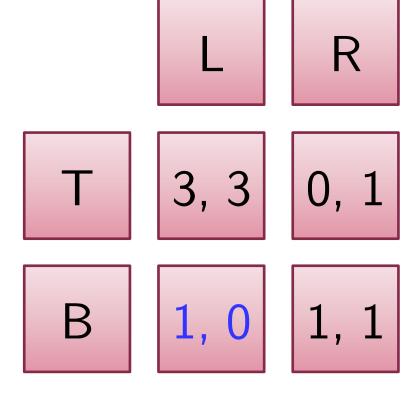
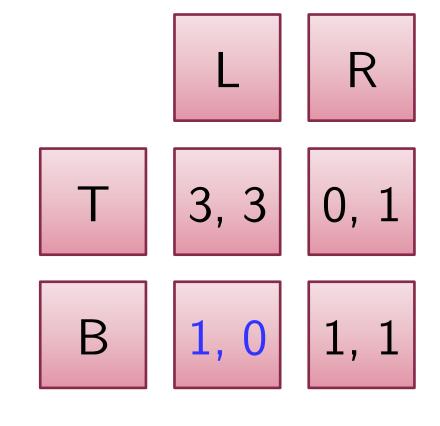
Learning: Reinforcement, Fictitious Play and EWA 學習理論: 制約、計牌與EWA

Joseph Tao-yi Wang (王道一) Lecture 11, EE-BGT


Outline: Learning

- 1. Learning: What you do after you see "results"...
- 2. What we know now: (various learning rules)
 - 1. Reinforcement
 - 2. Belief learning
 - 3. EWA: a hybrid of reinforcement and belief learning
 - 4. Others: Evolutionary, anticipatory learning, imitation, learning direction theory, rule learning,...
- 3. Further research: New direction for research in learning
 - ▶ Application: How can we use these tools?

What you do after you see...


- Suppose you are playing Stag Hunt
- ▶ (B, L) happened last time
- ▶ What would you do now?

- Change strategy?
- Stick to it?

What you do after you see...

- A robot (pre-programmed) would stick to it
 - Evolutionary approach
- But humans think twice
- ▶ How would you switch?
- ▶ Reinforcement:
 - Choices "reinforced" by previous payoffs
 - "Very bad" reasoning

Reinforcement Learning

- Update attractions (tendency to play a certain strategy) after given history
- Reinforcement:
 - Choices "reinforced" by previous payoffs
 - ▶ Allow spillovers to "neighboring strategies"
- Example: (cumulative reinforcement)

$$\underline{A^B(t)} = \varphi \underline{A^B(t-1)} + (1-\epsilon) \cdot \mathbf{1}$$

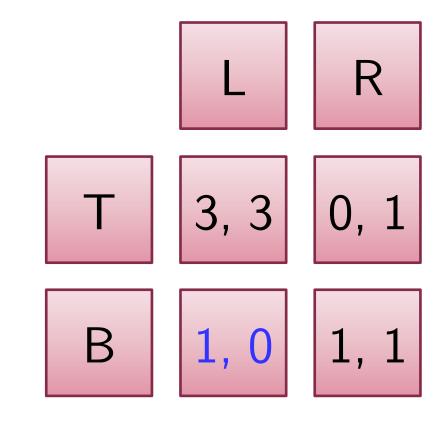
$$\underline{A^T(t)} = \varphi \underline{A^T(t-1)} + \epsilon \cdot \mathbf{1}$$

Reinforcement Learning

▶ (More General) Cumulative Reinforcement:

$$\underline{A^B(t)} = \varphi \underline{A^B(t-1)} + (1-\epsilon) \cdot 1 \cdot [1-\rho(t-1)]$$

$$\underline{A^T(t)} = \varphi \underline{A^T(t-1)} + \epsilon \cdot 1 \cdot [1-\rho(t-1)]$$


- Alternatively,
- Weighted Average Reinforcement

$$\underline{A^{B}(t)} = \varphi \underline{A^{B}(t-1)} + (1-\varphi) \cdot (1-\epsilon) \cdot 1$$

$$\underline{A^{T}(t)} = \varphi \underline{A^{T}(t-1)} + (1-\varphi) \cdot \epsilon \cdot 1$$

What "else" could you do...

- ▶ Would you update your beliefs about what others do"?
 - ▶ Belief learning models
- Fictitious Play
 - Keep track of frequency
 - Ex: rock-paper-scissors
- Cournot Best-Response
 - What you did last time= What you'll do now

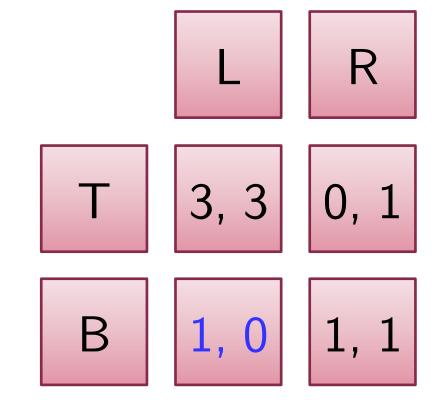
Weighted Fictitious Play

- Other weights? Weighted fictitious play
 - Fictitious play: weigh all history equally ($\rho = 1$)
 - ▶ Cournot: focus only on the last period ($\rho = 0$)
- Prior:
 - $P_{t-1}(L) = 3/5, P_{t-1}(R) = 2/5$
- Posterior:
 - $P_{t}(L) = (3 \rho + 1) / (5 \rho + 1)$
 - ▶ $P_t(R) = (2 \rho + 0) / (5 \rho + 1), \rho = decay factor$

