Estimation of Risk Aversion Parameters:
Birary Lottery Ch0|ce

Joseph Tao-yi Wang (Ei&—)
Experimetrics Lecture 3 (EBEIE2E=:8)
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» You received an endowment, and now have a choice:

» Whi
» Whi

or
Safe Choice (S): y=1 Risky Choice (R): y=0

nich would you choose if your endowment is $107

nich would you choose if your endowment is $1,0007
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» Ask subjects (with different endowment) to choose:

or

Safe Choice (S): y=1 Risky Choice (R): y=0

» To test House Money Effect:
» Choices more risk-seeking when initia
» Or: Take more risk when reinvesting

endowment is high

orior profit
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» 1,050 subjects with wealth w,
» Binary Outcome: Choose

» Safe (y = 1), or Risky (y = 0)
» Simulated experiment data

» House_money_sim.dta

» S

» 929% C
» 50% ¢

A

A: table w, contents(n y mean y)

noose safe at w, = $0
noose safe at w, = $10
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» Model this as Probit: Pr(y; = 1|w;) = ®(8o + Brw;)

where ®(z) = Pr(Z < z) = / ¢(z)dz is standard Normal cdf

— 00

_ 1 —z?
And its pdf is ¢(z) = exXp ( )
27 2
b Likelihood:
1—y;
L= H (Bo + Brwi)]” [L — (8o + Prw;)] "



p Log—LikeIihood' (Easier for numerical maximization!)

log L = Zyun (Bo + Brw:)] + (1 — ;) In[1 — ®(By + Brw;)]

» Since <I>(— ) =1—®(2),
» Rewrite log-Likelihood with Safe (yy, = 1) & Risky (yy, = -1)
log L = Zh’l [P (yy: x (Bo + Brw;))]
i=1
»probit y win STATA to perform MLE to find By, B4
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» STATA probit y w

N

RGSUltS: Iteration 0: log likelihood = =-634.4833
Iteration 1: log likelihood = -584.91375
Iteration 2: log likelihood = -584.5851 1,050 Subjects
Iteration 3: log likelihood = -584.58503 {_- 1 R d
Iteration 4 log likelihood = -584.58503 O ouna eac
Probit regression Number of obs = 1,050
LR chi2(1) = 99.80
Prob > chi2 = 0.0000
Log likelihood = -584.58503 Pseudo R2 = 0.0786
Strong House Money y Coef. Std. Err. z P>|z]| [95% Conf. Intervall
Effect (z = -9.70)
w -.1409882 .0145377 -9.70 0.000 -.1694816 -.1124948
‘ _cons 1.301654 .0911155 14.29 0.000 1.123071 1.480237




(Bl B 0)2 2
» Wald Test for 51 =0: W = —— ~x"(1)
Var (51)
» STATA test w=0
Results: | (1 [ym=o Strong House Money Effect:
chi2( 1) = 94.@5 W=(-9.70)* = 84'05
Prob > chi2 =  ©0.0000 >> 3.84 = X71.0.05
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» Graph estimated probability:
®(By + Brw) = $(1.302 — 0.141w)

» STATA Command:

margins, at(w=(0(1)15)
marginsplot, ylabel(0(0.1)1) yline(0.5)

STATA
Results:
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Adjusted Predictions with 95% Cls

» Graph es - |z . ®(Bo + Biw) = ©(1.302 — 0.141w)

D

Risk-Seeking
(Extrapolating!)

» STATA &°

q:_

/

«~ | |Risk Neutral at Sp + S1w =0
-1 ]w=1.3016/0.1410 = $9.23
» STATA <.

I I I I I | | | | | | | | | | |
. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Results: ¢ "
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» Predict change in Pr(Safe) due to change in w (w = $0)

margins, dydx(w) at(w=0)

> 55 | /\ | /\ Conditional marginal effects Number of obs = 1,050 |
Model VCE : OIM
Results: Pr(Safe) drops by 2.41%
Expression : Pr(y), predict() when w rises from $0 to $1
dy/dx w.r.t. : w
at W = 0

Delta-method
dy/dx  Std. Err. z P>|z]| [95% Conf. Intervall]

W -.024109 .0013299 -18.13 0.000 -.0267155 -.0215026




» Predict change in Pr(Safe) due to change in w (w = $10)
margins, dydx(w) at(w=10)

