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Jury Voting Model

vV v. vy

Three jurors N = {1, 2,3} responsible for deciding whether to convict or
acquit a defendant.

Collectively they choose an outcome x € {c, a}.
The jurors simultaneously cast ballots v; € S; = {c, a}.
The outcome is chosen by majority rule.

Each juror is uncertain whether or not the defendant is guilty (G) or
innocent (I).

> So the set of state variables is Q = {G, I}.

> Each juror assigns prior prob. m > 1/2 to state G.

> If the defendant is guilty, the jurors receive 1 unit of utility from

convicting and 0 from acquitting; if the defendant is innocent, the jurors

receive 1 unit from acquitting and 0 from convicting;

{U(CG) = u(all)=1
u(a|lG) = u(cll)=0
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Jury Voting Model

» Absent any additional information, each juror receives an expected utility
of 7 from a guilty verdict and 1 — 7 from an acquittal.

> Because m > 1/2, the Nash equ’'m that survives the elimination of weakly
dominated strategies is the one where each juror votes guilty.

> Now, before voting, each juror receives a private signal about the
defendant’s guilt 6; € {0,1}.

> The signal is informative so that a juror is more likely to receive the signal
0; = 1 when the defendant is guilty than when the defendant is innocent.

> Assume the prob. of receiving a “guilty” signal (i = 1) when the
defendant is guilty is the same as that of receiving an “innocent” signal
(6i = 0) when the defendant is innocent. ~ Symmetry

> Formally, let Pr(fi = 1jw = G) = Pr(§; =0jw = 1) = p > 1/2 so that
Pr(0i =0lw=G)=Pr(0i=1lw=1)=1—p.

»> Conditional on a state, each signal for an individual is independent with
each other (signals are “conditionally independent” ).
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Symmetry 


Sincere Voting Strategy

> After receiving her signal, voter i selects her vote v(6;) to maximize the
prob. of a correct decision - conviction of the guilty and acquittal of the
innocent.

> Suppose that each voter uses the sincere strategy vi(1) = ¢ and
V,'(O) = a.

» The sincere strategy calls for a vote to convict upon receipt of a guilty
signal and a vote to acquit upon an innocent signal.

> Sincere strategies constitute a Bayesian Nash equ'm (BNE) only if voter
1 is willing to use this strategy when she believes that voters 2 and 3 also
use it.

> Given these conjectures, the expected utility (EU) of voting to convict is
One other vote c

PI’(92 =1,60=0,w= G|01) =+ PI’(92 = 0,03 =1l,w= G|91)
+ P =1.0:=1.w=Gl6;) + Pr(0,=00;=0.w= “_QlL

Both vote c None vote c
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One other vote c

Both vote c

None vote c


Sincere Voting Strategy

> The EU of voting to acquit is

One other voter vote for a

Pr(6 =1, =0;w=101) + Pr(f2=0,63=1,w=1|61)
—|— PI’{()’) =0 92 =0w= IL&\ + PI’(Q') =1 92 = 1',“2 = Giﬂl)-

None vote for a

Both vote for a

» The |ast two terms of each sum are the same, hence these terms cancel
out when comparing utilities.

» Accordingly, voting to convict is a best response if & only if
Pr(02 =1,6=0,w= G|91) + PI’(92 =0,6=1,w= G|91)
> PI’(@Q = 1793 =0w= /‘91) + Pr(@z =0,05=1,w= I|91)
> Because these expressions depend on the conditional prob. of observing

combinations of the state variable and the signals of the other jurors,
juror 1 uses Bayes' rule to evaluate each term.
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One other voter vote for a

None vote for a

Both vote for a


Sincere Voting Strategy

Re(8,=), 8 | 8570 &)N(4)
B(93116) =1|1)-
> In this case, Bayes' rule yields (92116)-Mp+ R(o, 12)-M2)
wot B sl /
Pr(62=1,05 =0,w= G| =1)% " j(6) /
)

2
1—
= Pr(l2=0,6:=1w=Glbh =1) = mp +7T(l1(—77)(p1_p)

» Suppose that juror 1 receives 61 = 1.

vewnt
and @ A

Pr(02 = 1,03 :0;w: /|91 = 1)

— - 2
= Pr(0:=0,03=Lw=16=1)= m()1+ (1)_13(7:)(1P_)py

» Thus, vj(1) = c is optimal for juror 1 if
mw’l-p) ., (A-mp(l-p)
mp+(1—m)(1-p) = 7wp+(1—-m)(1-p)
= 279 (D) Y1) pli-p)*+ 7 P(iep)
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Sincere Voting Strategy

> After simplifyin)g and rearranging, this inequality becomes
("_i: ch p;vr'hl!. >
mp°(1—p) 1
6.zl 951 8, -0)= > .
P (610:21,0571, %20 (1= p)+ (1 —m)p(l—p)* ~ 2

> LHS is just the conditional prob. of guilt given two signals of § = 1 and
one signal of § = 0.

