assumptions (i.i.d. disturbances)
are sufficient to ensure that the QRE can make strong predictions, even for an experiment
with a single treatment (examples to folloW)Empirical restrictions are even stronger
when an experiment has multiple treatments and the same QRE model is used for all
treatments, as is the norm. Multiple treatment designs and standard i.i.d. assumptions underlie
virtually all empirical applications of QRE, just as i.i.d. logistic and normal errors are the
basic components of the widely used logit and probit econometric models of individual
decisions.

The basic insight about empirical content is that an i.i.d. assumption on payoff disturbances
requires that the probabilistic choice function, logit, probit or anything in a wide class, will
be a non-decreasing cumulative distribution function that passes through the center point
of Figure 1.1. This is because when payoffs are equal (the center vertical line), the choice
probability has to be one half (midpoint of the line). The probabilistic functions can be flatter
or sharper as they rotate around this center point, but any QRE would be a point in one of the
two shaded rectangles in Figure 1.1. That is, a QRE will be a belief probability and associated
expected payoff difference point in one of these shaded rectangles. The nature of the expected
payoff differences for the particular structure of a game will generate clear restrictions on the
set of choice probabilities that could be QRE points, as shown in the following sections.

The next section develops the connection between distributions of additive payoff pertur-
bations and shapes of quantal response functions, for a class of symmetric games with binary
decisions. The analysis is based on a graphical device that separates payoff and noise factors,
so that the fixed pointinvolves the intersection of lines for each of these factors. This graphical
representation permits an analysis of existence, comparative statics and stability issues. In
subsequent sections, the analysis is illustrated for a variety of increasingly complex games,
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for example, prisoner’s dilemma, battle of sexes, coordination, volunteer’s dilemma, matching
pennies and imperfect price competitidn.

2. THE CONNECTION BETWEEN PAYOFF PERTURBATIONS
AND QUANTAL RESPONSES

The structural approach to quantal response is based on assumptions about the nature of
random, decision-specific payoff perturbations that can soften the connection between payoffs
and decisions. A more reduced-form approach is to begin with assumptions about the
properties of quantal response functions that map expected payoffs into choice probabilities.
In this section, the close connection between these two approaches is explained in the context
of simple class of symmetric binary-choice games, in which the two possible actions (or
decisions) are labele@l andD2. In each example to be consider&d, refers to the more
pro-social decision, for example, cooperate in a prisoner’s dilemma, exert high effort in a
coordination game, volunteer to provide a public good, vote, invest in security, or exit from a
congested environment.

Each player has an expected payoff function that depends on the probplitiat the
other player chooses the pro-social decididn In a symmetric equilibrium withN playersp
represents the probability that each of bhe- 1 others choosd31. As before, these expected
payoffs will be denoted byt1(p) andw2(p) for decisiondD1 andD2, respectively, where the
symmetry precludes the need for player-specific payoff functions (extensions to asymmetric
games are discussed subsequently).

Perceived or perturbed payoffs are modeled as sums of payoffs and additive (player-
specific) disturbances,j, so that a playej will select D1 if w1 + e1j/A > 72 + &3/A,
orif mg — mp > (€2j - elj) /A, or equivalently, ifeyy — e < A (w1 — m2), where the
positive precision parameter determines the importance of the disturbancelAs> oo,
the ¢jj/1 terms go to zero and the effects of the random disturbances become irrelevant
(perfect rationality). Recall that expected payoffs are functiong, afhich can be thought
of as representing a player’s beliefs about the chances that the other(s) will ébosed
this difference will be denoted b (p) = 71(p) — 2(p). Thus the probability of choosingl
is determined by the probability that the difference in disturbances will be less than the scaled
payoff difference,AA(p). Let F(-) denote the cumulative distribution function associated
with the differences in disturbances, so the probability of chooBihgs the probability that
e9j — €1j < AA(p) can be written aB (LA (p)). In equilibrium (with no incentive for change),
the choice probability on the left-hand side of (1.3) must equal the belief probgbilised
in the payoff difference on the right:

p=FQAP). (1.3)

The distribution functior- is assumed to be continuous and monotonically increasing on
the real line. That is, the distributions have full support, so anything is possible (however
unlikely), which is needed to avoid the zero likelihood problem. This full-support property is
important when considering laboratory data generated by human subjects.

The disturbances are assumed to be identically and independently distributed, so each
disturbance is equally likely to be larger or smaller than the other. Theréf¢de,= 1/2,
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that is, the difference in disturbances is equally likely to be positive or negative. It can also be
shown that the i.i.d. assumption requires that the distribution of the difference in perturbations
be symmetric, that is, th&t(x) = 1 — F(—x), soF(0) = 1/2. Payoff functions are assumed
to be continuous, so (1.3) is a continuous mapping from a compact set [0,1] into itself, and a
fixed point will exist (Brouwer's theorem). Uniqueness is another story, as is apparent from
the examples provided.

If the payoff perturbations are Gaussian, for example, then their difference is Gaussian
with mean zero and full support. In that cas€;) represents the cumulative distribution
of a Normal distribution (probit QRE), with the variance proportional to the inverse of the
precision parametek,. Alternatively, if the perturbations have a double exponential (extreme
value) distribution, then the distribution of the difference is logistic, with

p=FQA((P) =

14 exp(—AA (p)’ (1.4)

which goes from 0 to 1 as the payoff difference goes frem to co. The logit probability
expression on the right-hand side of (1.4) is a ratio of exponential functions of expected
payoffs:

1 1
P Trexp(cra (M) L+ exp(—im(p) + im2 (D)
exp(Ar1 ()

= , (1.5)
exp(Am1(p)) + exp(Ar2 (P))

where the denominator ensures that the probabilities sum to 1. With more than two possible
actions, the denominator would be a sum of exponential functions of the various expected
payoffs. As the precisioh goes to 0, each of the exponential expressions converglsid.,

so the choice probabilities converge to 1/2 (or to When there ara alternative actions).
Conversely, ag goes to infinity, payoff effects dominate noise, and the choice probability for
the action with the higher payoff goes to 1, as can be seen by examining the right-hand side of
(1.4), depending on the sign of the expected payoff difference. Finally, if there is a continuum
of possible actions, for example, a continuous range of prices or efforts, then the denominator
of the logit expression would be an integral over exponentials of expected payoffs (details to
follow in a subsequent section).

The endogenous choice probability,appears on both sides of the equilibrium condition
(1.5), which must be solved to determine the equilibrium. Closed-form solutions to this
nonlinear equation are generally not available, but numerical methods are straightforward.
The game structure determines the expected payoff difference function, and with this, the
far right-hand term in (1.5) could be calculated in a spreadsheet, with successive rows for
each incremental increasepnThe QRE (or equilibria) would be found in rows with a zero
difference between the value pfn one column and the quantal response in the other (a finer
grid can be used if a more precise calculation is needed). Nonlinear minimization routines
for standard programs, such as Matlab or R, can be used to compute numerical solutions for
complex games with asymmetries or multiple decisions, and hence, with the entire profile of
quantal response choice probabilities to be determined simultanéously.
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Since the distribution function is increasing, it will have an inverse with the property that
F~1(F(x)) = x. It is straightforward to invert both sides of (1.3), and dividexbyo separate
the equilibrium condition into terms pertaining to noise on the left and payoffs on the right:

Fl(p)/1 = Ap). (1.6)

This decomposition, with both sides viewed as functiong, @fan be represented graphically

in the top panel of Figure 1.2, where the independent varighlés on the vertical axis,

and expected payoff differences are on the horizontal'&ie expected payoffs (dashed
line) are negative for all values @ as would be the case where decisidh is dominated

and yields lower payoffs regardless of the probabifitthat the other player choosé&xl.

The QRE is located at the intersection of the dashed-line expected payoff function and the
S-shaped distribution line, which has been graphed soRk@t = 1/2 as required by
symmetry.

The payoff difference line in each panel of Figure 1.2 is derived from a prisoner’s dilemma
game used by Andreoni and Miller (1993), shown in Figure 1.3. For that game, mutual
cooperation yields a payoff of 7 for each, whereas a unilateral defector obtains 12, so the
payoff difference is —5. This difference determines the intercept of the dashed line with the

Probability of
0.8 decision D1

Low A (smooth responses) 0.5 A scaled distribution

0.3 — === Ex. payoff difference
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Expected payoff difference for choosing decision D1
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Notes: The curved cumulative distributions represent a logistic function fer0.4 (relatively high noise) in the
top panel, and fok = 4 (relatively high precision) in the bottom panel. The dashed line to the left of the O point
shows that expected payoff differences are negative for all valugsadfich indicates thab1 is a dominated
strategy. The intersections determine the QREy sf0.15 in the top panel arl~ 0 in the bottom panel.

Figure 1.2 QRE for a binary choice game with a dominated strategy, D1
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Column player

Cooperate (D1) Defect (D2)

Cooperate (D1) 7, 7 0, 12

Row player
Defect (D2) 12, 0 4, 4

Figure 1.3 A prisoner’s dilemma

top of Figure 1.2. Conversely, when the other person defects, cooperation yields 0 as compared
with 4 for mutual defection, so the horizontal intercept of the dashed line in Figure 1.2 is —4.
The dashed expected payoff line connects these two intercepts.

The QRE for the game shown in the top panel of Figure 1.2 involves a positive (but
low) probability associated with the dominated decision. An increase in the precision,
transforms the inverse distribution into a shape that looks more like a sharp step function
in the bottom panel, with near-zero choice probabilities on the left-hand side where expected
payoff differences are negative, and near-unitary choice probabilities on the right-hand side
where expected payoff differences are positive. In the limit as precision goes to infinity, the
QRE intersection converges to a zero probability associated with the dominated decision, for
example, defect in a prisoner’s dilemma. The inverse distribution lines in Figure 1.2 were
graphed for a logistic distribution with = 0.4 in the top panel and with = 4 for the bottom
panel. The message to take away is that QRE transforms sharp best responses into smoothed
better responses, where all actions are chosen with positive probability.

Notice that the payoff structure of the game determines the shape of the dashed payoff
difference line in Figure 1.2, and the error structure determines the scaled distribution
function. The scaled distribution function has a general shape that depends on the associated
precision, but the symmetry properties derived from the i.i.d. error structure will persist.

In contrast, various games to be considered will have payoff difference lines with different
shapes. For example, a vertical line corresponds to a situation in which the payoff loss from
choosingD1 (for example, cooperate) is the same whether or not the other player cooperates
or not. The payoff difference line could have a positive slope for some games in which
cooperation increases the incentives for others to cooperate. The sections that follow clarify
the relationship between the various shapes and slopes of the expected payoff difference lines
and the associated QREs.