) ES I /\ I /\ Conditional marginal effects Number of obs = 1,050 ‘
Results_ Model VCE : OIM
' | Pr(Safe) drops by 5.59%
Expression : Pr(y), predict() .
dy/dx w.r.t. @ w as w rises from $10 to $11
ok P = 10 [ (Steeper slope in Figure)

Delta-method
dy/dx  Std. Err. z P>|z]| [95% Conf. Intervall]

w -.0559177 .0053804 -10.39 0.000 -.0664631 -.0453723




» Average predict change in Pr(Safe) due to change in w
margins, dydx(w) -attw=+6—

) 55 I /\ I /\ Average marginal effects Number of obs = 1,050 ‘
Results_ Model VCE : OIM
| | Pr(Safe) drops by 4.44%
Expression : Pr(y), predict() .
dy/dx w.r.t. : w on average as w rises by
1 across all observations

Delta-method
dy/dx  Std. Err. z P>|z]| [95% Conf. Intervall

w -.0444259 .0039929 -11.13 0.000 -.0522518 -.0366

Estimating Binary Lottery Choice




(B - 0)
Var (1)
» Likelihood Ratio (LR) Test between:

» Wald Test for 81 =0: W = ~ x°(1)

» Unrestricted: log Ly = Zln P(yyi x (Bo + Biw;))]
i=1

» Restricted: log Lr = Zln D (yy; X (Bo))]
i=1
» LR for 81 =0: LR = 2(10g Ly — log L.R) ~ X2(1)



» STATA probit y w
RGSUltS: Iteration 0: log likelihood = =-634.4833 ‘
Iteration 1: log likelihood = -584.91375
Iteration 2: log likelihood = -584.5851 ]_,050 SUb_]eCtS
Iteration 3: log likelihood = -584.58503 {_- 1 R d
Iteration 4: log likelihood = -584.58503 O ound €ach
Probit regression Number of obs = 1,050
: LR chi2(1) = 99.80
. _ = =
log Ly = —584.59 Prob > chi2 = 0.0000
Log likelihood = -584.58503 Pseudo R2 = 0.0786
y Coef.  Std. Err. z P>|z| [95% Conf. Intervall
w -.1409882 .0145377 -9.70 0.000 -.1694816 -.1124948
_cons 1.301654 .0911155 14.29 0.000 1.123071 1.480237




» Restricted: log Lr = Zlﬂ [@(yyi X (50))]
i=1

» STATA probit y

Results. Iteration 0: log likelihood = -634.4833 1’050 SUbJeCtS
" |Iteration 1: log likelihood = -634.4833 of 1 Round each
Probit regression Number of obs = 1,050
X LR chi2(@) = -0.00
O —
llog L = —634.48 oz 2"
Log likelihood = =634.4833 Pseudo R2 = -0.0000
y Coef. Std. Err. z P>|z]| [95% Conf. Intervall
_cons .5464424 .0408516 13.38 0.000 .4663746 .6265101




» STATA probit y w

RGSUltS: Iteration 0: log likelihood = =-634.4833 ‘
Iteration 1: log likelihood = -584.91375
Iteration 2: log likelihood = -584.5851 ]_,050 Subjects
Iteration 3: log likelihood = -584.58503 {_- 1 R d
Iteration 4: log likelihood = -584.58503 O ound €ach
Probit regression Number of obs = 1,050
: LR chi2(1) = 99.80
. _ = =
‘ log Ly = —584.59 [ Prob > chi2 - o.aaaa]
ILog likelihood = -584.58503 Pseudo R2 = 0.0786
llog Lr = —634.48] |LR =2(log Ly — log Lg)
: ., Intervall
y = 2(—584.59+634.48) = 99.8
W 2 L -.1124948
_cons > X1,0.05 = 3.84 1.480237




» STATA Command: |probit y w
est store with_w

probit y
est store without_w

lrtest with_w without_w

» STATA Results:

Likelihood-ratio test LR chi2(1) 99.80
(Assumption: without_w nested in with_w) Prob > chi2 = 0.0000
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AlogL

» All Three Asymptotically Equivalent!
» Likelihood Ratio (LR) Test
» Wald Test
» Lagrange Multiplier (LM) T3, = —0.14

Wald Testl|l__, 51

‘ LM Test (slope)‘
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» Estimate probit with MLE

» Use binary lottery choice
of: house_money_sim.dta

» STATA: myprobit.do
» Use m1 to maximize

log L =

Z In [®(yy; X (Bo + Brw;))]