> In other words, agent 1 wants to vote to convict if she believes that the

: ity than | itional

ignal fof = .
» Similarly, the requirement for a vote of innocence conditional on a signal
of 0 is )
mp(1 - p) 1

< —.
mp(l—p)?+(1—-m)p*(1—p) ~ 2
» To sum, in any BNE in which voting corresponds to the private signals,

1. Conditional on the supposition that i is pivotal and observes 0; = 1, the

posterior prob. of guilt is greater than 1/2; and

2. Conditional on the supposition that i is pivotal and observes 0; = 0, the

posterior prob. of guilt is less than 1/2.
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Asymmetric Signal

» Thus, if sincere voting is incentive compatible, then

l-p ™7 P
p ~l1l—7m~1-—p

» E.g., if m > p, then sincere Voting is NGt incentive compatible.

> Under majority rule and symmetric signal precision (and equal prior
m = 1/2), sincere voting obtains in equ'm (if p > 1/2).

> Alternative way to obtain an linsincere/strategic voting equ'm is to
introduce asymmetric signal:
p = Pr(6; = 1ljw = G), q=Pr(6 =0jw=1),
1—p=Pr(6 =0jw = G), 1—g="Pr(=1w=1),
and we have here 1 > p > g > 1/2.
> Then, the posterior probabilities (with equal prior m = 1/2) are

q

p
Prflo=Gloi=1=—"— Prlwo=16=0= ————.
o = Glo = 1] = o= 1101 = 0] = g

+(1—gq)

Kim (NTU) Experimental Economics



Strategic Voting Equ'm

> Define o(s) =prob. of voting one's signal, s =0, 1.

> Typically, we have in equ'm; o(1) € (0,1) and o(0) = 1. (SED\f—Pan‘ir\J 97-4-‘{)

» Then,
Prlclo= 6] = po(1)+ (1 - p)(1 - o(0)) = po(1),
Prlalw = G] = p(1 — (1)) + (1 - p)o(0) = p(1 — o(1)) + (1 — p),
Prlclo =1 = (1—q)o(1) + q(1 - 0(0)) = (1 — q)or(1),
Prlajw =11 = (1-9g)(1—-0(1))+qo(0) =(1—q)(1 —o(1)) +gq,

> Since the equ'm strategy requires randomization upon signal s = 1,
T fiblore > Prlw = G|6; = 1] Pr[Piv|w = G] — Prjw = I|6; = 1] Pr[Piv|jw = I] = 0,

where Pr[Piv|w] is the prob. a vote is pivotal at state w:

(Oh_n vole c, the u+La,r volde a)
f) Pr[clw = G] Prlalw = G]
Priclw = G] Prialw = G]

Pr[Piv|w = G]

[po(D]lp(1 = (1)) + (1 = p)],
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Strategic Voting Equ'm

Pr[Piviw = 1]

2
<1> Prlc|w = 1] Pr[a|lw = 1]
(T = q)e(M][(1 = q)(1 = o(1)) +q]

> Thus we solve for o(1) from the above equation.

> Since 0(0) = 1, we finally check whether
Prlw = 116; = 0] Pr[Piv|w = I] — Prlw = G|6; = O] Pr[Piv|w = G] >0

when Pr[Piv|w] is evaluated at o(1) that solves the indifference condition.
> For example, when p =0.9 and g = 0.6, (1) = 0.9774
» Under fixed (p, q), o(1) typically decreases as n gets larger.
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> Austen-Smith & Banks (1996) show that in many cases the sincere
strategy is inconsistent with equilibrium behavior.

> It is easy to find parameters 7 and p for which one of the necessary
conditions does not hold.

» There are alternative strategies jurors might choose.

» Jurors can randomize for some signals, vote the same way regardless
of their signal, or use different strategies than other jurors use.

> Feddersen & Pesendorfer (1998) consider the properties of equ’a of
this game when one varies the voting rule and number of jurors.
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Jury Voting with a Continuum of Signals

> Instead of receiving a binary signal, each juror now receives a signal
0; € [0,1] where 6; is drawn from a conditional distribution F(6;|w).

