Power Analysis with Monte Carlo 使用蒙地卡羅法進行統計檢定力分析

Joseph Tao-yi Wang (王道一) EE-BGT, Experimetrics Module 2

Power Analysis: Monte Carlo

Power Analysis for Another Test?

- STATA has the power command for pre-set tests, but what if I want to run another test?
- Use Monte Carlo to perform power calculation!
- Can do Treatment vs. Control by comparing:
 - 1. 2 means: Two-sample t-Test
 - 2. 2 medians: Mann-Whitney Test
 - 3. 2 distributions: Kolmogorov-Smirnov Test
- Which to use?
 - ▶ The one with desired size and highest power!

DGP with Normally Distributed Errors

$$x_{i} = 10 + \underbrace{\delta \cdot d_{i}}_{\uparrow} + \epsilon_{i}, \ i = 1, \cdots, n = 100$$

$$\uparrow \text{[Treatment Effect]} \times \text{[Treatment Dummy]}$$

- Control: $d_i = 0$ if $i \le \frac{n}{2} = 50$
- Freatment: $d_i = 1$ if $i > \frac{n}{2} = 50$
- From: $\epsilon_i \sim N(0,1), E(\epsilon_i) = 0, V(\epsilon_i) = 1$
- What is the size of each test?
 - ▶ % of resamples that "reject null | null is true"

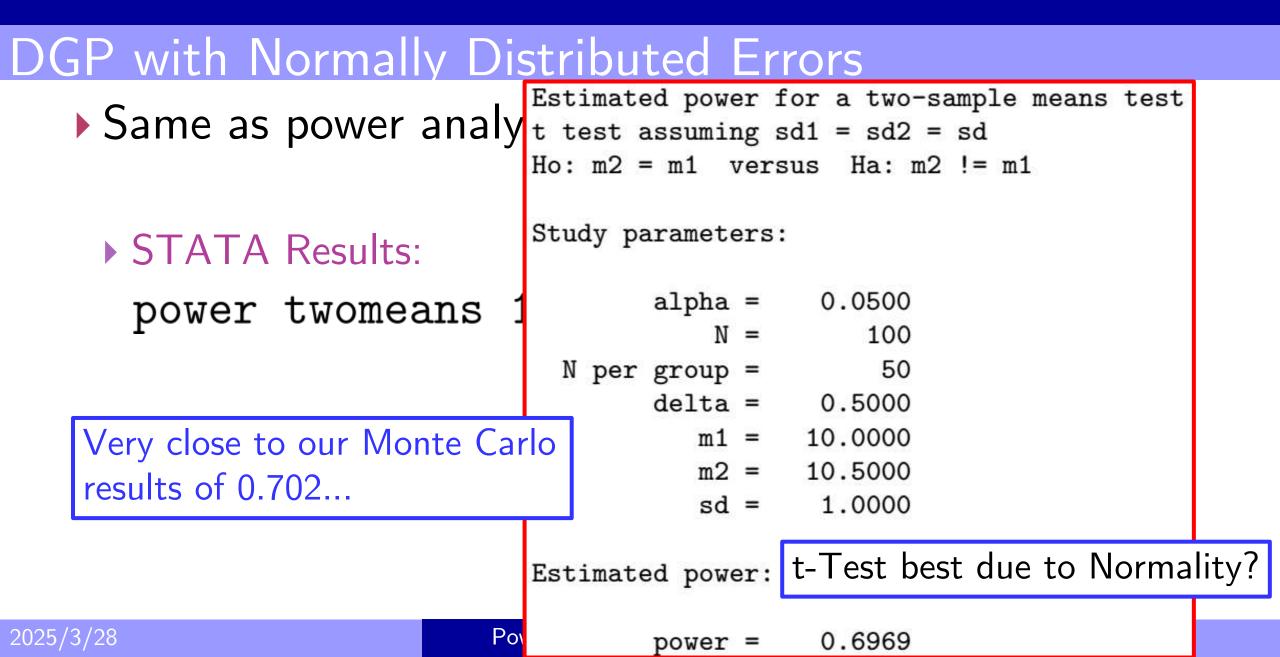
DGP with Normally Distributed Errors

- What is the size and power (at $\delta = 0.5$)?
 - > do-file_2.do: Monte Carlo procedure
- Results of 1,000 replications are:

$$\alpha = \Pr(\text{reject null} \mid \text{null is true})$$

 $\pi = \Pr(\text{reject null} \mid \text{null is false})$

All three unbiased (properly sized)