3. SYMMETRIC TWO-PERSON GAMES

The most widely discussed paradigm in game theory is a prisoner’s dilemma in which each
player has a unilateral incentive to defeft2j, whenc > a andd > b for the game in
Figure 1.4. The experiment provides an opportunity for learning and possible convergence to
equilibrium with multiple rounds of play and random matching between rounds to minimize
repeated game effects, for example, the Andreoni and Miller (1993) strangers treatment.
Figure 1.2 shows that QRE can explain any cooperation rate for a prisoner’'s dilemma, as
long as itis less than 0.5. So, in this example, there is some empirical content, but not much,
at least without other treatments.
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Column player

D1 a, a b, ¢
Row player

D2 c, b d, d

Figure 1.4 Prisoner's dilemma (s a > d > b) or battle of sexes (¢ b > a=4d)

Andreoni and Miller (1993) report a prisoner’s dilemma with a random matching treatment,
using payoffséd = 7, b = 0, ¢ = 12, d = 4), which resulted in cooperation rates in the
20-25 percent range for the final half of the random pairings. The top panel of Figure 1.5
shows the logit QRE for this prisoner’'s dilemma using the same precision of 0.4 as was
used in the top panel of Figure 1.2. The resulting QRE intersection in the top panel of
Figure 1.5 is close to the cooperation rate observed by Cooper et al. (1996). In general,
however, there is no a priori reason to expect a precision parameter that provides good
predictions for one experiment to also provide good predictions for another experiment with
different subjects and different payment protocols. With smooth responses, QRE implies a
significant percentage of dominated pro-so&ial choicest! However, for any game with a
dominated strategy, the intersection of the expected payoff difference line will involve a choice
probabilityp that is below 0.5, as indicated by the dark shading along the axis the top panel of
Figure 1.5.

Another standard strategic paradigm is a battle-of-sexes game, obtained by reversing the
relative magnitudes df andd, which prevent®?2 from being a dominant strategy as it would
be in a prisoner’s dilemma. This would be the casesi6, b =2, and witha=d = 0, which are
the parameters used by Cooper et al. (1989, no-communication treatment) in an experiment
using the same random matching protocol as was used in the prisoner’s dilemma (Cooper
et al. 1996). For the battle-of-sexes game, there is an asymmetric Nash equilibrium in which
the row player choosel32 and the column player choosB4 (and only earns 2). There is
another asymmetric equilibrium, preferred by the column player, in which row ch@ises
and column choosd32 (and earns 6). With random matching and no communication, players
would not be able to coordinate on one of these inequitable equilibria, even if they could
agree.

The only symmetric equilibrium for the battle-of-sexes game is one in which each player
chooses their preferred decisi®@® with probability 0.75, corresponding o = 0.25 for
decisionD1. This is the probability that makes a player indifferent between the two decisions.
(In order to be willing to randomize, the player’s expected payoffs for each decision must be
equal.) For example, if row choosB4, there is a 0.75 chance of earning 2, and if row chooses
D2 there is a 0.25 chance of earning 6, which each yield expected payoffs of 6/4. The bottom
panel of Figure 1.5 shows the symmetric QRE analysis for the battle-of-sexes game, using the
same precision= 0.4) as before. The dashed line crosses the vertical center |irre @25,
which is the Nash equilibrium probability that yields equal expected payoffs (difference
of 0). The QRE intersection is at approximatgy= 0.4, which is close to the observed
frequency of 0.37 reported by Cooper et al. (1989). The negative slope of the expected payoff
difference line interacts with the curved distribution function to pull up the QRE intersection
from the Nash intersection (of the expected payoff difference line with the vertical line at 0)
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Notes: The scaled distribution lines for both panels are drawn for precisions of 0.4. The dashed-line expected
payoff differences are determined by the payoffs used by Cooper et al (1989, 1996). In each case (prisoner’s
dilemma at the top and battle of sexes at the bottom), the symmetric QRE is pulled toward the center relative to the
symmetric Nash equilibrium (gt= 0 in the top panel and @t= 0.25 in the bottom panel).

Figure 1.5 Logit QRE for a prisoner’s dilemma (top) and battle-of-sexes game (bottom)

toward the middle. More noise (lower precision) produces flatter distribution functions, which
generates QRE predictions that are closer to 0.5.

Empirical Content of QRE in the Prisoner’s Dilemma and Battle-of-Sexes Games

Even though the game represented in the top panel of Figure 1.5 has a particular structure
(negative expected payoff differences, negative slope), there is a key aspect of the figure
that would characterize any binary choice game with i.i.d. payoff perturbations. This is
the requirement that the distribution function pass through the point (0, 1/2), which is owing to
neither perturbation being more likely to be larger than the other. That structural characteristic
makes it clear that the QRE probabilipydetermined by the intersection point cannot be
made arbitrarily large or small by changing the distributions of the i.i.d. perturbations. Adding
noise will flatten the distribution, but it will remain monotonic and pass through the midpoint.
Therefore, all QRE models with i.i.d. perturbations (logit, probit, and so on, for any precision)
will have intersections at probabilities below 1/2 for this game, that is, for this particular
expected payoff difference line. For the battle-of-sexes game represented in the bottom panel
of Figure 1.5, changes in precision can make the scaled distribution line sharper or flatter, but
all possible symmetric QRE intersections are located between the 0.5 midpoint probability and
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the Nash mixed probability of 0.25 (as indicated by the darker shading along the vertical axis).
Finally, it is important to note that QRE is not necessarily a parametric theory, although partic-
ular parametric (logit or probit) implementations are typically used for purposes of estimation.
The empirical content comes from the monotonicity offHfenction and the requirement that
F(0) = 1/2, which ensures that decisions with higher payoffs are used more frequently.

Graphical representations help to establish an intuitive feel for how the QRE configurations
change as precisions and payoffs change. Spreadsheets with fixed references to parameters
that can be altered are also useful. To construct the graphical representations used in
Figure 1.5, the first step is to calculate the payoff differences. The row player’s expected
payoff for choosingD1 in the top row of Figure 1.4 ipa+ (1 — p)b, and the expected
payoff for choosingD2 is pc + (1 — p)d, so the expected payoff difference betwedeh
and D2, denoted by, is: X = A(p) = p(@— c+ d — b) + b — d. Thus for each value
of x on the horizontal axis in Figure 1.5, the vertical coordinate of the payoff difference
line would be obtained by solving fgo as a function of thex on the horizontal as is:
p= A1) = (x—b+d)/(a— c+d— b). The spreadsheet graph is then constructed by
creating a column of values going from —20 to +20, and then adding a second column with
the above formula for the inverse payoff differenaerl(x), with cell references to payoff
parameter specifications. The final step is to add a third column for the distribution function
F(1x), with a cell reference to the precision parameter. For a logit equilibrium, the distribution
would be determined by the logit distribution in (1.8)= 1/(1 + exp(—Ax)).12 These three
columns can then be used to construct a figure with the logit distribution and expected payoff
difference lines, where QRE points lie at the intersection(s).

To summarize, quantal response equilibrium with standard assumptions about errors
does have empirical content in that it places restrictions on the range of possible choice
frequencies. The use of normal or exponential disturbance distributions results in probit
or logit QRE, each with a precision parameter that determines the degree of curvature in
the better response lines, and the i.i.d. assumption ensures that they will pass through the
midpoints (0, 0.5) in Figure 1.5. Alternatively, we could use the symmetric structure of the
distribution F(-) to derive comparative statics results without making specific parametric
distributional assumptions. This is analogous to specifying reduced-form quantal response
functions that satisfy basic continuity, responsiveness and monotonicity axioms (Goeree et al.
2005), which ensure that they pass through the center (0, 0.5) points. The general structure
of these qualitative predictions depends on whether the expected payoff difference line is
negatively sloped, as in the bottom of Figure 1.5, or positively sloped, as would be the case
where cooperation by one player enhances the other’s incentives to cooperate. As shown in
the following sections, sometimes QRE exhibits a pull to center, in which probabilities are
pulled away from Nash predictions toward probabilities of 0.5. In other games, QRE exhibits
a pull to extremes, in that basins of attraction tend to confer stability properties on QRE that
have relatively high or low probabilities compared with a Nash mixed-strategy prediction.

4. SYMMETRICN-PERSON BINARY DECISION GAMES:
APPLICATION TO THE VOLUNTEER’S DILEMMA

The methods used in the previous sections can be applied to symhtgierson games with
a binary choice, for example, contribute or not, choose high effort or not, and so on. Here we
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focus on symmetric equilibria, so that beliefs about the other players can be represented by
a probability,p, which is used to determine a player’'s expected payoffs for each of the two
decisions. The difference in expected payoffs, denoted fiy = 71(p) — 72(p), determines

the QRE when it crosses the scaled inverse distribution of the error difference, as in equation
(1.6). The added complexity here is that payoff functions (and their differences) depend on
the number of other playersl — 1, as is the case for the volunteer’s dilemma game to be
discussed next.

Consider a situation in which it only takes one volunteer to provide a public good for
everyone, for example, one person who is willing to attempt a risky rescue or one legislator
who is willing to ‘take the heat’ and propose a pay raise for all. Ther&lgskyers, and each
person’s payoff is an amoul if at least one person volunteers (decisioh), minus a cost
C < V of volunteering for anyone who does so. If nobody volunteers, then all earn a low
payoff of 0. Since volunteering is costlg, > 0, each person would prefer that someone else
volunteers. Alternatively, if nobody else is going to volunteer, then a player would prefer to
volunteer since the benefit ¥fexceeds the individual cost of volunteering> C. Note that
the expected payoff from volunteering is a constant= V — C, since there is at least one
volunteer in this case. The expected payoff from not volunteering (in a symmetric equilibrium
with a volunteer probability) is the value/ times the probability that at least one of the others
volunteersit, = V[1 — (1 — p)N~1]. The difference between volunteer and no-volunteer
payoffs is a function of the number of other playetsp) = 71 — 72 = V(1 —p)N~1 —

C, which is linear wherN = 2 as shown by the straight, negatively shaped dashed line in
Figure 1.6, using paramete¥s= 0.8 andC = 0.2. For higher numbers of players, the payoff
differences are reduced as the dashed/dotted lines become increasingly curved.

In a mixed-strategy Nash equilibriums, the expected payoffs for volunteering and not
volunteering must be equal in order for players to be willing to randomize. That is, the
following equation must be satisfied:

C=Vv@a-pHN1? (1.7)

Therefore, the Nash equilibria are indicated by the dark diamonds in Figure 1.6 on the
vertical line above a payoff difference of 0. This vertical line, of course, corresponds to a
‘sharp’ distribution function with no dispersion, which illustrates the connection between
Nash equilibria and a limit of quantal response equilibria. With a finite precigipthe S-
shaped distribution line shows some curvature as it passes through the migpen0(5

with a zero payoff difference), as required by the i.i.d. assumption on the payoff disturbances
(for example, logit and probit). The intersections with the payoff difference lines at the small
circles are the QRE for various group sizes. Note that the QRE predictidh fof is below

the Nash prediction of 0.75, whereas the QRE predictions are above Nash predictions for
the larger groups. This pull-to-center effect would be observed for any parameterization that
satisfies the i.i.d. assumption.