» This distribution function is associated with a different density function
f(0i|lw) that satisfies the monotone likelihood ratio condition.

> A conditional density function satisfies the strict monotone likelihood ratio
condition (SMLR) if ';((99"’_“(,;)) is a strictly monotone function of 6; on [0, 1].

» To see why this assumption is important, note that Bayes' rule implies
that

F(6i]G)m
F(0:1G)m + F(0:]1)(1 — )
7(0,16)
7(e:1)
(0;

e+ (-

Pr(G|6;)

> Accordingly, Pr(G|0;) is increasing in 6; if & only if £(6i|G)/f(6i|l) is
increasing in 0;.

» Thus, the SMLR conditioin implies that higher signals correspond to
higher posterior probabilities that w = G.
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Jury Voting with a Continuum of Signals

> To keep matters simple, we focus exclusively on symmetric strategies
where voters who receive the same signal choose the same strategy.

> A symmetric strategy profile is, therefore, a mapping
V,'(e,') : [0 1] — {C a}.
» As in the binary signal case, BNE strategies are those that are optimal

when each agent acts conditionally on her private information and the
conjecture that she is pivotal.

> An agent votes to convict if she thinks the prob. of guilt is no less than
1/2 and she votes to acquit if she thinks the prob. of guilt is no more
than 1/2.

> Because higher signals are better indicators of guilt, a natural conjecture
is that the strategy must be weakly increasing.

> For low values of 6, an acquittal vote is cast and for high values of 6; a
conviction vote is cast.
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Cut Point Strategy

»> A monotone strategy of this form can be characterized by a cut point
0 €[0,1].

> Assume that agents i € N\/ use the monotone strategy

c if6; >0
vifr) = { a if6; <@

> If all players other than i use this cut point strategy, the posterior prob.
of {w = G} given signal 0; and the event that i is pivotal is given by

Pr(G|piv, 6;; H)
mf(8;1G)F(BIG)V "1 — F(BlG)" !
wf(0;|G)F(D1G)N=r[1 — F(BIG)) =1 + (1 — m)F(0;|1)F(O|NN—r[1 — F(O| 1)1

» This prob. is a function of the parameter 0.

* Here we assume r-rule, so we require r or more votes for conviction
(majority rule if r = (N + 1)/2 and unanimity rule if r = N).

Kim (NTU) Experimental Economics



Cut Point Equilibrium

> In this model the existence of a symmetric equ'm in which voters use a
cut point hinges on finding a value of 0 s.t.

Pr(G|piv,0;0) = =

and demonstrating that Pr(G|piv, 6;; §) < 1if0; < 6 and
Pr(G|piv,0;;0) > 1 if 0; > 0.
> Although analysis of examples is cumbersome, it is easy to derive

conditions on the primitives of the game to ensure that such a 6 € (0,1)
exists.

> First, Pr(G|piv, 0;;0) > L if & only if

F(6:1G)F(3]G)"~"[1 — F(6|G) Hlo< 1 ﬁ
(04) (1—7r)f0|l)F(0|I)N TM—FON 2 Mu >
£(6:1G) F(01G)"[1 — F(OIG)) "

f0ill) (1 —m)F@IDHN-r[1 — F@AIN])—t —

'-—_> 3 gGLD”)
X, H®)a
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Existence of Cut Point Equilibrium

» SMLR then implies that if Pr(G|piv,0; ) = 1/2 then 6; < 0 implies
Pr(Glpiv,0;;0) <1/2 and 0; > 0 implies Pr(G|piv,0;;0) > 1/2.

> If Pr(G|piv,0;0) < 1/2 < Pr(G|piv,1;1) then the intermediate value
theorem implies that such a cut point exists b/c the function
Pr(G|piv,-;-) is continuous.

> For a large class of games these boundary conditions are satisfied.

» In the simple binary signal model, equ’'a where everyone uses the same
rule and voting is determined by private information may not exist.

> This type of equ'm generally exists in the continuum model, however.

> Using the binary model, Feddersen & Pesendorfer (1998) show that the
unanimity rule is a uniquely bad way to aggregate information for large
populations b/c in equ'm voters condition on the assumption that
everyone else is voting to convict.

> In the continuum model, Meirowitz (2002) shows that the unanimity rule
often turns out to be as good as the other voting rules.