Weighted Fictitious Play

Posterior:

$$P_{t}(L) = (3 \rho + 1) / (5 \rho + 1)$$


- $P_{t}(R) = (2 \rho + 0) / (5 \rho + 1)$
- Use this belief to compute payoffs and use them as attractions:

$$A^{T}(t) = [3(3\rho + 1) + 0(2\rho + 0)]/(5\rho + 1)$$

- $AB(t) = [1(3\rho + 1) + 1(2\rho + 0)]/(5\rho + 1)$
- Note: Actually payoff received play no role

Could you being doing both?

- ▶ Reinforcement does not update beliefs
 - But people do update!
- Fictitious play doesn't react to actual payoffs
 - But people do respond
- ▶ EWA: a hybrid of two
 - Camerer and Ho (Econometrica, 1999)

Experience-Weighted Attraction

ightharpoonup N(t): Experience Weight (weakly increasing)

$$N(t) = \varphi(1-\kappa)N(t-1) + 1, N(t) \le \frac{1}{1-\varphi(1-\kappa)}$$

 \blacktriangleright Attraction (for chosen action B)

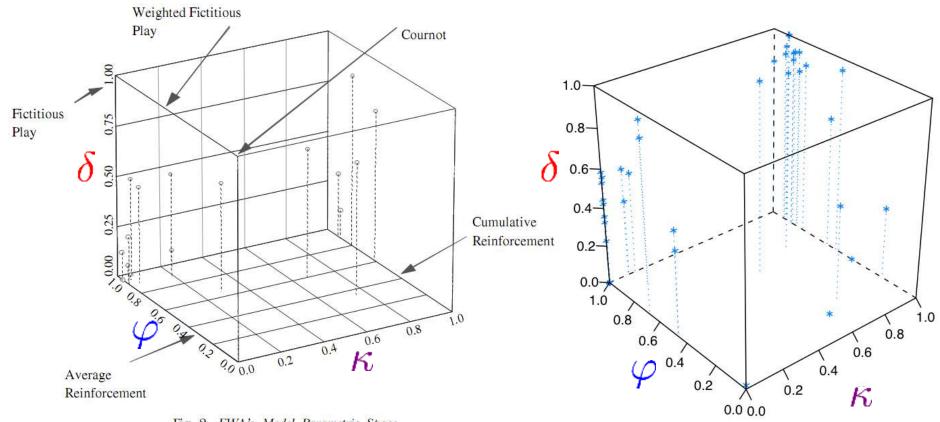
$$A^{B}(t) = [\varphi N(t-1)A^{B}(t-1) + 1]/N(t)$$

- For unchosen action T, add δ :
 - Weight players give to foregone payoffs of unchosen strategies
 - ▶ Law of effect vs. Law of simulated effect

$$A^{T}(t) = \left[\varphi N(t-1)A^{T}(t-1) + \frac{3\underline{\delta}}{2}\right]/N(t)$$

EWA Special Case: Reinforcement

- $A^{B}(t) = [\varphi N(t-1)A^{B}(t-1) + \pi(B,L)]/N(t)$
- $A^T(t) = [\varphi N(t-1)A^T(t-1) + \pi(T,L)\underline{\delta}]/N(t)$ where $N(t) = \varphi(1-\kappa)N(t-1) + 1$
- ▶ Becomes Reinforcement if $\delta = 0, N(0) = 1$
- (Simple) Cumulative Reinforcement: $\kappa = 1$
 - $ightharpoonup N(t) = 1 ext{ for all } t$
- (Weighted) Average Reinforcement: $\kappa = 0$
 - Weights are $\frac{\varphi}{\varphi+1}$ and $\frac{1}{\varphi+1}$