It is apparent from Figure 1.6 that & goes to infinity, the Nash equilibrium volunteer
probability goes to zero (as the diamond intersections on the zero-payoff-difference line get
lower). Having more players tends to work in the other direction, so the net effect of increasing
group size on the chances of getting a volunteer is unclear. This Nash volunteer probability
goes to zero so quickly that the probability of getting a no-volunteer outcome is increasing
in the number of players. That is, the Nash prediction is that a no-volunteer outcome is
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Notes: The curved distribution line is drawn for the logit precision estimated by Goeree et al. (2017), and the
expected payoff difference lines are for the parameters used in that paper. The intersections (open circles) are the
QRE, which are pulled towards the center relative to the Nash equilibria (diamonds) at the intersections of the
expected payoff difference lines and the vertical (sharp) best response line. So the QRE volunteer rate is below the
Nash prediction of 0.75 fox = 2 (as shown by the darker shading along the vertical axis), and it is above the lower
Nash predictions for higher numbers of players. As the number of players goes to infinity, it is apparent from the
lower-left part of the figure that the QRE probability will not go below 0.1. This lower bound (for a fixed logit
precision) will cause the probability of getting no volunteers at all to go to zero, which is consistent with intuition

and experimental evidence, but inconsistent with Nash predictions derived from equilibrium volunteer rates that do
go to zero ad\ becomes large.

Figure 1.6 QRE for a volunteer’s dilemma with various numbers of players

more likely in a large group® This unintuitive prediction was not observed in a laboratory
experiment in which no-volunteer outcomes diminished steadily as the group size increased
from 3 to 12 (Goeree et al. 2017). In contrast, for any given precisjdghe QRE volunteer

rate is bounded away from zero (at a level of about 0.1 where the curved distribution line
reaches the payoff difference of —0.2 on the left-hand side of Figure 1.6). This lower bound
on the volunteer rate ensures that the QRE probability of getting at least one volunteer goes
to 1 for large numbers of players, or equivalently, the probability of a no-volunteer outcome
goes to zero. The intuition is that there is always some residual noise, even with large groups,
and this noise tends to increase the chances of getting at least one volunteer. Similarly, the
incorporation of noise in equilibrium models improves predictions in other experiments in
which only a single decision is needed to generate a specific outcome, for example, voting to

acquit on a jury subject to unanimity (see the discussion and references in Goeree et al. 2016,
ch. 7).

Empirical Content of QRE in the Volunteer’s Dilemma

For each particular group size, it is apparent from Figure 1.6 that the QRE predictions lie
between the Nash prediction and 0.5, a pull-to-center effect that was present for all four
group-size treatments with predictions that differed from 0.5. Therefore, if the data average
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were outside of this range between Nash and 0.5, it would be impossible to find a precision
that generates a perfect fit, even for a single treatment. For a group size of 2, for example,
the straight dashed expected payoff difference line passes through the northeast shaded
rectangle over a range pfvalues between 0.75 and 0.5 (the dark shading along the vertical
axis). The empirical content for the volunteer’s dilemma game is sharpened by the presence
of data for a wide range of treatments that were used to estimate a single precision parameter.
Notice that these comparative statics predictions do not depend on any particular parametric
form (logit, probit, and so on) of the quantal response funchorsince any cumulative
distribution resulting from i.i.d. disturbances would be increasing and would pass through the
(0, 1/2) point in Figure 1.6. Moreover, the arguments just presented imply that the probability
of no-volunteer outcomes is decreasing for large groups, notincreasing as implied by the Nash
equilibrium. That is, there is no finite value of the precision parameter that would fit data that
happened to conform to the Nash prediction pattern of a no-volunteer rate that is increasing
in N.

5. COORDINATION GAMES AND MULTIPLE, PARETO-RANKED
EQUILIBRIA

A coordination game is one with multiple Nash equilibria, so that players have to solve the
problem of coordinating on a preferred equilibrium. For example, suppose that the incentive
to defect unilaterally from the cooperative outcome in a prisoner’s dilemma (g off in
Figure 1.4) is reduced to the extent that that there is no longer an incentive to defect, that
is, a > c. In this example, the original cooperation outcome would constitute a second Nash
equilibrium that is preferred by both players to the mutual defection equilibrium. Coordination
games have fascinated economists and game theorists, owing to the possibility that players
may fail to coordinate on the Pareto-preferred equilibrium. This possibility is especially
credible in games that require coordination among many players, for example, if the failure
of some to coordinate may increase the attractiveness of the ‘bad’ equilibrium for others.
Malthus, for example, worried that a whole economy might become mired in a general glut
that could be hard to escape. One example of this situation is the weakest-link game, for which
the payoff for each player is a function of the minimum of all players’ efforts. One player’s
actions can weigh heavily on the others’ payoffs in this weakest-link, or minimum-effort,
game. Laboratory experiments confirm that coordination on good equilibria is especially
difficult with larger numbers of players in a weakest link game (Van Huyck et al. 1990; Goeree
and Holt 2003a, 2005a).

Figure 1.7 shows the payoffs for a two-person weakest link game for which de€gion
corresponds to a high effort with a cost df ,2and decisiorD2 corresponds to a low effort
with a cost ofC. When both subjects choose low effort, the minimum is 1 unit, and they each
earnV — C, as shown in the lower right-hand box. If the row player unilaterally raises effort
to the high level, the effort cost goes up, but the minimum stays low, so the lower right-hand
box is a Nash equilibrium. Alternatively, when both choose a high effort, the minimum is high
and they each earn2- 2C, as shown in the upper left-hand box of Figure 1.7. Starting at this
good outcome, a unilateral effort reduction by the row player would lower both the minimum
effort and the cost, that is, the row player’s payoff would fall fromi2 2CtoV — C. Thus
a unilateral effort reduction from the high-effort equilibrium is not profitable. The dilemma
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Column player

D1 (high) D2 (low)
D1 (high) 2V=-2C, 2v-2C V=2C, V-C
Row player
D2 (low) V-C, v=2C Vr-C, v-C

Figure 1.7 Weakest link (minimum effort) coordination game~(\C >0)

is that low effort for both is also Nash equilibrium. The payoffs are twice as large for each
if they both choose high effort, but there is no risk in choosing low effort. In addition to the
two pure-strategy Nash equilibria at high- or low-effort levels, there is also a mixed-strategy
Nash equilibrium at an intermediate probability of high effgrtwhich equates the expected
payoffs of the two effort choices.

Figure 1.8 shows the previously discussed decomposition of the dashed expected payoff
difference line and the curved{scaled) distribution line, the intersections of which determine
QREs (circles in the figure). Note that the expected payoff difference line for a two-player
coordination game has a positive slope, which reflects the intuition that a higher probability
that the other player chooses high effort raises the payoff difference for a choice of high effort.
The game being represented has an effort co&t 6f 0.4 and a value o¥ = 1. The dashed
expected payoff difference line starts-ab.4 on the horizontal axis because when the other
chooses high effort with probability 0 (bottom of Figure 1.8), an extra unit of effort has no
effect on the minimum; it just reduces one’s payoff by 0.4. Conversely, when the other player
chooses high efforfy = 1, a switch to high effort raises the minimum effort and the cost, for
anetgainolV — C =1-0.4= 0.6, as shown by the intersection of the dashed line with the
top of Figure 1.8.

As indicated from the previous analysis of equation (1.4), the QREs correspond to
intersections of the curved distribution line and the dashed expected payoff difference line.
In Figure 1.8, the circle at the top is for the outcome where both players choose high effort
with a probability that is close to 1, and the circle at the bottom is for the other equilibrium
where the probability of high effort is close to 0. The middle QRE circle in Figure 1.8 is near
the Nash mixed equilibrium, which is at the intersection of the expected payoff difference line
and the vertical line at a payoff difference of 0 that makes a player indifferent and willing to
randomize. This illustrates the general tendency for QRE points to be near Nash equilibria
when precision is relatively high (Goeree et al. 2016, ch. 1, and references therein).

TheA-scaled distribution line in Figure 1.8 is drawn with a specified level of the disturbance
precisioni. A lower precision would result in a flatter line, which would move the two
extreme QRE circle predictions inward, away from the Nash equilibria where the probability
of high effort is either 0 or 1. A sufficiently low precision could cause the distribution line to
flatten out so that there is only one intersection with the payoff difference line, at a probability
above 0.5. That is, the QRE with a relatively high probability of high effort may vanish
for sufficiently low precision levels. This is consistent with intuition that coordination on a
high-effort outcome is difficult in the presence of noise that increases the risk of choosing
high effort.

There is a simple intuition suggesting that the middle QRE point in Figure 1.8 (at a high-
effort probability of about 0.37) could be unstable. For example, beginning at a probability
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O 1 Probability of
T 0.9 high effort
0.8
0.7 Lambda scaled distribution

T 0.6

0.5 Payoff difference N = 2
ol 0.4

0.3 Payoff difference N = 2,

l* 0.2 reduced effort cost
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Notes: The expected payoff difference (for choosing high effort instead of low effort) is shown on the horizontal
axis, and the probabilitp that the other player chooses high effort is shown in the vertical axis. The straight dashed
line shows the expected payoff difference for high effort as a functignfof the case oN = 2 players. The slope

of this expected difference line is positive, since a higher probability that the other chooses high effort raises the
expected payoff gain of switching to high effort. The QRE points are at the intersections of the payoff difference

line and the curved distribution line. Two of these equilibria (the circles near the top or bottom boundaries) represent
the high-effort and low-effort QRE outcomes. The thin dashed line shows the rightward shift in the expected payoff
difference resulting from a reduction in the effort cost.

Figure 1.8 A two-player minimum-effort coordination game with-\1 and C= 0.4

of 0.5 in the center of Figure 1.8, move to the dashed line to the right to determine a
positive payoff difference. Then move up vertically to the curved probabilistic response for
this positive payoff difference, which is much higher than 0.5. This intuition suggests that
if choice proportions start near 0.5, the incentives to choose high effort will cause quantal
responses to raise the proportion of high effort decisions, as suggested by the upward arrows
shown in that region. The converse reasoning applies for probabilities that are below those
of the middle QRE circle in Figure 1.8, that is, quantal responses tend to pull probabilities
down in this region. In effect, the middle QRE determines the basins of attraction for the
extreme, high-effort or low-effort QRE. In this case with two players, the high-effort QRE has
a larger basin of attraction. The instability of the middle QRE point is consistent with the
unintuitive comparative statics for that point. For example, a reduction in the cost of effort
might be expected to increase the probability of a high-effort decision. However, a decrease
in C raises the expected payoff differences and shifts the payoff difference line to the right in
Figure 1.8 (the thin dashed line). This shift causes the middle QRE intersection to be at a lower
probability of high effort. What is intuitive is that a reduction in the cost of effort, by lowering
the middle QRE point, will increase the basin of attraction for the high-effort QRE point.