:U				
Ä		Size	Power	
	t-Test	0.052 ^u	0.702	High
N	I-W Test	0.053 ^u	0.683	to
k	K-S Test	0.040 ^u	0.513	Low
u :	Not signifi	cantly differen	it from 0.05	

DGP with Normally Distributed Errors

- Same as power analysis of t-Test via STATA?
 - STATA command for power calculation
 - μ_0/μ_1 power twomeans 10 10.5 , sd(1) n(100) sample std; sample size > 2-sample t-test

DGP with Non-Normally Distributed Errors

$$x_i = 10 + \underbrace{\delta \cdot d_i}_{\uparrow} + \epsilon_i, \ i = 1, \cdots, n = 100$$

$$\uparrow \text{[Treatment Effect]} \times \text{[Treatment dummy]}$$

• Control:
$$d_i = 0$$
 if $i \le \frac{n}{2} = 50$

Treatment:
$$d_i = 1$$
 if $i > \frac{n}{2} = 50$

- From 1: $\epsilon_i \sim \text{Uniform}[-2, 2], E(\epsilon_i) = 0$
- For 2: $\epsilon_i \sim \text{std } \chi^2(3)$ with $E(\epsilon_i) = 0, V(\epsilon_i) = 1$

What is the size and power (at $\delta = 0.5$)?

DGP w/ Non-Normally Distributed Errors

- What is the size and power (at $\delta = 0.5$)?
- From 1: $\epsilon_i \sim \text{Uniform}[-2, 2], E(\epsilon_i) = 0$

Symmetric errors: Not skewed

$$\alpha = \Pr(\text{reject null} \mid \text{null is true})$$

 $\pi = \Pr(\text{reject null} \mid \text{null is false})$

All three unbiased (properly sized)

	Size	Power	
t-Test	0.056 ^u	0.566	High
M-W Test	0.056 ^u	0.526	to
K-S Test	0.039 ^u	0.306	Low
u: Not signifi	cantly differen	t from 0.05	

Power Analysis: Monte Carlo

DGP w/ Non-Normally Distributed Errors

- What is the size and power (at $\delta = 0.5$)?
- Error 2: ε_i ~ std χ²(3) w/ E(ε_i) = 0, V(ε_i) = 1
 Skewed error

		$\pi = \Pr(\mathbf{r})$	reject null null is false)	
		Size	Power	
	t-Test	0.061 ^u	0.705	
M-W Test biased!	M-W Test	0.067	0.867	
	K-S Test	0.052 ^u	0.862	K-S test the best!

u: Not significantly different from 0.05

Homework for Section 2.1

 $x_i = 10 + \underbrace{\delta \cdot d_i}_{i} + \epsilon_i, \ i = 1, \cdots, n = 100$ [Treatment Effect] × [Treatment dummy] What if skewed opposite like Error 3: $-\epsilon_i \sim \text{std } \chi^2(3) \text{ w/ } E(\epsilon_i) = 0, V(\epsilon_i) = 1$ ▶ Hint: Is M-W test better than K-S test here? Can we try the Epps-Singleton test? ▶ Hint: See do-file_2a.do

Treatment Testing with Multi-Level Data

- Experimental data dependent at multi-levels:
 - Same Subject (with repeated observations)
 - Same Group (in interactive experiments)
 - Same Session (with re-matching of groups)
- How serious is ignoring these clustering?
 - > do-file_2b.do: Use Monte Carlo to tell!
- Evaluate Treatment Effect with t-Test for:
 - Between-Subject (Treat Half of the Subjects)
 - Within-Subject (Treat Half of the Tasks)

Evaluate Treatment Effect with t-Test in:

- 1. OLS (no clustering)
- 2. OLS clustering at subject level
- 3. OLS clustering at group level
- 4. RE (no clustering)
- 5. RE clustering at subject level
- 6. RE clustering at group level
- 7. Multi-Level Model (subject RE and group RE)
- Which are correctly sized?
 - Among these, which has highest power?