* LOG-LIKELTHOOD EVALUATION PROGRAM "myprobit' STARIS HERE: |
program define myprobit
* SPECIFY NAME OF QUANTITY WHOSE SUM WE WISH TO MAXIMISE (logl)
* AND ALSO PARAMETER NAMES (EMBODIED IN xb)

* PROVIDE LIST OF TEMPORARY VARIABLES (p ONLY)

args logl xb
tempvar p

* GENERATE PROBABILITY OF CHOICE MADE BY EACH SUBJECT (p):
lquietly gen double ‘p’=normal (yy*‘xb’)

* TAKE NATURAL LOG OF p AND STORE THIS AS logl

lquietly replace ‘logl’=ln(‘p’)

* END "myprobit" PROGRAM:

Lend
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» To ignore errors if the following command is not applicable,

can add at the beginning

* - myr
capture program drop myprobit

program define myprobit

» Maximize logl

» Over xb = Bo + Blwi
* SPECIFY NAME OF QUANTITY WHOSE SUM WE

» local variables like + AND ALSO PARAMETER NAMES (EMBODIED IN
other defined by *+ PROVIDE LIST OF TEMPORARY VARIABLES (f
tempvar

args logl xb|

tempvar p
Estimating Binary Lottery Choice
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» Unlike global variables like vy
* GENERATE PROBABILITY OF CHOICE MADE B

» Does not need single
quotation marks like
local variables ‘p’

or ‘logl’ * TAKE NATURAL LOG OF p AND STORE THIS !/

quietly replace” ‘logl’=1n(‘p’)

quietly gen double ‘p’=norma1‘xb’)

* END "myprobit" PROGRAM:

end
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» The m1 Routine uses the 1f likelihood evaluator

» Run on each row of the data set, unlike the d-family

evaluator (which runs on each block of rows)
* READ DATA
use "house money_sim", clear
* GENERATE (INTEGER) yy FROM y:
gen 1nt yy=2*y-1
*+ SPECIFY LIKELIHOOD EVALUATOR (1f), EVALUATION PROGRAM (myprobit) |
* AND EXPLANATORY VARIABLE LIST.
* RUN MAXIMUM LIKELIHOOD PROCEDURE

ml model myprobit ( =w
.
e




» STATA
Results:

initial:

alternative:
rescale:

Iteration O:
Iteration 1:
Iteration 2:
Iteration 3:

log
log
log
log
log
log
log

likelihood
likelihood
likelihood
likelihood
likelihood
likelihood
likelihood

Log likelihood = -584.58503

-727.80454
-635.1321
-635.1321
-635.1321

-584.84039

-584.58503

-584.58503

Number of obs =
Wald chi2(1) =

1050
94.05
0.0000

.0145377
.0911155

-9.70
14.29

Prob > chi2 =
P>|z| [95% Conf
0.000 -.1694816
0.000 1.123071

-.1409882
1.301654

-.1124948
1.480237
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» STATA probit y w

N

RGSUltS: Iteration 0: log likelihood = =-634.4833
Iteration 1: log likelihood = -584.91375
Iteration 2: log likelihood = -584.5851 1,050 Subjects
Iteration 3: log likelihood = -584.58503 {_- 1 R d
Iteration 4 log likelihood = -584.58503 O ouna eac
Probit regression Number of obs = 1,050
LR chi2(1) = 99.80
Prob > chi2 = 0.0000
Log likelihood = -584.58503 Pseudo R2 = 0.0786
Strong House Money y Coef. Std. Err. z P>|z]| [95% Conf. Intervall
Effect (z = -9.70)
w -.1409882 .0145377 -9.70 0.000 -.1694816 -.1124948
‘ _cons 1.301654 .0911155 14.29 0.000 1.123071 1.480237




» Reduced form models simply attempt to explain the data

» Structural Models: Assume all individuals have the
same utility function:

ml—r
— 1
= In(z), r=1

» Constant Relative Risk Aversion (CRRA): r = RRA
» Higher » = more risk averse

» Negative r = risk-seeking
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» In Binary Lottery Choice, Expected Utility for
choosing Safe and Risky are:

B (w+5)1—’r
BU(S) = ~——"
1—7r 1 1l—7r
EUR) =05 " 4 g5 10)
1 —7r 1 —7r

Choose Safe it EU(S) — EU(R) +¢>0
» Fechner Error Term: When computing EU difference,
individuals make computational error € ~ N (0, 07)
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» Probability of Safe choice being made is:
Pr(S) =Pr[EU(S) — EU(R) + € > 0]
= Prle > EU(S) — EU(R)]
¢ FEU(S)— FEU(R)
_O- o -
EU(S)-EU(R)| B EU(S)— EU(R)