With N players, a high-effort decision results a sure cost©f & high common-effort
outcome only results if all others choose high effort, which happens with probailiity, A
low effort yields a sure payoff o/ — C. In this instance, the expected payoff difference
function is A (p) = VpPN~1 — C, since adding a unit of effort may possibly raise the
value received, but surely raises the cost. This payoff difference functioN fer 3 will
be quadratic, shown as the curved dot-dash line in Figure 1.9. For these parameters with
C = 0.4 andV — C = 0.6, the expected payoff difference line still passes through the points
(—0.4,0) and (0.6, 1), as was the case for two players. However, the expected payoff line is
located to the left for intermediate probabilities, since the probability that the minimum of
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Notes: With three players, the expected payoff difference depends on the probability that both other players
choose high effort, which ip?. This nonlinearity causes the expected payoff difference line to have curvature, as
shown by the dot-dash line. This line has shifted up and to the left relative to the straight dashedNireZpr

although the expected payoff intercepts at the top and bottom of the figure are the same. As before, the QRE points
are at intersections between the expected payoff difference line and the curved distribution line. There is one QRE
with relatively low effort (circle intersection near the bottom), another with relatively high effort (circle near the

top), and an unstable QRE with an intermediate probability. Notice that the quantal responses are below the payoff
differences anywhere to the left of the unstable QRE point, which tends to pull down the probability of high effort.
Thus the increase in the number of players has increased the region of attraction for the low-effort QRE.

Figure 1.9 A three-player weakest link coordination game wita:\Y and C= 0.4

others’ efforts is high is decreasing in the number of other players. As before, there are three
QREs (circles in Figure 1.9), one near the upper boundary, one near the lower boundary and an
intermediate equilibrium that is unstable and that delimits the basins of attraction. An increase
in the number of players would increase the basin of attraction for the low-effort equilibrium,
as would be suggested by simple intuition about the increased difficulty of coordination for a
larger number of players.

Empirical Content of QRE in Coordination Games

Recall that the curved line in Figures 1.8 and 1.9 isifsealed distribution of the difference

in payoff disturbances. This distribution function must be upward sloping and pass through
the cross at the center of each figure. This point at (0, 0.5) is where the cumulative probability
is 0.5, reflecting the i.i.d. assumption that neither of the disturbances is more likely to be larger
than the other. As precision becomes smaller, the scaled distribution line becomes flatter, but
since it is non-decreasing, it can only pass through the points in the light shaded areas. Thus
the distribution line can never intersect with the payoff difference line in the region to the
southeast (down and to the right) of the cross at the center of Figure 1.9, or to the northwest (up
and to the left). With two players, the standard i.i.d. assumption about disturbances precludes
any QRE in this region, at probabilities between about 0.4 and 0.5 as shown where the light
thin dashed line passes in the open between the two shaded rectangles in Figure 1.9. Similarly
a hon-decreasing cumulative distribution cannot intersect the payoff difference for the case of
N = 3 at any probability between 0.5 and about 0.65 in the three-person coordination game.
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To summarize, when the expected payoff difference line is positively sloped, as in coordina-
tion games, for plausible values of lambda, the standard i.i.d. assumptions preclude QRE in
probability ranges close to .5 (in one direction or the other), just as the pull-to-center QRE

tendencies with negatively sloped expected difference lines tend to rule out QREs that are
located in regions closer to the extremes of 0 or 1. Finally, note that coordination on high

efforts is more difficult with more noise, more players attempting to coordinate and a higher

cost of effort.

6. GAMES WITH ASYMMETRIC EQUILIBRIA

In an asymmetric equilibrium, each player's choice probability will be determined by the
player’s beliefs about the other’s decision. In a Nash equilibrium, the choice probabilities
for each player will be best responses to beliefs about the other’s decision. The associated
best response lines will have sharp edges, with Nash points at the intersections. In a QRE,
each player’s choice probability will be a noisy response, which can be represented by a
curved quantal response line for each player. With two players and two decisions, the QRE
probabilities are located at the intersection of the players’ quantal responses. As precision
decreases, curvature increases, which can move the QRE point away from Nash in the
presence of payoff asymmetries.

Figure 1.10 represents a matching pennies game, in which the row player prefers a match
on heads or tails, and the column player prefers a mismatch. This game is highly asymmetric
because the row player prefers matching on heads to matching on tails. Payoffs would be
symmetric if the 10 were reduced to 2, in which case the Nash equilibrium would be for each
player to randomize with probabilities of 1/2 for each decision. However, if the row player’s
top left payoff is 10 as in Figure 1.10, the row player must still randomize by choosing top
with probability of only 1/2 in order to keep the column player indifferent and willing to
randomize. This stark Nash equilibrium prediction of no own-payoff effect is not supported
by laboratory experiments with random matching. Instead, row players tend to choose top
more often than bottom (Ochs 1995; Goeree et al. 2003).

Consider the best response for the column player, shown as a dashed line in the left panel
of Figure 1.11. The symmetry of the column player’s payoffs implies that it is a best response
to switch from left to right as the row player’s probability of top crosses 1/2, as indicated by
the dashed line in the left-hand panel of Figure 1.11. A quantal response function would be
smoother, represented by a curved line that would lie somewhere in the lower shaded area to
the left of 1/2 and in the upper shaded area to the right.

Column player

Left (heads) Right (tails)
Top (heads) 10 1 12
Row player
Bottom (tails) 12 21

Figure 1.10 Asymmetric matching pennies game
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Notes: As the precision decreases, the sharp dashed best response for the column player will flatten out into
quantal responses, but it will stay in the horizontal shaded regions in the left-hand pane. Similarly, the vertical
shaded regions in the right-hand panel show the possible locations of the quantal responses for the row player.

Figure 1.11 Best response lines for a matching pennies game: column player (dashed
lines) and row player (solid lines), with shading for possible locations of
guantal responses

Conversely, in order to make the row player indifferent in this asymmetric game, the column
player must choose right with probability 0.9, as shown by the row player’s vertical solid best
response line in the right-hand panel of Figure 1.11. For probabilities of right below 0.9, the
row player’s best response is to choose top for sure, as shown by the best response line in
the right-hand panel of Figure 1.11 that comes across the top of the panel and then drops
to 0 when the probability of right is equal to 0.9, at which point the row player’'s expected
payoffs for each decision are equal. With some noise, the best response line is replaced by a
smoothed line that starts somewhere the upper-left shaded area and crosses to the lower-right
shaded area.

If there is an i.i.d. payoff disturbance associated with the expected payoff for each decision,
then the quantal responses can be represented by scaled distribution fuRctidrtbie
expected payoff difference\(p) that depends on beliefs about the other player’'s decision,
that is, the row player’s beliefs aboBt(Righ?y) and column’s beliefs abotrr(Top). These
guantal responses are shown in equations (1.8) and (1.9), with the logit specification shown
after the second equal sign:

eXF()\ﬂTop(pRight))
=FOA iaht) = , 1.8
Prop = F(h AroulPrign) = e eximsomanea). )
exp(AnRi
PRright = l:()LACqumr(pTop) = p( ﬂnght(pTop)) , (1.9)

exp(2-7right(Prop)) + exp(3-7Lett(PTop))
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Notes: The curved quantal response lines will intersect in the shaded area, which is the intersection of the shaded
sets in Figure 1.11. This set illustrates that QRE does have empirical content in this game when payoff disturbances
are i.i.d. The particular curved quantal response lines shown are for a precision that was estimated using data from
two different matching pennies games. The intersection of the quantal response lines is above and to the left of the
Nash equilibrium (hollow diamond). The hollow dot (marked ‘10 data’) shows the average of the proportions of top
and right for row and column players, respectively, in an experiment. Thus QRE explains the qualitative nature of
the deviations from the Nash prediction. In particular, the row player is responsive to the high payoff of 10 for a
top/left outcome, and therefore, the row player chooses top more often. The arc of small dots shows the locus of all
QRE points when disturbance precisions for each player are constrained to be equal.

Figure 1.12 Best responses (straight lines) and quantal responses (curved lines) for the
column player (dashed lines) and row player (solid lines)

In a QRE, theprop andprignt beliefs on the right sides of (1.8) and (1.9) must match the choice
probabilities on the left, so the QRE is obtained by solving these two nonlinear equations.
This solution can be represented by an intersection of quantal response lines in Figure 1.12.
Those particular curves represent the logit quantal response functions, for the specific value
of the precision parametex, that was estimated from laboratory data of two asymmetric
matching pennies games, one shown in Figure 1.10 and a second treatment where the 10
payoff was reduced to 10/9. The data average is represented as the hollow dot ‘10 data’
in Figure 1.12. Even though the QRE prediction is not perfect for the 10 treatment, it is
qualitatively similar in terms of the observed frequency of top being significantly above the
0.5 Nash prediction, and the observed frequency of right being significantly to the left of the
Nash prediction of 0.9. That is, the QRE exhibits the own-payoff effect of the high 10 payoff
that is apparent in the data but not implied by a Nash equilibrium.

Finally, the shaded area in Figure 1.12 represents the intersection of the shaded regions of
the two panels of Figure 1.11. In order to reach all parts of the shaded regions in Figure 1.12,
we would need to have the flexibility to choose one precision for the row player and another
for the column player. Since roles in the experiment are randomly assigned, it is better to
model the precisions as being the same, which would sharply restrict the shaded region of
possible QREs in Figure 1.12. For any specific parametric specification, the locus of QRE
points would start at the central point of Figure 1.12 (0.5, 0.5) as precision goes to 0, rise into
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the shaded region, and would end up at the Nash mixed equilibrium (0.9, 0.5) as precision
goes to infinity (dotted arc in Figure 1.12). The locus of all logit QRE points with a single
precision parameter is a curved line, not an area.

Empirical Content of QRE in Matching Pennies Games

If payoff disturbances are i.i.d. (for example, logit and probit) then the set of possible QREs
for the asymmetric matching pennies game in Figure 1.10 is the shaded set in Figure 1.12.
Goeree et al. (2019) generalizes this nonparametric restriction implied by QRE for arbitrary
finite games and show that the relative measure of the shaded region is bounded above
by 1K!, whereK is the number of available actions in the game for a player. That set is
further restricted if the payoff disturbances are identically distributed according to a specified
parametric distribution, for example, logit with the same precision, in which case the set of
possible QRE is a line not an area. As always, empirical content is further sharpened when
multiple treatments with different payoff parameters are used, for example, Holt and Palfrey
(2020).

7. QUANTAL RESPONSE EQUILIBRIUM IN EXTENSIVE FORM
GAMES: THE CENTIPEDE GAME

Many games of interest — for example, signaling games, repeated games and multistage
bargaining games — have a timing structure that is not captured in the strategic-form
representation. Importantly, subgame perfection and sequential rationality lead to strong
restrictions on equilibrium behavior, and are appropriately analyzed as games in extensive
form. McKelvey and Palfrey (1998) develop the theoretical framework for QRE in extensive
form games, naming it agent quantal response equilibrium (AQRE). The terminology is based
on a player’'s decisions at subsequent decision nodes being modeled as decisions of a noisy
agent subject to payoff disturbances at those future nodes. While the formal development of
the theory is complicated, it is easy to describe for multistage games of perfect information.
Consider, for example, the logit AQRE. Starting from the final stage, the last player chooses
stochastically according to the logit quantal response function with precision parameter

at each information set, where the outcomes of the player's possible choices are known
guantities, so no expectation over other players’ action choices are necessary at this last stage.
This, in turn defines the expected payoffs for all available actions at each information set for
the next-to-last player. That player then logit quantal responds in the next to last stage. In this
manner, the game is solved backwards until the initial stage.