Kim (NTU) Experimental Economics



Voluntary Voting Model

» Two candidates, A and B, in majority voting election.
» Two equally likely states of nature, a and .
> A is the better choice in state a and B, in state .

- In state «, payoff is 1 if A is elected and 0 if B is elected; vice versa
in state 3.

The Poisson
» The size of the electorate is a random variable, distributed distribution is

according to a Poisson distribution with mean n. for analytic
convenlience.

- The probability that there are exactly m voters is e="n™/m!.

> Prior to voting, each voter receives a private signal S; regarding the
true state of nature, either a or b; Pr[ala] = r and Pr[b|f] = s; the
posteriors given by

r S

dala) = =gy OB =Ty

- r>s>1/2 implies g(ala) < q(B|b).
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The Poisson distribution is for analytic convenience.  


Pivotal Events

> Event (j, k), j votes for A and k votes for B.

> An event is pivotal for A if a single additional vote for A changes

the outcome, written Piva. The additional vote makes or breaks a tie.

» Under majority rule, one additional vote for A makes a difference
only if (i) there is a tie; or (ii) A has one vote less than B.

T={(kKk): k>0, Ty={(k=1,k):k>1}, Piva=TUT,

> Similarly, Pivg = TU Tyq, Ty = {(k,k—1): k > 1}

> o4, 0p are the expected number of votes for A, B in state «; 74, 78
are the expected number of votes for A, B in state .

> With abstention allowed, o4 + o5 < n, 74 + 78 < n (equality w/o
abstention).
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The additional vote makes or breaks a tie.


Pivotal Events

> |f the realized electorate is of size m with k votes for A and / votes for B
(m — k — | abstention),

A

Pr[(k,)|a] =€ Aﬂe BT'

* For the probability of the event (k, /) in state 3, replace o by 7.

P,
Pr[Tla] = e °A7°E k—?k—'f,
k=0
— 7UA oB
Pr(T-1la] = Z (k, 1)! kl )
k=1
Pr[Pivala] = 7Pr[T|a]+;Pr[T ol achll 4m Fire

( ‘5— Sy L -
where Piva = T U T_1 is the set of events where one additional vote for
A is decisive, and we have the coefficient 1/2 because the additional vote

for A breaks a tie or leads to a tie
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Pivotal Events

> Similarly, ) )
Pr[Pivs|f] = 5 Pr[T|8] + > Pr[T}1]5]

where Pivg = T U Ty is the set of events where one additional vote for
B is decisive.

» Define modified Bessel functions

z/2)*"! (2/2)"
(k=11 &

—_

k=0 k=1

and rewrite the probabilities of close elections in terms of these functions
PriTla] = e 74 78(2y/caoB)
o oa\ £1/2
Pr{Tula] = e 7" (7) h(2\/5405).
oB

> For z large, we also have

h(z) = Toms ~ h(z).
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Compulsory Voting

» By compulsory voting each voter must cast a vote for either A or B.
> Vote sincerely in compulsory voting equilibrium?

> Given sincere and compulsory voting, o4 = nr, og = n(1 —r),
TA = n(l — S), B = NS.

» As n increases, both ¢ — oo, 7 — 00, and so the previous
approximations for ly(z), h(z) imply

(M “\-70")

Pr[Piva|a] + Pr[Pivgla]  e?"Vr(=r)
R x K(r,s)—> 0

Pr[Piva| 8] + Pr[Pivg|B] ~ g2n/s(0-5)

where K(r,s) is positive and independent of n.

> r>s>1/2 also implies s(1 —s) > r(1 — r) and so RHS goes to
zero as n increases.
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Compulsory Voting

» This implies that, when n is large and a voter is pivotal, state [ is
infinitely more likely than state a.

» Thus, voters with a signals will not wish to vote sincerely.

Proposition 1: Suppose r > s. If voting is compulsory, sincere
voting is not an equilibrium in large elections.

> This result also holds for a fixed number of voters (Feddersen &
Pesendorfer APSR 1998).
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Voluntary Voting

>

Costly voting: one's cost of voting is private info and an
independent draw from a continuous distribution F with support
[0,1] - F admits a density f > 0 on [0, 1).

Voting costs are independent of the signals.

There exists an equilibrium of this voluntary (and costly) voting
game with the following features;

There exists a pair of positive threshold costs c,, ¢, s.t. a voter
with cost ¢ and signal i = a, b votes (does not abstain) if & only if
¢ < ¢;. The threshold costs determine differential participation rates

F(ca) = pa, F(cp) = po.