0 1 i o)
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» Filling in EU (and using the yy trick), we obtain the
log-likelihood function:

i (?U?:-I-Eb)l_r wi )" | w;410)"
d e (L Ry
log L = E In® |yy; x
o
i=1

» Choose r and ¢ to maximize logL
Need to program this in STATA using the m1 command
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» Choose r and ¢ to maximize logL
» STATA command: args logl r sig

program drop structural

program structural

args logl r sig

tempvar eus eur diff p

quietly gen double ‘eus’=(w+5)~(1-‘r’)/(1-‘r’)

quietly gen double ‘eur’=0.5*%w"(1-‘r’)/(1-‘r’)+0.5*x(w+10) "~ (1-‘r’)/(1-‘r’
quietly gen double ‘diff’=(‘eus’-‘eur’)/‘sig’

quietly gen double ‘p’=normal (yy*‘diff’)

quietly replace ‘logl’=1ln(‘p’)
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» STATA
Results

initial: log likelihood = -<inf> (could not be evaluated)
feasible: log likelihood = -601.45646
rescale: log likelihood = -601.45646
rescale eq: log likelihood = -600.78259
Iteration 0: log likelihood = -600.78259
Iteration 1: log likelihood = -595.2424
Iteration 2: log likelihood = -595.22797
Iteration 3: log likelihood = -595.22739
Iteration 4: log likelihood = -595.22739
Number of obs = 1050

Wald chi2(0) = .

Log likelihood = -595.22739 Prob > chi2 = .

| Coef. Std. Err. zZ P>|z| [95%, Conf. Interval]
_____________ e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
r |
_cons | .21765b 0976928 2.23 0.026 0261757 .4091244
_____________ e e e
sig |
cons | .3585733 .1046733 3.43 0.001 .1534174 .5637292
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» The estimated (homogeneous) utility function is:

$1—0.2177 330.7823

T 1-02177  0.7823
With Fechner computation error € ~ N (0, 0.35862)

U(x)

» Note that this estimation assumes every individual
has the same risk preference
We can relax this assumption...
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» Now assume each subject has his/her own r for the
CRRA utility function: 1

X
U(x) =

(z) 1—r
Assume 7 has population distribution » ~ N (u, 0*)

» Subject respond to Multiple Price List (MPL) of
Holt and Laury (2002)

Choose Safe or Risky lottery for each question
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» Indifferent between S and R at threshold risk attitude *

Problem Safe(S) Risky(R) i

1 (0.1, $2.00; 0.9, $1.60) (0.1, $3.85; 0.9, $0.10) —1.72
2 (0.2, $2.00; 0.8, $1.60) (0.2, $3.85; 0.8, $0.10) —0.95
3 (0.3, $2.00; 0.7, $1.60) (0.3, $3.85; 0.7, $0.10) —0.49
4 (0.4, $2.00; 0.6, $1.60) (0.4, $3.85; 0.6, $0.10) —0.15
5 (0.5, $2.00; 0.5, $1.60) (0.5, $3.85; 0.5, $0.10) 0.15
6 (0.6, $2.00; 0.4, $1.60) (0.6, $3.85; 0.4, $0.10) [ 0.41 ]
7 (0.7, $2.00; 0.3, $1.60) (0.7, $3.85; 0.3, $0.10) 0.68
8 (0.8, $2.00; 0.2, $1.60) (0.8, $3.85; 0.2, $0.10) 0.97
9 (0.9, $2.00; 0.1, $1.60) (0.9, $3.85; 0.1, $0.10) 1.37
1 (1.0, $2.00;-6-6--51+66+ (1.0, $3.85; 0.0, $0.10) 00
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» Threshold risk attitude »* can be calculated with Excel in:
risk aversion calculations.xlsx

» Each subject is only asked 1 of the 10 problems
» (Pseudo) data for 100 subjects: holtlaury sim.dta
» Subject 7 asked choice problem with threshold r*