This basic idea extends in a natural way to any extensive-form game with perfect recall.
At each information set for each player, a player’s continuation expected payoffs (for each
available action at that information set) are calculated using the distribution over the terminal
payoffs based on the future quantal responses of all players at all information sets following
that move. The formal structure is laid out in McKelvey and Palfrey (1998). This backward
induction process guarantees that the limits of AQRE, whgpes to infinity, are sequential
equilibria of the underlying game, so AQRE imposes a quantal response version of sequential
rationality. Since the quantal responses are strictly interior, in any AQRE, every information
set is reached with positive probability. Thus, unlike the standard equilibrium analysis of
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extensive-form games, there is no need to arbitrarily assign beliefs to unreached information
sets, where Bayes' rule fails to apply. Instead, Bayes’ rule applies everywhere in the game,
thereby completely avoiding any issues related to belief-based refinements of the Nash
equilibrium.

We next illustrate the quantal backward induction method for the four-stage centipede game
shown in Figure 1.13. In each stage of this game, the player moving at that stage chooses to
either pass the game to the next stage, or to take and receive a payoff that is four times the
payoff of the other player. The take decisions are shown as down arrows and the pass decisions
are shown as arrows to the right. For example, player 1 decides first at the left node, and a take
(down arrow) at that point results in payoffs of 40 for player 1 and 10 for player 2. Notice that
if a player chooses pass, the payoff amounts double and are switched. Itis as if unequal money
amounts are passed in a tray, with the person making the decision deciding to take the higher
amount or pass, which doubles the money amounts but offers the other player the chance to
take the higher amount. If nobody has taken in the first four stages, the game ends with pass
payoffs of (640, 160) for players 1 and 2 respectively, as shown on the right-hand side of
Figure 1.13. McKelvey and Palfrey (1992) studied behavior in this game and in a six-stage
extension (with payoffs in pennies) of (640, 160) for a take stage 5, (320, 1280) for a take in
stage 6, and with the final pass payoffs being (2560, 640) for players 1 and 2 respectively.

All Nash equilibria in the centipede game (and there is more than one) involve player 1
taking in the first stage. There is a unique sequential equilibrium where each player takes
whenever it is their move. Behavior observed in laboratory experiments is far different.
The top part of Table 1.1 displays the empirical relative frequencies at which players were
observed to choose take at each stagdenoted byg;. The striking pattern in the data is
the strong horizon effect, observed in both treatments: take probabilities start near zero and
increase dramatically as the game progresses and the final stage is approached.

Zauner (1999) and McKelvey and Palfrey(1998) used the observed take rates to estimate a
guantal response precision parameter using different specifications of the quantal response
functions!® In a logit QRE, for example, increases in the payoff differences between take
and pass in later stages of the centipede game would result in higher take rates in later stages,
essentially moving up along a fixed lambda-scaled cumulative distribution function in Figures

Player  Player  Player  Player

B > > > (640, 160)
oo b

(40,10) (20,80) (160, 40) (80, 320)

Take rates:

0.07 0.38 0.64 0.75

Notes: Player 1 begins at the node on the left by choosing between take (down arrow) and pass (right-pointing
arrow), where a take results in payoffs of 40 cents for player 1 and 10 for player 2. At the second node, player 2
chooses between take (down) and pass (right), and decisions alternate if the game continues. The bottom row shows
rates of take decisions observed by McKelvey and Palfrey, which increase steadily from 0.07 in the first stage to

0.75 in the final stage.

Figure 1.13 Four-stage centipede game and observed take rates (McKelvey and
Palfrey 1992)
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Table 1.1 Take rates in four- and six-stage centipede games: observed (McKelvey and
Palfrey 1992) and Luce QRE fitted rates with= 1.16

Take rates 01 02 03 O4 ds Je
4-move observed: 0.070 0.380 0.640 0.750 - -
6-move observed: 0.007 0.065 0.210 0.530 0.730 0.850
4-move fitted Luce: 0.160 0.270 0.370 0.690 - -
6-move fitted Luce: 0.050 0.100 0.160 0.270 0.370 0.690

1.1-1.2 and 1.5-1.6. Recall that the take payoffs double (and switch) irsebsbguent stage

of the centipede game in Figure 1.13. Since logit choice probabilities are constructed from
ratios of exponential functions of expected payoffs, a doubling of all payoffs that doubles all
expected payoffs is analogous to doubling the logit precision, as can be seen from the location
of the two numbers adjacent to the precisiom equation (1.10).

exp(A2r1 ()

exp(271 (D) + exp (272 (D) (logit with doubled payoffs (1.10)

p:

This observation suggests that behavior should become much more precise in later stages of
the centipede game. In contrast, note that the take rate in the final, fourth, stage in Figure 1.13
is only 0.75. An alternative to the logit form that is sometimes used when payoff scale changes
are large is the Luce probabilistic choice rule:

(1 (p))*

= for A > 0 (Luce power rule, 1.11
T+ ey o (tueep g (1)

wherex = 0 implies extreme noise and choice probabilities of 0. Notice that this choice

function is invariant to uniform changes in payoff scale, for example, doubling. Thus the

Luce rule implies that choice probabilities depend on ratios of expected payoffs, not on

differences'> Next we illustrate the use of the Luce rule in the context of the centipede game.
An AQRE for the four-move game is a sequence of take probabilitigsgy, g3, d;). At

stagej, Wherqu?k is a quantal response to the expected payoffs from the take decision to the

player moving at that stage, given the take ratgsfor all subsequent stagés> j. At stage

2, the quantal response for the Luce power rule (1.11) is constructed as a ratio of terms, each

of which is a payoff raised to the powgr

. (80)*
2 =
(80)* + [40qs* + (1 — gz*) (3200a* * +160(1 — qa*))|*

(Luce rule for stage 2
(1.12)

The numerator in (1.12) is the payoff for player 2 from take, 80, raised to the paveard

the denominator is the sum of that term and a second term that represents the expected payoff
from passing, also raised to the povieiThe best fitting precision value for the take-rate data
shown in the top part of Table 1.1 is = 1.16, generating predicted take probabilities as
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shown in the bottom part of Table 1.1. Notice that the qualitative horizon effect observed in
the top part is clearly captured in the estimates shown in the bottom part.

It is also instructive to look at the entire power Luce QRE correspondence for this 4-stage
game, shown in Figure 1.14. Begin on the left with a zero precision (perfect randomness),
which causes all take probabilities to be 0.5. Figure 1.14 shows that convergence to the
unigue subgame perfect equilibrium, even in games of perfect information, is not necessarily
monotone in. Only g converges monotonically to 1, because a pass at node 4 is a strictly
dominated strategy. In contrasf;, g3, andqj initially decrease because for low values of
A there is sufficient noise in the future play of the game such that passing yields a higher
expected payoff, so the associated take rate is below a half. For all strictly positive precision
values, however, the lowest take rate is in the first stage (dark thick line) and take rates
are higher at each subsequent stage (lighter lines), so each specific value of the precision
parameter exhibits the same pattern of increasing take rates from stages 1 to 4. Therefore, this
correspondence shows how QRE captures the horizon effect for a wide rangaloés. The
vertical dashed line is drawn at the best-fit value.pfind the intersections with the curved
lines show the resulting best-fit QRE predictions.

Empirical Content of QRE in the Centipede Game

Itis apparent from Figure 1.14 that a perfect fit for a single game would require four observed
take rates to lie on the same vertical line, and the likelihood of a perfect fit for both four-stage

Take Estimated
probability A
1

0.9
0.8
0.7
0.6
0.5

0.4 \
0.3
0.2

01 SN—

0

0 1 2 3 4 5 6

~

Luce precision parameter

e ] st Stage 2nd stage 3rd stage 4th stage Best fit

Notes: With a precision of 0 on the left-hand side, the take probabilities are all 0.5 (perfectly random). For each
positive precision value shown on the horizontal axis, the take probabilities increase from stage 1 (darkest line) to
stage 4 (lightest line). A Luce precision parametek ef 1.16, as indicated by the vertical dashed line, generates
the best-fit take probabilities provided in the bottom part of Table 1.1 for this four-stage game.

Figure 1.14 Luce QRE correspondence of take probabilities for the four-stage
centipede game
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ard six-stage games together requires an additional six intersection points to be arrayed on
the same vertical line, which is generally impossible. The 10 fitted Luce predictions shown in
the bottom rows of Table 1.1 (based on a single precision parameter) are not perfect, but they
do track the key qualitative features of deviations from the Nash prediction of take rates of 1
at all stages.

8. GAMES WITH A CONTINUUM OF DECISIONS: IMPERFECT
PRICE COMPETITION

Recall that a logit model is based on a binary choice probability expressed as a ratio of
exponentials of expected payoffs, wit"(P) for decisioni in the numerator, and with a sum

of analogous exponentials for both decisions in the denominator. With a larger number of deci-
sions, the denominator sum includes exponentials for each decision, to ensure that the result-
ing choice probabilities sum to 1. With a continuum of decisions on a range, say 0 to 100, the
probabilities are densitief(p), and the sum in the denominator is replaced with an integral:

f ()

(1.13)

The next example illustrates a key insight about QRE as an equilibrium theory, and the effects
of noise are not simply to spread decisions out around some central tendency. There can
be cascading feedback effects that push the distributions of decisions far away from a Nash
equilibrium that would occur in the absence of noise. Capra et al. (2002) report an experiment
for a price competition game in which the unique Nash equilibrium was at the low end of
the range of possible prices, but the data average for one of the treatments turned out to be
about 70 percent of the way towards the high end of the price range. The reader might wonder
how QRE can explain this pattern, since in some previous applications the effect of noise
has been to pull the QRE predictions towards the center. In those games, the expected payoff
difference line generally had a negative slope, for example, it is better not to volunteer when
the others volunteer with high probability. In contrast, the payoff difference line for the price
competition game, to be considered next, has a positive slope, that is, increased cooperation
stimulates additional cooperation. In particular, when others tend to charge higher prices, a
firm can earn more by raising the price, so there can be a cascading upward pressure on prices
owing to equilibrium interaction effects.

When there are many possible decisions, for example, prices in pennies, it is convenient to
model the game as having a continuum of choices. For example, suppose that there are two
firms that are constrained to choose prices in a range from 60 to 160. Buyers will demand a
total of 1+ « units of the product for prices in this interval, with the sales of the low-price
firm normalized to be 1, and the sales of the high-price firm being 1. There were two
treatments in the experiment, one very competitive, wite= 0.2, and the other much less
competitive, withe = 0.8. In this less competitive treatment, the high-price firm sells almost
as much as the low-price firm. Prices are chosen independently, but the high-price firm must
match that of the low-price firmax postfor example, in a meet-or-release contract. The delay
owing to theex postprice reduction is assumed to lower the sales quantity for the high-price
firm. If prices are 90 and 100, for example, the firm with the 90 price sells 1 unit, and the other
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firm only sells a fractiom after matching the low price of 90. Sinae< 1, the low-price firm
makes more money. It follows that each firm has an incentive to undercut the other, so the
unigue Nash equilibrium is at the minimum feasible price of 60. Basic intuition, however,
suggests that prices would be higher in the less competitive treatment.