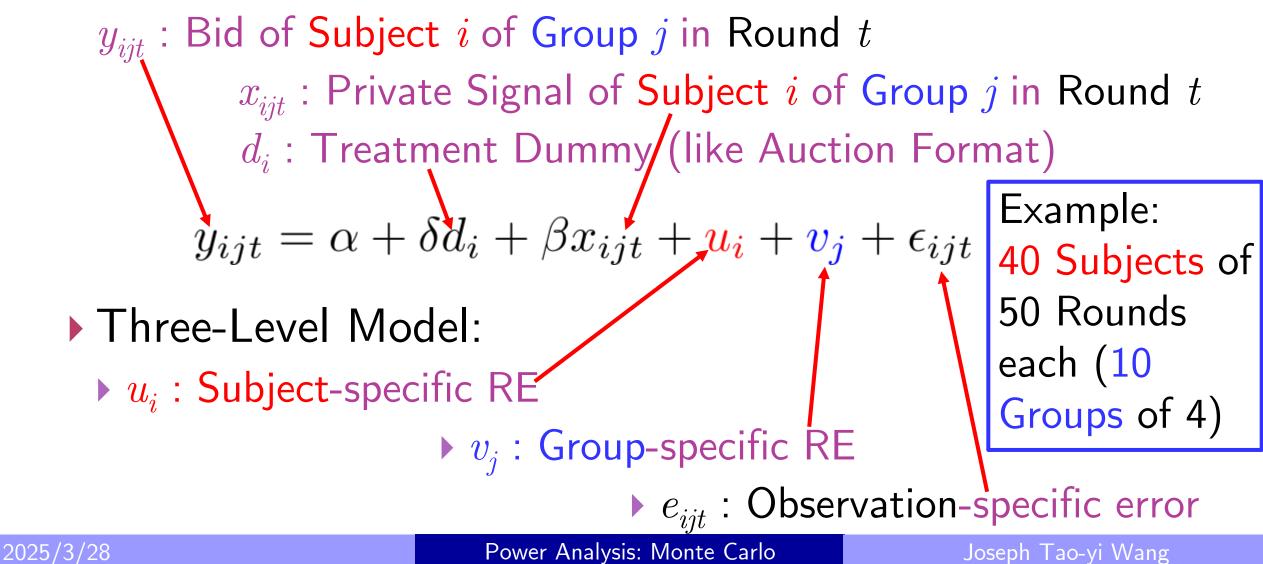
Treatment Testing with Multi-Level Data

- Levels: Skrondal and Rabe-Hesketh (2004) each (10
 - One-Level: T observations of a single subject
 - Two-Level: T observations for each of N subjects
 - Three-Level: T observations for each of N subjects in each of J groups: $y_{ijt} = \alpha + \delta d_i + \beta x_{ijt} + u_i + v_j + \epsilon_{ijt}$

$$V(u_i) = \sigma_u, \quad V(v_j) = \sigma_v, \quad V(\epsilon_{ijt}) = \sigma_\epsilon$$

$$i = 1, \cdots, n, \quad j = 1, \cdots, J, \quad t = 1, \cdots, T$$

xtmixed for Subject RE + Group RE in STATA


Example:

40 Subjects

of 50 Rounds

Groups of 4)

Example: Experimental Auction Data

RE: Special Case of Multi-Level Model

 y_{ijt} : Bid of Subject $i ext{ of Group } j$ in Round t x_{ijt} : Private Signal of Subject $i ext{ of Group } j$ in Round t d_i : Treatment Dummy (like Auction Format)

$$y_{ijt} = \alpha + \delta d_i + \beta x_{ijt} + \mathbf{u}_i + \mathbf{w}_i + \epsilon_{ijt}$$

- Random Effect (RE) Model:
 - ▶ u_i : Subject-specific RE

•
$$e_{ijt}$$
 : Observation-specific error

Power Analysis: Monte Carlo

OLS: Special Case of RE Model

 y_{ijt} : Bid of Subject *i* of Group *j* in Round *t* x_{ijt} : Private Signal of Subject *i* of Group *j* in Round *t* d_i : Treatment Dummy (like Auction Format)

$$y_{ijt} = \alpha + \delta d_i + \beta x_{ijt} + \mathbf{x} + \mathbf{x} + \epsilon_{ijt}$$