» Sate Choice Dummy:
» y,= 1 if chose S

» y.= 0 if chose R



» Given r; ~ N(u,0°), we have:
Pr(y; =1) = Pr(r; > r;) = Pr (z > L M)

g

__ ok i 1 ]
:PY(Z<M T?’):(P M%—(——)fr‘f = ® |+ Or]]

% O

» Can estimate a probit model: probit y rstar
» Then, apply delta method:
nlcom (mu: -_b[_cons]/_blrstar]) (sig: -1/_bl[rstar])
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» STATA probit y rstar

Tteration 0: log likelihood
Iteration 1: log likelihood
Iteration 2: log likelihood
Iteration 3: log likelihood
Iteration 4: log likelihood
Probit regression Number of
LR chi2(1) = 74.20

Prob > chi2 = 0.0000

Log likelihood = -31.896643

Results

v Coef
rstar -1.826082
cons . 7306556

= -68.994316
-32.754689
-31.899974
-31.896643
= -31.896643
obs = 100

Pseudo R2 = 0.5377

Std. Err. Z P>|z]|
. 3481266 -5.25 0.000
.2264169 3.23 0.001

[95% Conf. Intervall
-2.508398 -1.143767
.2868867 1.174424

Note: 10 failures and O successes comEletelz determined.
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STATA nlcom (mu: -_b[_cons]/_blrstar]) (sig: -1/_blrstar])

mu: —_b|_cons|7_b rstar
ReSU |tS sig: -1/_blrstar]

[L L 0 4001 vall Coef Std. Err z P>|z| [95% Conf. Interval]
T e A e e e e e e
N mu | 400122 .0978294 4,09 0.000 .2083799 .5918641
0 — 05476 sig | .5476205 .104399 5.25 0.000 .3430021 . 7522389

e e e e
» Hence, every subject has RRA coefficient drawn from:

r ~ N(0.4001, 0.5476°)

» And calculate EU to make decision without error

Estimating Binary Lottery Choice



» (nlcom in STATA) used to obtain standard errors of ji, &
» More generally, consider reduced form estimates &, 3

| xis v (B) < (0L Coria)
» Variance matrix is: V ( . ) — ( Cov(rfif?/g) Var(ﬁi:)

Q
» After estimating probit, can see it in STATA: mat V=e (V)

) STATA [Fymmetric VI2,2] N yJ mat list V
ReSU|tS rstar _cons

y:rstar .12119211
Iy:_cons —.04842635 .05126459
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» Can uncover structure parameters u, o from reduced
form estimates of «, 8 through

y 1 o 1
a=—,0 = - b=—7,0=—7
a B o) /8 /6
op  Oop o 1
» Estimate matrix D = ( % %o ) = ( i d8 )
BJ6; O B2

» Use square root of diagonal in V ( £ ) =D f/( f} ) D’

Estimating Binary Lottery Choice



» Revisit Holt and Laury (2002)
» Still assume subjects have CRRA utility function:

1—r

U(x) = u

11—
» But subject are asked each problem in order,

revealing where in the list they switch

More precise information available regarding subject risk
preference
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» EU-maximizing subject has RRA r between 0.15 and 0.41

Problem

Safe(S)

Risky(R)

*

r

— O 00 ~J O U i W N =

(0.1, $2.00; 0.9, $1.60)

(0.2, $2.00; 0.8, $1.60)
(0.3, $2.00; 0.7, $1.60)
(0.4, $2.00; 0.6, $1.60)
(0.5. $2.00: 0.5. $1.60)
(0.6, $2.00; 0.4, $1.60)
(0.7, $2.00; 0.3, $1.60)
(0.8, $2.00; 0.2, $1.60)
(0.9, $2.00; 0.1, $1.60)
(

1.0, $2.00;-0-0—$1-66%

(0.1, $3.85; 0.9, $0.10)
(0.2, $3.85; 0.8, $0.10)
(0.3, $3.85;: 0.7, $0.10)
(0.4, $3.85; 0.6, $0.10)
(0.5, $3.85;: 0.5, $0.10)
(0.7, $3.85;: 0.3, $0.10)
(0.8, $3.85: 0.2, $0.10)
(0.9, $3.85; 0.1, $0.10)

(1.0, $3.85; 0.0, $0.10)

1,72
—0.95
—0.49
—0.15

[015]

0.41
0.68
0.97

1.37
00
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» Estimate population r from subject-specific intervals
(Pseudo) data for 100 subjects: interval data_sim.dta
» For r; ~ N(p,0%), subject i with [, < r, < h, has
L, = PI‘(Z@ <r< hz) = PI‘(?"@ < hz) — PI’(?" < Z@)

o (M) —a (1)

- i li — )
» Hence, log L = Zlog O, (u M) —@( ”)
% o

1=1
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» Interval Regression: Estimate likelihood-maximizing ji, &

™,

!