This intuition was confirmed in a laboratory experiment that implemented the imperfect
competition game with zero costs, with a series of random matchings between subjects acting
as sellers. For the competitive treatment in which the high-price seller only sells a fifth as
many units as the low-priced seller, the average price was 68, close to the Nash equilibrium of
60. However, for the less competitive treatmant0.8), the average price was 121, almost
twice as high as the Nash prediction, and on the other side of the midpoint of the price range.
The cumulative distributions of observed prices, shown as sequences of dots in Figure 1.15,
reveal a treatment difference that diverges from the sharp (dashed-line) Nash prediction for
both treatments that puts all probability at the lowest feasible price.

A possible reaction to the high prices relative to the Nash equilibriumin the less competitive
treatmentis that it is just behavioral, a comment that we have heard on occasion. We used to be
content with hanging this label on unexpected data patterns, but QRE offers a more general,
theory-based approach that does not necessarily incorporate assumptions about behavioral
biases. The first step in the analysis is to express the expected payoff function for each possible
price choicep, given a belief density(p’) that represents beliefs about the other’s ppce
With zero costs, this expected payoff is shown in equation (1.14), where the first term on the
right-hand side is the price received for selling 1 unit times the probability that that price is the
low price, wherd-(p) is the cumulative of the belief density. The second term is the fractional

Nash distribution for both treatments

Cumulative
distributions

——— QRE distribution for 0.2
= QRE distribution for 0.8
Data distribution for 0.2
e  Data distribution for 0.8
= = = Nash for both 0.2 and 0.8

60 70 80 90 100 110 120 130 140 150 160
Price

Notes: The two sequences of dots show cumulative data distributions for the two treatments in Capra et al. (2002).
The dot sequence on the left is for the more competitive treatraent)(2), and the sequence on the right is for the

less competitive treatment € 0.8) that yields higher prices. The Nash equilibrium price prediction of 60 for both
treatments produces a sharp cumulative dashed line that follows the left-hand and top sides of the figure. The
smooth curved lines show the QRE cumulative distributions calculated using the experiment payoff parameters, but
with a logit precision parameter that was previously estimated for a continuous-choice social dilemma experiment
(Capra et al. 1999). The QRE densities can be used to calculate predicted price averages in a straightforward
manner. In the less competitive treatment, the logit QRE price average is 128, at about the same level as the average
price of 121 observed with human subjects in this treatment. In the more competitive treatment, the logit QRE price
average is 78, which is close to the observed data average of 68.

Figure 1.15 Cumulative price distributions with imperfect price competition
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unit, «, that is sold for each of the possible lower values of the other seller's priseighted
by the belief density fop'.

p
m(p) = p[l-F@] + a/60 p'f(pHdp. (1.14)

In equilibrium, the choice density on the left side of (1.13) must be the same as the belief
density that is used to determine the expected payoff function in (1.14). The solution to the
resulting nonlinear equations involves finding a fixed point for a discretized distribution. The
authors used a precision df= 0.12, estimated previously for a different game, to solve for
the equilibrium QRE distributions that are shown in Figure £85.

Even though the discretized equilibrium computation involves finding a vector of
probabilities that solve a large system of nonlinear equations, it is instructive to imagine
a more mechanical, iterative approach. Consider a sequence of iterations, beginning with

0.14 5 . . . X
High-price firm sells 0.8, low-price firm sells 1
0.12 - Level O
01 - Level 1
Level 2
0.08 -
Level 3
0.06 1 — | evel 4
0.04 + e | @VE| 5
0.02 - —— Level 6
0 = p— T T T T T T ) — Llevel7
60 70 80 90 100 110 120 130 140 150 160
Price
0.7 ) L L
High-price firm sells 0.2, low-price firm sells 1
Level O
Level 1
Level 2
Level 3
— | ovel 4
e | evel 5
—— Level 6
- "& — Llevel 7
90 100 110 120 130 140 150 160
Price

Notes: In each panel, an initial flat belief distribution (the horizontal dashed line) is used to calculate a logit

quantal response density, which serves as the belief distribution for calculating a second logit quantal density, and so
on. The iterated quantal responses converge to the QRE density in the top panel, with a peak at relatively high prices
for this less competitive treatment. For the more competitive treatment, the analogous sequence of logit response
densities tends to pile up near the low end of the price scale.

Figure 1.16 Iterated logit quantal responses with less severe price competition (top panel)
or more price competition (bottom panel)
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a flat (uniform) belief distribution on the price interval [60, 160] that is used to calculate
expected payoffs and a resulting probabilistic (logit) response density. That response density
is then used as a belief distribution to generate a new logit choice distribution, etc. Figure 1.16
shows such a sequence of noisy quantal responses to the initial flat beliefs (the dashed
gray horizontal line), using the precision parameterstimated previously. Notice that the
sequence of densities is converging after several iterations. The limit to this sequence is a
guantal response equilibrium distribution, that is, a distribution that is mapped into itself
(beliefs match choice distributions).

The flat beliefs used to start the iterative sequences in Figure 1.16 are sometimes referred
to as level 0 beliefs. A level 1 player, who believes that other decisions are pure noise, would
have a quantal response that will be termed noisy level 1. A level 2 player is one who believes
that others are noisy level 1, and so on. The distributions at each level are not equilibrium
distributions, since the surprise differences between choice and belief distributions would
generate learning and a tendency to change. Here we see the relationship between QRE (as a
fixed point limit) and noisy quantal responses to lower-level beliefs.

Empirical Content of QRE in Modelswith a Range of Decisions

As the logit precision goes to 0, the probabilities collapse to a uniform level, so the average
price prediction would be at the midpoint of the range of possible prices. As precision
increases, the price averages move around in the range of possible decisions. In the imperfect
price competition model, for example, average prices first increase and later decrease towards
the Nash prediction at the lower bound as precision goes to infinity. Thus it could be possible
to find a precision with an associated average QRE price prediction that exactly matches any
observed data average in a wide range of prices. This possibility fades with the inclusion of
a second treatment. Moreover, maximum likelihood estimates of the precision parameter are
sensitive to the whole price distribution (a product of price probabilities, each raised to a power
that equals the number of times that particular price is observed in the data). The resulting fit
is never perfect. The only hope of getting a perfect fit for each of the cumulative distribution
dots shown in Figure 1.15 would be to specify a separate precision for each possible price
choice on [60, 160] for each treatment, for a total of over 200 parameters to be estimated.
In contrast, the predictions shown in the figure are for a single parameter that was estimated
previously using data for a different (social dilemma) game.

9. NON-EQUILIBRIUM BELIEFS: LEARNING AND INTROSPECTION

As with any equilibrium theory, one possible critique of QRE is that equilibrium may not be
behaviorally plausible if players have not had a chance to learn about others’ decisions from
past plays of the same type of game with similar groups of other players. One experimentalist
remarked: ‘I like the QR but not the E.” Many situations involving political or legal conflict

are so novel that players may have little or no information about actions chosen previously
by others in similar settings. For example, it is known that players who tend to overestimate
the cooperativeness of others tend to cooperate more in prisoner’s dilemmas. In such settings,
players must learn by introspection about what the other players might do, what others think
that others might do, and so on. In other settings, learning based on prior observations is
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likely to be incomplete owing to short histories, imperfect recall or changing conditions.

In either instance, with incomplete learning from past observations or noisy learning from
introspection, belief distributions should not be required to exactly match action distributions.
Nevertheless, models of introspection and learning from experience can incorporate smoothed
quantal responses, even though beliefs are not pinned down by an equilibrium cohdition.
contrast, equilibrium models can be useful and accurate when players have had a chance to
learn and adjust, as many of the experiments summarized above indicate. The point is that
determining the appropriate model — QRE, quantal response learning or quantal response
introspection — may depend on the novelty or stationarity of the situation being studied
(Goeree and Holt 1999). In this section, we consider introspection and learning in the context
of the imperfect price competition game.

Level k and I ntrospection

First, consider the similarities and differences between QRE and introspection models based
on iterated responses, commonly known as lévéhinking. For readers who have not
encountered this approach, you should think of ldvels a model of levels of strategic
sophistication, where level 0 is totally noisy, choosing among all decisions with equal
probability. So if prices could be between 60 and 160, for example, a level 0 person would
select each price in that interval with equal probability, and their average price would be at
the midpoint of 110. A level 1 person would make the best response to the uniform price
distribution of a level 0 person, a level 2 person is thinking one step ahead and chooses a best
response to the prices used by a level 1 person, and so on. The responses used in this chain
are typically taken to be best responses with no noise, but it is natural to consider quantal
responses determined by a relevant precision, as in the previous section in the discussion of
the sequence of convergent curved lines in Figure 1.16. Since there is usually some variation
in data collected in laboratory experiments, it is often desirable to consider probabilistic
(quantal) responses to beliefs determined by I&ahalysis. This approach will be referred

to as a quantal levédd-model.

The levelk approach is best suited to modeling behavior in a game that is played only once,
so all learning must be by introspection (although ldvétarning models will be discussed
below). The standard levé&implementation is commonly based on noise-free best responses
that maximize expected payoffs (Stahl and Wilson 1994; Nagel 1995). For the imperfect
competition game, it is straightforward to use a flat distribution over the 101 possible prices
on the [60, 160] interval of feasible prices as a level 0 belief in order to calculate the profit
maximizing price response. This levebastresponse turns out to be a price of 90 for the more
competitive (loww) treatment and 133 for the less competitive (hightreatment. The best
response to a price of 133 is 132, and the best response to 132 is 131. Therefore, tke level-
best response predictions for levels 1, 2, and 3 are 133, 132 and 131 for the less competitive
treatment, and 90, 89 and 88 for the more competitive treatment. Thesé legsl+response
predictions for each treatment are shown as clusters of adjacent thin horizontal dashed lines
in Figure 1.17:8 As indicated by Figure 1.16, the quantal lekgbredictions would exhibit
more spread, with predictions for higher levels being closer to the Nash prediction.

The levelk model with best responses does a good job of predicting data (large dots in
Figure 1.17) in the first round, especially for the more competitive treatment with prices that
begin at about 90. However, levlels less useful for evaluating data averages over all rounds,

Jacob K. Goeree, Charles A. Holt and Thomas R. Palfrey - 9781785363337
Downloaded from Elgar Online at 05/26/2021 09:27:40AM
via communal account



38 Handbook of experimental game theory

Price
140 -
130 J Best response levels 1, 2, 3 (o= 0.8)
120 A Simulated learning: (o = 0.8)
110 A Data: (o =0.8)
wos Best response levels 1, 2, 3 (a=0.2)
90 A
Simulated learning: (o = 0.2)
80 A
70 1 ® Data:(a=0.2)
60 - Nash equilibrium price
50 A
40
0

Round

Notes: The sequence of price averages from Capra et al. (2002) is shown as the series of circular dots, for the high
buyer inertia treatment(= 0.8) at the top and for the low inertia treatmenty 0.2) at the bottom. The levél-
best-response predictions for levels 1-3 (thin horizontal dashed lines) are 133, 132 and 131 for the high inertia
treatment and 90, 89 and 88 for the low inertia treatments. Liepeédictions are close to the data in the initial

round, which is closest to the one-shot setting that l&islprimarily designed for. However, these predictions are

off the mark for the competitive low-inertia treatment as prices fall in later rounds, and as players learn and respond
to other’s price cuts. The qualitative features of the price trajectories are tracked by a simulated learning model
(curved solid lines). The Nash equilibrium price is 60 for both treatments. The logit QRE predictions based on a
precision estimated in a previous experiment are 128 for the less competitiver{tigiatment and 78 for the less
competitive (lowx) treatment, so QRE predicts (out of sample) the sharp deviations from the Nash prediction in one
treatment and not in the other.