Linear Regression (OLS) Model:

Power Analysis: Monte Carlo

Between-Subject vs. Within-Subject Treatment Effects

$$d_i = 0$$
 for Subject $i = 1-20$; $d_i = 1$ for Subject $i = 21-40$

2025

d_i : (Between-Subject) Treatment Dummy

▶ d_{it} : <u>Within-Subject</u> Treatment Dummy

$$y_{ijt} = \alpha + \delta d_{\underline{it}} + \beta x_{ijt} + u_i + v_j + \epsilon_{ijt} \begin{bmatrix} \text{Example:} \\ 40 & \text{Subjects} \end{bmatrix}$$

Three-Level Model:

$$u_i : \text{Subject-specific RE}$$

$$u_i : \text{Subject-specific RE}$$

$$u_i : \text{Group-specific RE}$$

$$v_j : \text{Group-specific RE}$$

$$v_j : \text{Groups of 4}$$

$$e_{ijt} : \text{Observation-specific error}$$

Multi-Level Models in STATA (Cluster at 1/2 Levels)

- ▶ 40 Subjects of 50 Rounds each (10 Groups of 4)
- egen i=seq(), f(1) b(50) (or egen i=seq(), from(1) by(50))
 - ▶ "from 1 by 50" means (1,...,1, 2,...,2, 3,...,3, 4,...,4, ...)
- egen i=seq(), f(1) t(50) (or egen i=seq(), from(1) to(50))
 - ▶ "from(1) to(50)" means (1,2,3,4,...,50, <u>1,2,...,50</u>, 1,2,...,50, ...)
- **STATA** Command:
 - OLS: Omitted (Review your Econometrics Class Notes!)
 - ▶ 1-Level: xtmixed y d x || i: Cluster at Subject i
 - ▶ 2-Level: xtmixed y d x || j: $\boxed{||}$ i: Cluster at Group j

Power Analysis: Monte Carlo

and Subject *i*

Three-Level	Model U	sing ST	ATA	(Clust	tered a	at 2	Leve	ls)
STATA	xtmix	ed y d x	j:	i:	Cluster	at Gr	roup <i>j</i>]
Results:	Performing EM opt	imization:			and Sul	oject	i	
	Performing gradie	ent-based optim	mization:					_
	Iteration 0: 10	og likelihood :	= -2959.3982	2	40 Su	bjects	of]
	Iteration 1: 10	og likelihood :	= -2959.3978	3	50 Ro	unde	each	
	Iteration 2: 10	og likelihood :	= -2959.3978	3			_	
	Computing standar	rd errors:			(10 G	roups	of 4)	
	Mixed-effects ML	regression		Numb	per of obs	=	2,000	
		No. of	Observa	tions per	Group			
	Group Variable	Groups	Minimum	Average	Maximum			
	i j	10	200					
2025/3/28	i	40	50 	50.0	50 			

		Wald chi2(2)	= 155.37
	Log likelihood = -2959.3978	Prob > chi2	= 0.0000
Three Lovel	d : Treatment increases bid b	y 0.148	
Three-Level	y Coef. Std. Err. z	P> z [95% (Conf. Interval]
STATA	d .1482739 .0454989 3.26	0.001 .05909	978.23745
Results:	x .0955655 .0079035 12.09	0.000 .0800	21. J.2013
40 Subjects	_cons 1241784 .247917 -0.50	0.61661008	367 .3617299
of 50 Rounds	x: How values affect bids		
	Random-effects Parameters Estimate Std.	. Err. [95% (Conf. Interval]
each (10	++++		
Groups of 4)	j: Identity G sd(_cons) .4820359 .29	92011 .14703	391 1.580251
	i: Identity Gu		
Error STD	· · · · · · · · · · · · · · · · · · ·	.9236	118 1.543333
for Group j	sd(Residual) 1.017198 .016	 62466 .98584	 481 1.049544
and Subject i			
	LR test vs. linear model: chi2(2) = 1737.24	Prob 2	> chi2 = 0.0000
& Residual e	Note: LR test is conservative and provided only	for reference.	