» STATA command: intreg rlower rupper

» Result:

[Fitting constant-only model:

Iteration O0: log likelihood = -199.07231
Iteration 1: log likelihood = -198.96851
Iteration 2: log likelihood = -198.96849
Fitting full model:

Iteration O: log likelihood = -198.96849
Iteration 1: log likelihood = -198.96849
Interval regression Number of obs = 100

LR chi2(0) = 0.00

Log likelihood = -198.96849 Prob > chiZ2

I Coef. Std. Err. Z P>|z]| [95% Conf. Intervall
_____________ +____-____-___________________-___________-____-___________-________-___

_cons | .613146 .0597808 10.26  0.000 4959777 . 730314
_____________ +.___.____.________.___.____.____.____.____.___.____.____._______._.___.____.___

/1nsigma | -.5323404 .0764651 -6.96 0.000 -.6822092  -.382471




1tting constant-only model:
Iteration 0: log likelihood = -199.07231
Iteration 1: log likelihood = -198.96851

Iteration 2: log likelihood = -198.96849
) STATA Fitting full model:

RGSU'tS Iteration O0: log likelihood -198.96849
Iteration 1: log likelihood = -198.96849

Interval regression Number of obs = 100

LR chi2(0) = 0.00

Log likelihood = -198.96849 Prob > chi2

IT ~ N (06131, 0_5872210051 Std. Err. z  P>|z| [95Y Conf. Intervall

_cons | .613146 .0597808 10.26  0.000 4959777 . 730314
_____________ +._______.____.____.___.____.____.___._____.___.____.____._______.____.____.___
/1nsigma | -.5323404 .0764651 -6.96 0.000 -.6822092  -.382471
_____________ +.__.__.___._.___.___._.___._.___.___._._.__.____._.___._.___._.__._.____.___._.___.____._.__
sigma | .587229 .0449025 .5056499 .682173

Observation summary: O left-censored observations
0 uncensored observations
6 right-censored observations




» I risk attitude depends on age and gender:
ri = Po + Prage; + Bamale; + €;, €; ~ N(O, 02)
Explanatory variables #; = (1 age; male;)’
Have coefficients 5 = (8, 81 f32)"

r :f;’g—l—eq;,, e; ~ N(0,0°) = 7 NN(?B’;CTQ)
» Hence,

- _ ; — &/ B AN

logL:ZI()g ) (u 5) —*1)( - B)
o o

i=1 i _
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Result:

» STATA intreg rlower rupper age male

[Fitting constant-only model:
Iteration O0: log likelihood =
Iteration 1: log likelihood =
Iteration 2: log likelihood =
Fitting full model:

Iteration O: log likelihood =
Iteration 1: log likelihood =
Iteration 2: log likelihood =
Interval regression Number of
LR chi2(2) = 3.59

-199
-198
-198

-197
-197
-197
obs

Log likelihood = -197.17108 Prob > chiZ2

[95% Conf.
-.0164727
-.4794222
-.7354646

-.2165679 .1341118
.1592841 .4565128

|
+
age | .02213 .0196956
|
|
+

.07231
. 96851
.96849

.24143
.17109
.17108

Interval]

. 0607327
.0462864
1.05403




1tting constant-only model:

Iteration O0: log likelihood = -199.07231
Iteration 1: log likelihood = -198.96851
Iteration 2: log likelihood = -198.96849
Fitting full model:

Iteration O0: log likelihood = -197.24143
> STATA Iteration 1: log likelihood = -197.17109
Iteration 2: log likelihood = -197.17108
Result Interval regression Number of obs = 100
LR chi2(2) = 3.59

Log likelihood = -197.17108 Prob > chi2 = 0.1657

| Coef. Std. Err. Z P>|z| [95% Conf. Interval]

_____________ +________________________________________________________________

age | .02213 .0196956 1.12 0.261 -.0164727 .0607327

BUt none male | -.2165679 .1341118 -1.61 0.106 -, 4794222 . 0462864
. :F- _cons | .1592841 .4565128 0.35 0.727 -.7354646 1.05403
signiticant|--—-----—--- e
/lnsigma | -.5507208 .0764747 -7.20 0.000 -.7006085 -.4008332