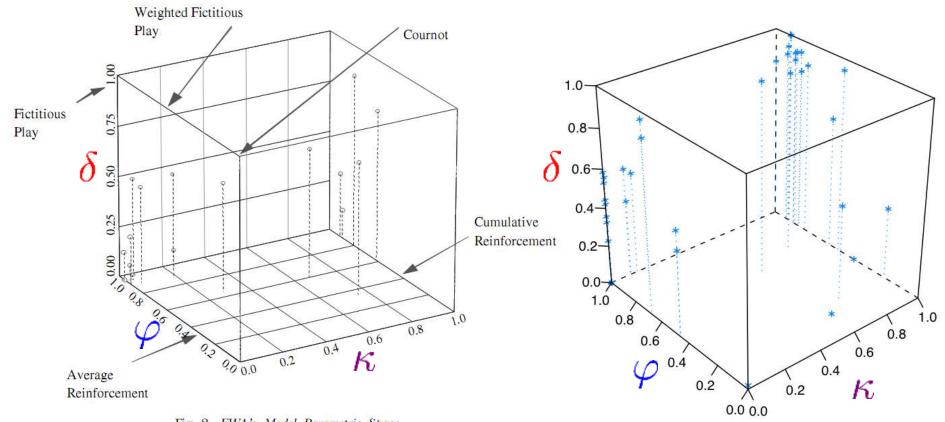

EWA Special Case: Weighted Fictitious Play

- $A^{B}(t) = [\varphi N(t-1)A^{B}(t-1) + \pi(B,L)]/N(t)$
- $A^T(t) = [\varphi N(t-1)A^T(t-1) + \pi(T,L)\underline{\delta}]/N(t)$ where $N(t) = \varphi(1-\kappa)N(t-1) + 1$
- ▶ Becomes Weighted Fictitious Play if $\delta = 1, \kappa = 0$
 - ▶ Good Homework exercise...
 - ▶ Hint: Since $N(t) = 1 + \varphi + \varphi^2 + \cdots + \varphi^{t-1}$
 - Posterior is $P_t(L) = \frac{I(L,h(t)) + (\varphi + \cdots \varphi^{t-1}) \cdot P_{t-1}(L)}{1 + \varphi + \cdots \varphi^{t-1}}$

EWA Special Case: Weighted Fictitious Play

- $A^{B}(t) = [\varphi N(t-1)A^{B}(t-1) + \pi(B,L)]/N(t)$
- $A^T(t) = [\varphi N(t-1)A^T(t-1) + \pi(T,L)\underline{\delta}]/N(t)$ where $N(t) = \varphi(1-\kappa)N(t-1) + 1$
- ▶ Becomes Weighted Fictitious Play if $\delta = 1, \kappa = 0$
 - Fictitious Play: $\varphi = 1$
 - ▶ Cournot Best-Response: $\varphi = 0$

EWA Cube: Camerer, Wang, Ho (EJ 08) vs. Knoepfle, Wang, Camerer (JEEA 09)


- Fig. 2. EWA's Model Parametric Space

 δ : Attraction weight on foregone payoffs
- $\blacktriangleright \varphi$: Decay of previous attractions; κ : Growth rate of attractions

Interpretation of EWA Parameters

- $lackbreak \delta$: Attraction weight on foregone payoffs
 - Diff. between received vs. opportunity gains
- $\triangleright \kappa$: The rate attractions grow
 - ▶ Cumulative vs. Average
- ightharpoonup N(t): The strength of initial attractions
 - ▶ (in units of "experience-equivalence")
- φ : Weight in N(t)
 - Decay of previous attractions

EWA Cube: Camerer, Wang, Ho (EJ 08) vs. Knoepfle, Wang, Camerer (JEEA 09)

- Fig. 2. EWA's Model Parametric Space δ : Attraction weight on foregone payoffs
- $\blacktriangleright \varphi$: Decay of previous attractions; κ : Growth rate of attractions

Prediction Power of EWA

- ▶ EWA generally improves accuracy in about 35 games (except for mixed ones)
 - ▶ See Camerer and Ho (book chapter, 1999), the "Long version" of their Econometrica paper
- ▶ BGT, Ch. 6 provides two examples:
 - Continental Divide
 - p-Beauty Contest

Prediction Power of EWA

- Overfitting: Too many parameters?
 - ▶ Can be tested by LR test: Restricted fit vs. Unrestricted
- ▶ Better Out-of-sample Prediction Power:
 - Estimate parameters and predict "new data"
 - ▶ Not prone to overfitting (because of new data)
- ▶ 1-parameter self-tuned EWA works too:
 - ▶ This EWA-Lite does as good as reinforcement or fictitious play, even on data with new games

Other Learning Rules

- Anticipatory Learning (Sophistication):
 - ▶ Sophisticated players are aware that others are learning BR to Cournot, etc. (level-k)
 - ▶ Soph. EWA: Camerer, Ho, Chong (JET 2002)
- ▶ Imitation: Imitate average or "best" player
- ▶ Learning Direction Theory: Move toward BR
- ▶ Rule Learning: Learn which "rule" to use
 - ▶ Stahl (GEB 2000)

Further Research

- Here is where we stand.
- Are there new direction for research in learning?
 - ▶ How does information acquisition help us study how people learn?
 - Learning direction theory and imitation are still loose ends to be filled
- Holy Grail: How do people "actually" learn?

Further Research

- ▶ How can we use these tools?
- ▶ Econometric Properties of learning rules:
 - ▶ Salmon (Econometrica 2001): Simulate data via certain learning rules and estimate them
 - Identification is bad for mixed strategy equilibrium and games with few strategies
 - ▶ EWA estimation does well on δ ; others okay only for 1000 periods (but not 30 periods)
- Can use this to test designs

Conclusion

- Learning: How people react to past history
- ▶ Reinforcement
- Belief Learning
 - Fictitious play, Cournot, etc.
- ▶ EWA: a Hybrid model
 - ▶ Performs better even out-of-sample
- Design tests: simulate and estimate