Figure 1.17 Imperfect competition with simulated learning and level-k predictions

since it takes no account of learning that would occur in a series of random matchings that
generates a price history for each person. This learning was especially apparent in the more
competitive & = 0.2) treatment, for which the average observed price fell from 88 in the initial
period (at the level 1-3 predictions) to much more competitive price levels as price-cutting
became prevalent.

Belief Learning

Models of learning are especially useful in explaining patterns of adjustment toward equilib-
rium, for example, whether prices tend to converge from above or below. For the model of
imperfect price competition, the prices in the less competitive treatment started high, well
away from the Nash prediction, and stayed high. In contrast, the observed prices for the
more competitive treatment started in an intermediate range and fell continuously toward a
level of about 70. This difference in adjustment patterns, with more movement from round to
round in the more competitive treatment, is picked up by a simple learning model discussed
in Capra et al (2002). Belief probabilities associated with each possible price are determined
by a weight associated with that price, divided by the sum of the belief weights for all prices.
This division ensures that the normalized weights are probabilities that sum to 1 (Goeree and
Holt 2003b). The learning model begins with flat beliefs that result from equal weights for all
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prices, that is, a uniform distribution. When a particular price is observed, then the weight for
that price (or price interval) is incremented, and the other weights are degraded in a manner
ensuring that the sum of belief probabilities is 1. This belief-learning model was used in
simulations to explain observed patterns of price adjustment, that is, the tendency for observed
prices to start high and stay high in the less competitive treatment, and for prices to decline
toward Nash levels in the more competitive treatment. The learning model used precision and
recency parameters taken from an earlier paper, Capra et al. (1999), to simulate a learning
process with 12 subjects being randomly matched. The set of simulated price trajectories was
averaged to generate learning model predictions, which are graphed as the curved solid lines
for each treatment in Figure 1.17.

Belief-learning models are backward-looking in the sense that players are assumed to
respond (stochastically) to prior observations. A more forward-looking, strategic approach
could be to add a level of strategic thinking in that a player could choose a (stochastic)
response to the anticipated stochastic responses of others to prior observations (Stahl and Wil-
son 1995). Breitmoser (2012) considers data from six different guessing-game studies, each
with repeated interactions and target that was 2/3 of the average guess. He concludes that the
data are best explained by models that include some elements of stochastic choice and strate-
gic thinking, that is, logistic levek, noisy introspection (Goeree and Holt 2004) and GRE.

In summary, the imperfect price competition experiment illustrates three distinct compo-
nents of behavioral game theory: (1) lekehnd noisy introspection models used to predict
initial decisions in the absence of learning, (2) learning models that can be used to explain
patterns of adjustment, and (3) equilibrium theories, such as QRE, that provide predictions of
overall decision averages in equilibrium. The main message from Figures 1.16 and 1.17 is to
clarify the distinctions between levklbest responses, levels of quantal responses and a QRE
that is a distribution that gets mapped into itself, which can sometimes (but not always) be
approximated by the limit of an iterated series of quantal responses. The power of QRE arises
from equilibrium restrictions that are analogous to the rational expectations conditions that
pervade many macroeconomic models.

10. HETEROGENEITY

The random disturbance shocks being modeled with QRE result in a predicted distribution of
decisions across individuals, even if individuals are otherwise identical. An additional source
of heterogeneity can arise owing to variations in individual skills, preferences or opportunities.
The simplest quantal response models can be generalized to allow error/precision rates to
differ across individuals. This could reflect a number of idiosyncratic factors, such as differing
levels of strategic sophistication, or rational inattention with individual variations in attention
costs, abilities, and so on. A general model of this type is specified in Rogers et al. (2009),
named heterogeneous quantal response equilibrium (HQRE). This approach also allows
for different beliefs individuals have about the precision of the other players’ decisions.
Weizséacker (2003) and McKelvey et al. (2000) consider these models, and there is some
evidence that individuals underestimate the sophistication of offers.

A second source of heterogeneity can arise in the form of diverse preferences or biases. For
example, individuals may differ in their risk attitudes or in some aspect of social preferences,
such as inequality aversion, warm glow from socially beneficial behavior or altruism. Several
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studies report significant individual differences of this type. Palfrey and Prisbrey (1997) use
a QRE structural model to estimate individual fixed effects in the form of warm glow and
altruism in a voluntary contributions game. While behavior on average is close the Nash
equilibrium, there is a wide variance in the individual choices, and they find significant
effects of heterogeneity of a warm glow parameter, but not altréisbsing an alternative
experimental design to measure altruistic behavior, Goeree et al. (2002a) apply QRE as a
structural model to estimate a two-parameter random effects model of individual altruism
parameters as i.i.d. draws from a truncated normal distribution with meaemd variance,
o. Finally, Goeree and Holt (2000) augment a QRE analysis of a two-stage bargaining
experiment with the estimation of envy and greed parameters for a prominent behavioral
model of inequity aversion (Fehr and Schmidt 1999).

Even the absence of persistent individual differences, a panel of people who make decisions
in a sequence daf trials with a probability ofp associated with decisioR1 would exhibit
a binomial variance ofp(1 — p) across people. Goeree et al. (2017) report that variances
in observed volunteer rates were an order of magnitude higher than would be implied by
the binomial variance formula, which suggests clear differences in volunteer rates across
subjects. In contrast, the fitted three-parametep(ando) HQRE model yields predicted
variances in volunteer rates across people that were similar to the variances observed in the
data. Even though a simple QRE model did a reasonable job of fitting average volunteer rates
across the six treatments, the HQRE did much better in explaining the variances. However,
generalizations with additional parameters are only appropriate for data sets that span a
range of different treatments, in order to avoid overfitting. Anyway, estimation involves the
specification of an error structure, which is a natural component of QRE.

Quantal Response Equilibrium for Bayesian Games

Next consider a class of models in which individual differences are represented as random
draws from a population distribution. This Bayesian game approach extends the formal
structure of games in strategic form by adding two additional components: the set of type
profiles,T = T1 x --- x Ty and the set of player beliefs, where playsrbelief about the
profile of other players’ types is denotedt_; | tj). For playeri with available actions, A a
(behavioral) strategy far, oj, specifies a probability distribution over; As a function of;.

A Bayes—Nash equilibrium of the game?, is a strategy profile with the property that each

and for each typ&, o;*(tj) is optimal fori, given the strategies of the other players and given

i's beliefsp(t_j | tj).

A Bayesian QRE is defined similarly, excegl(t) is a quantal response forgiven the
strategies of the other players and giviénbeliefs p(t_; | tj). We illustrate it here with a
Bayesian game version of the volunteer’s dilemma discussed in section 4. The only change
is that the cost of volunteering is no longer assumed to be identical across players. Instead,
each player has a privately known cost or type, denoted byith each private cost being
an independent draw from a commonly known uniform distributi@g) on the interval
[0,Cnad- The i.i.d. nature of the draws implies that beligf@_; | tj) are independent df
in this example. A strategy for playéris a mapping from [0Cmay into [0,1]. That is, a
strategy specifies a probability of volunteering for each realized private gostfe limit
the analysis here to symmetric Bayesian Nash equilibria, where all players use the same

mapping.
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The Bayesian Nash equilibrium of the game is similar to a mixed Nash equilibrium of
the game of complete information, except in the Bayesian Nash equilibrium, every type of
every player actually adopts a pure strategy. The equilibrium divides the type spa&gs)|0,
into low-cost types who volunteer with probability 1 and high-cost types who volunteer with
probability O, with a critical costg*, defining the cutoff between the volunteering types and
free-rider types. In equilibrium, the cutoff type is indifferent between volunteering and free
riding. Thus, a symmetric equilibrium of the game is determined by equating the cutoff cost
with the expected benefit of volunteering, which is the value of getting at least one volunteer,
V, times the pivotal probability that none of the— 1 other players volunteer:

¢t = V(1—PyHNT (1.15)

whereP* = G (c*) is the equilibrium probability that a player is a volunteering type, that is,
the probability that a random cost realization is below the cutoff

The private information and heterogeneity in the Bayesian game generally leads to Nash
equilibrium volunteer rates that differ from the volunteer rate in the complete information
version of the game if everyone simply had the same cost equal to the expected value of the
random cost draws. To illustrate this difference, consider the same parameters used for the
complete information volunteer’s dilemma game in section 4, wkete 0.8 andC = 0.2.
With two players, the mixed strategy Nash equilibrium volunteer rateptas 3/4 (shown
as a diamond at 0.75 on the vertical line in Figure 1.6). Compare this with the Bayesian
Nash equilibrium of the game where the distribution of cost dr&yss uniform on [0, 0.4].
In that caseP* = G(c*) = ¢*/0.4 or, equivalentlyc* = 0.4P*. Plugging this into the
equilibrium equation (1.15), giveB* = 2/3, which differs from the Nash mixed-strategy
equilibrium volunteer probability of 3/4 with two players and a deterministic 08s£(0.2)
at the midpoint of the range of random cost draws in the Bayesian game.

A symmetric logit QRE of the Bayesian game assigns a volunteer probability to each
possible cost typg(c), which satisfies the logit equation:

1

1.16
1+exp(—A[V(1—P:N=1 —q]) (1.16)

p(c) =

whereP* = Ocmaxp (c) dG(c) is the expected probability that another player volunteers.

That is, the logit QRE smooths out the step function cutoff strategy, so higher-cost types
are less likely to contribute than lower-cost types, but no type volunteers with probability
0 or probability 1. It is not difficult to write a simple program to compute the logit QRE
volunteer rates for this game as a functionipfN, V and C. These calculations permit a
comparison of QRE volunteer rates for the Bayesian game, where costs are drawn from the
interval [0, 0.4] and the complete information game with a fixed cost of 0.2 for all players.
While the exact volunteer probabilities are different in complete and incomplete information
formulations, they share the same qualitative features, but with the familiar pull-to-center
QRE effect; namely, the QRE volunteer rate is less than the (Bayes) Nash equilibrium if the
(Bayes) Nash equilibrium is greater than 0.5. Conversely, the QRE volunteer rate is greater
than the Bayes—Nash equilibrium if that equilibrium is below 0.5. Furthermore\ for 3,

it can be shown that the success probability is increasid) @md converges to 1, for every
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fixed value ofs (details available on request). Moreover, the empirical content of QRE for
this model is just as strong as for the complete information volunteer’s dilemma, since in each
case there is a single precision parameter that is used to derive volunteer rate predictions for a
wide range of group size treatments.