_____________ +.___._.____.___.____.____._.___.____..___._.____._.__.____._.___.____..____.___._._.___.__

sigma | .5765341 .0440903 .4962832 .6697618

;i = 0.159 + 0.022age; — 0.217Tmale; ) (6 = 0.577

‘6 right-censored observations




» Ask subject Certainty Equivalent (CE) for a lottery
» Amount for sure indifferent with lottery
» Exact information of subject risk preference

» With the CRRA utility function: U(z) =

xl—r

1 —r
» If (0.3, $3.85; 0.7, $0.10) has CE = 0.75, can find r
SO: (3.85)17" (0.0)t="  (0.75)1"

03 1 —r H0.7 1—r  1—7

» 7= 0.41! (See risk aversion calculations.xlsx)
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» To elicit subject CE with Incentive Compatibility (1C)
» Provide incentives for truthful report

» Use Becker-DeGroot-Marschak (BDM) Mechanism
» Becker et al. (1964)

1.
2.

3.

Report CE. Then, computer draw a random price
f random price is higher than CE, earn random price

f random price is lower than CE, play the lottery

» Why is it IC to report truthfully?

Estimating Binary Lottery Choice



Simulated —

Data for exact_data_sim.dta
N=100: o




» Given population distribution 7 ~ N (1,07
Want to estimate i, 0
» Density for observation r; is

1 T — 2 1 i
f(risp, o) = %exp( ( ZO.QM) )Z;aﬁ(r Oﬂ)

» Hence, the sample Iog—llkellhood function is:

1 [r —
log I, — Zln ~¢ (T U“)

Estlmatmg Binary Lottery Choice




» Choose r and ¢ to maximize logL
» STATA command: args 1nl xb sig

program define exact

args 1nf xb sig

tempvar y p

quietly gen double ‘y’=$ML_y1
quietly gen double ‘p’=(1/‘sig’)*normalden((‘y’-‘xb’)/‘sig’)|
quietly replace ‘lnf’=In(‘p’)
end

ml model 1f exact (r= ) ()

ml maximize

Estimating Binary Lottery Choice



» STATA
Results

initial: log likelihood = -<inf> (could not be evaluated)
feasible: log likelihood = -60.251905

rescale: log likelihood = -7.5739988

rescale eq: log likelihood = 3.1167494

Iteration 0: log likelihood = 3.1167494

Iteration 1: log likelihood = 3.2682025

ITteration 2: log likelihood = 3.6372157 A 0 1340
ITteration 3: log likelihood = 3.637384 ll: — .
Iteration 4: log likelihood = 3.637384

Number of obs = 100 A
Wald chi2(0) = . g = 02333
Log likelihood = 3.637384 Prob > chi2 = .

r | Coef. Std. Err. Z P>|z]| [95% Conf. Interval]
_____________ o
eql |

_cons | .1340463 0233327 5.74 0.000 0883149 LA1797776)
_____________ o
eq2 |

cons | . 2333275 . 0164987 14.14 0.000 . 2009905 .2656644
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» This is exactly the sample mean and variance of r

» STATA command: summ r

Variable | Obs Mean Std. Dev. Min Max
_____________ +_____—____________——_____—_____—______—_____—_____——____

r | 100 .1340463  .2345029 -.4884877  .6499107
» Except sample variance is divided by (n - 1) instead of n

» Recall from your Econometrics class
» Sample mean and sample variance maximizes likelihood!
» But ML applies to other continuous data (even censored)

Estimating Binary Lottery Choice




» MEE —=0.1340 much closer to 0 than previous ones:

» Homogeneous Agent Model: #1°™° = 0.2177
» Heterogeneous Agent Model: i"¢**° = 0.4001
» Interval Data: 2'™*™?! = 0.6131

» Subjects tend toward risk neutrality when asked CE
» As if they compute EV and report something near

» Explains: Prefer safer lottery in binary choice (P-bet)
» But place higher valuation on riskier lottery ($-bet) Preference

Reversals!!
Estimating Binary Lottery Choice




» This presentation is based on
» Section 3.1, 3.3-10 of the lecture notes of Experimetrics,

» prepared for a mini-course taught by Peter G. Moffatt
(UEA) at National Taiwan University in Spring 2019

» We thank JJN#, PRKES ~ sREZ, #xI58) ~ tAR Y and

MARZZ for their in-class presentations and JJi X £ for
providing STATA screen shots
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