All those who vote do so sincerely - i.e., all those with signal a vote
for A and those with signal b vote for B.
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Equ'm Participation Rates

> We show that when all those who vote do so sincerely, there is an
equ’'m in cutoff strategies. s—h—rdly bosttive |

> There exists a threshold cost c, > 0 (cp > O) s.t. all voters with
signal / and cost ¢ < ¢, (¢ < ¢p) go to the polls and vote for A (B).

> These then determine pparticipation probabilities p, = F(c.,),
pp = F(cp) for voters with signal a, b, respectively.

» Now the expected numbers of votes for A, B in state « are
oA = nrp,, 0g = n(1 — r)pp; and those in state § are
Ta = n(1 — s)p,, T = nspp, respectively.
> We look for participation rates p,, pp s.t. a voter with signal a and

cost ¢, = F~1(p,) is indifferent b/w going to the polls and staying

home; mnm?kj of +hreshold o

(IRa)  Us(pa; pv) = q(ar|a) Pr[Pivala]—q(B|a) Pr[Pival 8] = F*(pa)
bosehit of  votvw - st ok ity
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Equ'm Participation Rates

where the pivot probabilities are determined using the expected vote
totals o, 7.

» Similarly, a voter with signal b and cost ¢, = F~1(pp) must also be
indifferent;

(IRb)  Up(pa, pv) = q(B|b) Pr[Pivg|B]—q(c|b) Pr[Pivg|a] = F~!(ps).

Proposition 2: There exist participation rates p} € (0,1) and
p; € (0,1) that simultaneously satisfy (IRa) and (IRb).

» Intuition for positive participation rates: assume p, = 0.

> Then the only pivotal events are (0,0) and (0, 1).
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Equ'm Participation Rates

» Hence conditional on being pivotal

PrlPivala] e "= y 1+n(l—r)pp
Pr[PivalB] e ~nss 1+ nsp,

> The ratio of the exponential terms favors state « while the ratio of

the linear terms favors state [3; and the exponential terms always
dominate.

» Since state « is perceived more likely than S by a voter with signal
a who is pivotal, the payoff from voting is positive. =, OM‘frﬂtlhtihj Pz o
» We also have L‘X_')

Lemma 1: /fr > s, then any solution to (IRa) and (IRb) satisfies
p; < pp, with equality if r = s.
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> Given the (equ'm) participation rates, we can show that it is a
-t nse for every voter to v incerely.
» We begin with a lemma;
Lemma 2: /f voting behavior is s.t. op > Ta and og < Tg, then
Pr[Pivgla] _ Pr[Pivala]

PrlPivs|3] ~ Pr[Pival] (Noad P st

2)

> On the set of “marginal” events where the vote totals are close (i.e.,
a voter is pivotal), A is more likely to be leading in state a and
more likely to be trailing in state /.

> Let (piip;) be equ'm participation rates.

» A voter with signal a and cost ¢ = F~1(p?) is just indifferent b/w
voting and staying home;

(IRa) q(ala) Pr[Pivala] — q(B|a) Pr[Pival5] = F_l(p:). >0
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>

To show: sincere voting is optimal for a voter with signal a if others
are voting sincerely;

(ICa) g(a]a) Pr[Pivala] — q(B|a) Pr[Piva|p]
> q(Bla) Pr[Pivs|B] — q(ala) Pr[Pivs|a].
LHS is the payoff from voting for A whereas RHS is the payoff to
voting for B.
ps > 0 combined with (IRa) implies
Pr[Pivala] _ q(B]a)
p > .
Pr[Pival 8]~ q(ala)

Then by Lemma 2,
Pr{Pivslal _ q(5]2)
Pr[Pive|B] = q(ala)
But then, the last inequality is equivalent to
q(B|a) Pr[Pive|] — q(ala) Pr[Pivg|a] < 0. ( —3&)
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» Similarly, we combine pf > 0, Lemma 2, and
(IRb)  q(B|b) Pr[Pivs|B] — q(c|b) Pr[Pivgla] = F*(p})
to show

(1Cb) q(B[b) PriPivs|B] — q(alb) Pr[Pivs|a]
> q(a|b) Pr[Pivala] — q(5|b) Pr[PivalA].

Proposition 3: Under voluntary participation, sincere voting is
incentive compatible.

> We can also show that all equ’a involve sincere voting (Krishna &
Morgan JET 2012).
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