11. SUMMARY

This chapter uses a series of increasingly complex games to show how QRE can be repre-
sented by decomposing expected payoffs and cumulative distributions of payoff disturbances.
The graphical analysis of symmetric games with binary decisions shows that a standard
assumption of i.i.d disturbances ensures that the cumulative distribution of the disturbance dif-
ferences will equal 0.5 at a difference of 0. This symmetry property is implemented in virtually
all empirical tests of quantal response (logit, probit, and so on), and it provides clear empirical
content for QRE predictions. For several of the social dilemma games considered, the QRE
predictions are pulled to the center, which implies that choice probabilities that are more
extreme than the mixed-strategy Nash predictions are ruled out for all possible values of the
logit or probit precision parameter. In contrast, the minimum-effort coordination game yields
predictions that are pulled to the extremes relative to a mixed Nash equilibrium, which rules
out any choice proportions between the Nash prediction and 0.5. In either instance, empirical
content is further enhanced by using a single precision estimate for multiple treatments, for
games with wide ranges of decisions or for generating predictions for different data sets. Alter-
natively, empirical content is weakened by adding parameters, for example, means and vari-
ances of distributions of individual effects or propensities, as with any applied work intended
to explain individual heterogeneity. Quantal response does have clear empirical content in that
there are ranges of choice proportions that cannot be explained with any estimated precision
in some very simple games, even with a single treatment and only two possible decisions.

Quantal response equilibrium represents a generalization of standard game theory, with a
unified structure that permits the study of introspection, learning and equilibrium. Moreover,
the statistical nature of QRE offers a natural framework for structural estimation of behavioral
parameters, in a setting where noise can have interacting equilibrium effects. Any estimation
requires a disturbance component, regardless of whether the data arise from individual
decisions or from interactive games. With games, it is reasonable to build the disturbances
into the structure of the interactions, instead of just appending an error on to observed data.
Since QRE is a statistical model that assigns positive probabilities (however small) to all
feasible actions, it permits estimation in a natural manner. The resulting equilibrium statistical
models can be used to incorporate insights and biases that are documented in research on
behavioral economics, for example, the effects of inequity aversion, regret, altruism or risk
aversion in auctions and gam&sQuantal response equilibrium has also been applied to
sequential games (for example, McKelvey and Palfrey 1992, 1998; Sieberg et al. 2013),
where quantal continuation values are used to calculate equilibria that exhibit a generalized
version of subgame perfection. These quantal continuation values make it possible to look
‘inside the box’ and gain an understanding of the underlying process that generates intuitive
but systematic departures from theoretical predictions, departures that arise naturally from
intersections or interactions of smoothed quantal responses that replace sharp corners implicit
in standard models with perfect rationafff.
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Itis common for traditional economists to view the variety of biases that have emerged from

the behavioral economics literature with bewilderment, given that each bias has been tailor-
made to explain one or more seemingly anomalous findings. Quantal response equilibrium
provides a coherent theory for addressing many different behavioral anomalies within a
common framework, yet capable of incorporating and measuring the effects of unobserved
behavioral variables and/or bounded rationality. This theory has produced dramatic results
in that seemingly anomalous (but intuitive) deviations from standard theory are often well
aligned with QRE predictions. In summary, the smoothed QRE models can shine a light on the
underlying structure of otherwise confusing data arrays and thereby enhance the behavioral
relevance of game theory as it is increasingly used in social sciences.

NOTES

11.

This research was funded in part by the University of Virginia Quantitative Collaborative and the National
Science Foundation (Holt: NSF-1459918 and Palfrey: SES-1426560) and the Australian Research Council
(Goeree: DP150104491). We benefitted from suggestions by Michelle Song, Nicholas Anderson, Georgia
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Collaborative and participants in the University of Pittsburgh Experimental Lab Seminar.

Recall that in non-cooperative games, adding a constant to all payoffs has no strategic consequences, in that it
does not change best response functions and does not change the set of Nash equilibria or correlated equilibria
of the games.

We can include a precision parameter for any generic specification of a quantal response function. For example,
the power version of the Luce ratio rule raises expected payoffs to a power(D1;1) = =}/ (7} + 73).

Some quantal response equilibria can be rationalized as Bayesian equilibria with additive privately known
payoff disturbances; see McKelvey and Palfrey (1995, 1998). However, some QREs cannot be rationalized as
such, for example, QRE based on the Luce ratio or more general, regular quantal response functions (Goeree
et al. 2005).

About 65 years ago, John Nash’s thesis advisor saw the payoffs for this type of game on the blackboard
of a colleague’s office at RAND in Santa Monica, and he made up the story of the prisoner’s dilemma for

a presentation in the Stanford psychology department on recent developments in game theory. The payoffs,
however, had been devised by two RAND researchers on the day they heard about Nash’s famous theorem
on equilibrium in non-cooperative games, and these payoffs were used in an experiment involving over 100
repeated plays of this game with the same partner. In a letter to the authors, John Nash later noted that the
theory for a single-shot game might not be applicable with repetition. For details, see Holt and Roth (2004).

All Nash equilibria of the centipede game involve taking at the first stage, so this is more than just a violation of
backward induction. This is in stark contrast with the ultimatum game, where every possible offer is consistent
with Nash equilibrium.

Since an individual decision problem is a trivial special case of a game, this observation by Haile et al. (2008)
also applies to standard probabilistic choice models (logit or probit) that are extensively used in applied
econometric work. Obviously, the critique is not relevant in that case either, since the i.i.d. assumption is
standard in applied econometric work on individual decisions, just as it is standard in the application of QRE
to the statistical analysis of game-theoretic data.

This conclusion is derived more formally in Goeree et al. (2005, 2016, chs 2 and 6). The notion of a regular
QRE, as defined in Goeree et al. (2005), is grounded on axioms of a responsiveness, monotonicity and
continuity that preserve strong empirical restrictions, including those implied by i.i.d. payoff disturbances.

A clear understanding of the strategic landscape of the games to be discussed can be achieved if they are run
as class experiments. See Holt (2019, chs 8-11) for hints on how to use the free web-based Veconlab site for
this purpose (http://veconlab.econ.virginia.edu/admin.php, accessed 12 July 2020). An alternative is to use the
popular Moblab platform (https://www.moblab.com/, accessed 12 July 2020), which also has games with a
political science focus.

Sample Matlab code for such calculations is provided in Goeree et al. (2016, ch. 6).

This decomposition was used in Goeree and Holt (2005b) for an analysis of political participation games with
binary decisions, for example, vote or not. The difference here is that the probability is shown on the vertical
axis, so that the inverse distribution has the familiar shape of a cumulative distribution function.

This observation is roughly consistent with the 10—20 percent cooperation rates (except for the first and last
periods) observed by Andreoni and Miller (1993) with repeated random matching (strangers). Cooperation rates
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19.

20.

22.

23.

were higher in a finitely repeated prisoner’s dilemma with the same payoffs and with fixed pairings (partners).
The QRE analysis for repeated games is more involved (Goeree et al. 2016, ch. 4). In addition to repetition,
another aspect of many strategic interactions in business and politics is the ability to choose our partners and
terminate pairings that are unsatisfactory, or even to exit and earn a default payoff for no pairing at all. See
Holt et al. (2015) for a general discussion of prisoner’s dilemma games with the ability to exit and/or scale up
the intensity of interactions, factors that produce dramatically higher cooperation rates even in a finite series of
random matchings, and hence, no ability to terminate pairings.

This procedure is justified by inverting= A(p) to getp = A~1(x) and then substituting this into (3) to

get A~1(x) on the left-hand side anB(AA(p)) = F(LA(A™L(X)) = F(Ax) = 1/(1 4+ exp(—AX)) on the
right-hand side.

To verify this unintuitive property, set the payoff difference equal to zero and solvd ferp)N to obtain

@ —pN = (€c/VHNVN-D which is increasing iMN, with a limiting value ofC/V.

Zauner used a probit quantal response function based on normally distributed payoff disturbances, while
McKelvey and Palfrey used the logit quantal response function.

This rule, which requires that payoffs be non-negative, can be derived by assuming that random payoff
perturbations are multiplicative with mean 1, instead of additive with mean 0 (Goeree et al. 2016, ch. 1).
With multiplicative disturbances, decision 1 is selectearify/* > moe5Y/*, where a high results in
essentially no noise, and the disturbances perturbations are non-negative and i.i.d. with median 1. Then take
the natural log of both sides of this inequality and multiplyabyf the cumulative distribution of the difference

in log disturbances is exponential, then the equation analogous to (1.5) involves exponentials of logs of power
functions, which yields the ratio of power functions in (1.11).

In particular, the precision estimate was taken from a prior traveler’s dilemma game experiment (Capra et al.
1999) with a different payoff structure, but with the same subject pool and random-matching protocol that was
used subsequently in the imperfect price competition paper.

Quantal response learning and introspection models are developed and applied in Goeree et al. (2016, chs 5, 8
and 9).

There are many variations of iterated-thought models. Camerer et al. (2004) proposed a ‘cognitive hierarchy’
model in which a person of levélassumes everyone else is of a lower level of rationality, so a level 2 person
would view the world as being populated by level 0 and level 1 people. The truncated distributions of levels
can be modeled with a Poisson distribution that assigns probabilities to each of the integers below one’s own
level. Alternatively, Goeree and Holt (2001, 2004) model noisy introspection of quantal responses to ‘he thinks,

| think’ layers of iterated beliefs, with more noise for higher numbers of iterations. This noisy introspection
model was used to explain data patterns from a wide range of single-shdtgames. Cabrera et al. (2007) also
consider a noisy model of iterated conjectures, with conjectured decisions being drawn from a logit distribution,
but after the draw, being treated as point beliefs with no uncertainty. A simple stopping rule is used to end the
process when the circle is closed in that the initial conjecture about the other’s decision matches the other’s
conjectured response to their own conjectured decision. The model was solved numerically and then used to
explain data from a one-shot traveler’s dilemma experiment.

It is natural to allow for subjects to exhibit various levels of strategic responses that include level 1, level 2, or
higher levels that more closely approximate quantal response equilibrium play. To this end, Breitmoser et al.
(2014) use data from a club game to study a steady state of different levels that evolves during repeated plays
of this game.

For a detailed discussion of HQRE models, see Goeree et al. (2016, ch. 3).

For a related analysis using a similar voluntary contribution environment but a different subject pool, see Palfrey
and Prisbrey (1996).

The Goeree et al. (2003) paper takes the safe and risky payoffs from the Holt and Laury (2002) price-list
menu and incorporates those payoffs into a two-person, matching-pennies game. Then the joint estimation of
risk aversion and QRE precision parameters is used to explain why one player will overplay the safe strategy
relative to Nash, and the other player will not, a pattern that is observed in the data. The Goeree et al. (2002b)
paper considers an auction market in which the Nash bidding strategies are the same for two treatments, but
for which there is considerably more overbidding in the treatment where the losses from overbidding relative
to Nash are lower, a pattern that is consistent with QRE predictions, augmented by risk aversion.

Also see Goeree et al. (2016, chs 3 and 8).
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