					$ect null \mid$				
			π =	= Pr(rej	ect null	null is f	false)		
Be	Between-Subject 100 Monte Carlo Results ($\delta = 0.5$)								
Un	biased if cluster at group (not su	bject	Size: a	l = 0	Power	$\delta = 0$).5		
	OLS		0.4	6 🗙 🗙	८ –	.68			
	OLS clustering at subject level	0.1	5 🗙	-0	.41				
	OLS clustering at group level	0.0	7 ^u	0	.25				
	RE (no clustering)		0.1	3 🗙	-0	.41			
	RE clustering at subject level		0.1	5 🗙	-0	.41			
	RE clustering at group level		0.0	7 ^u	0	.25			
	Multi-Level (subject and group I	evel)	0.0	8 ^u	0	.27			
	u: Not significantly different from (0.05	Multi-L	evel h	nighest	(but l	ow)		
2025/	/3/28 Power Analysis:	Monte	Carlo		Joseph I ao-	yi Wang			

			$\alpha = \Pr(1)$	eject null	null is true)
			$\pi = \Pr(\mathbf{r})$	eject null	null is false)
W	<u>ithin-Subject 100</u>	<u>) Monte Carlo</u>	Results	$\delta = 0.0$)5)
/	All 7 unbiased (with	100 replications)	Size: $d = 0$) Power	: $\delta = 0.05$
	OLS		0.02 ^u	-).07
	OLS clustering at s	0.09 ^u	(0.31	
	OLS clustering at g	0.09 ^u	(0.33	
	RE (no clustering)	0.05 ^u	(0.31	
	RE clustering at sub	oject level	0.09 ^u	(0.31
	RE clustering at gro	0.08 ^u	(0.33	
	Multi-Level (subject	0.05 ^u		0.31	
	u: Not significantly o	No Clus	ter = Lc	w Power	
2025,	/3/28	Power Analysis: Monte C	Carlo	Joseph Tao	-yi Wang

Conclusion

- Between-Subject:
 - Size: Cluster at Highest Level possible
 - Power: Multi-Level model is best
- Within-Subject:

- $\alpha = \Pr(\text{reject null} \mid \text{null is true})$ $\pi = \Pr(\text{reject null} \mid \text{null is false})$
- Size: All models able to detect small treatment
- Power: All but OLS is good
- HW: What if we make group effect = 0.1 instead of 1?
 gen y=0.5+delta*d+0.1*x+u+0.1v+e
 - What about power?

Increase n and T of Between-Subject Multi-Level Model

- Multi-Level best with n=40 Subjects of T=50 Rounds each
- How to increase power of Multi-Level with n and T?
 - > do-file_2c.do: Monte Carlo procedure
 - ▶ Typo: "'" in wrong place for STATA command gen d=i/2
- Double or Triple n and/or T for:
 - \blacktriangleright Between-Subject at $\delta=0.5$
 - \blacktriangleright Within-Subject at $\delta=0.05$

Increase n and T of Between-Subject Multi-Level Model

- Double or Triple *n* and/or *T* for:
 - \blacktriangleright Between-Subject at $\delta=0.5$

	Multi-Level	T = 50	T = 100	T = 150	
Modest	<i>n</i> = 40	0.24	0.26	0.28	Power
Gains	<i>n</i> = 80	0.25	0.36	0.35	Ceiling
(n > T)	<i>n</i> = 120	0.39	0.38	0.35	at 0.40

Increase n and T of Within-Subject Multi-Level Model

- Double or Triple n and/or T for:
 - \blacktriangleright Within-Subject at $\delta=0.05$

	Multi-Level	T = 50	T = 100	T = 150	
Steep	<i>n</i> = 40	0.20	0.47	0.75	Power close to 1
Gains!!	n = 80	0.44	0.71	0.91	if increase
(T > n)	n = 120	0.67	0.81	0.97	both n, T

Acknowledgment

This presentation is based on

- Section 2.1-2.3 of the lecture notes of Experimetrics,
- prepared for a mini-course taught by Peter G. Moffatt (UEA) at National Taiwan University in Spring 2019
 - ▶ We would like to thank 何雨忻 for his in-class presentation

