Pinocchio's Pupil: Using eyetracking and Pupil Dilation to **Understand Truth** Telling and Deception

Done By: 謝潔儀 (Joycelyn), 黃雋穎 (Jun Ying)

Content:

- 1.Introduction and Objectives
- 2. Definitions
- 3. Hypothesis
- 4. Experiment Design
- 5.Results
- 6.Conclusion

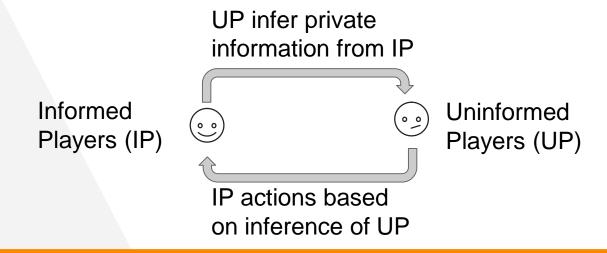
Introduction

"Why do almost all people tell the truth in ordinary everyday life?—Certainly not because a god has forbidden them to lie. The reason is, firstly because it is easier; for lying demands invention, dissimulation, and a good memory."

-Friedrich Nietzsche, Human, All Too Human, II.54, 1878/1996

So why do people lie/exaggerate?

In shares, managers lie to inflate earning prospects


 In universities, grade inflation and well polished recommendation letters help schools to promote their graduates

Doctor patient relationship in healthcare choices

Aims & Objectives

Aim of the Experiment

Explore experiments on sender-receiver games with divergent preferences in which one agent has an incentive to exaggerate the truth to another agent

Aim of the Experiment

- Overcommunication and systematic deception can be explained by level-k model
- To investigate the cause behind the behavior patterns in such games

Definitions

Overcommunication: Messages sent out are more informative of the true state than they should be in equilibrium

Divergent preferences: when the players have different preferences thus having incentives to tweak the truth

Hypothesis:

Senders tend to exaggerate when their preference differ from the receivers so as to maximise their incentives.

Experiment Design

- 2 Players: Sender and Receiver
- True state $S=\{1,2,3,4,5\}$
- Sender sends a costless message M to receiver
- Receiver then choose an action $A=\{1,2,3,4,5\}$

- Payoffs depend on S and A, so message M is "cheap talk"
- Receiver prefers to choose A=S
- Sender wants receiver to choose A=S + b where b is a known bias parameter
- Value of b is varied across rounds, b={0,1,2} with known probabilities

- Payoffs for receiver: $U_R = 110 20|S A|^{1.4}$
- Payoffs for sender: $U_s = 110 20|S + b A|^{1.4}$
- Receiver earns the highest payoff if action matches the true state
- Sender earns the highest payoff if action of receiver is equal to S + b

- When *b*=0, senders prefer receiver to choose *S* and announces *M*=*S*, receivers believe them and chooses *A*=*M*
- When b>0, senders prefer to exaggerate and announce M>S if they thought receivers would believe them

- Sender's eye movements and pupil dilation are measured with an eyetracker
- Video-eyetracking is used to measure what payoffs or game parameters sender subjects are looking at
- Dilation' is used to infer deceptive behaviour because senders find deception stressful or cognitively difficult

- If deceptive behaviour is observed, we want to find out if it translates to the actions sent out
- Also, if guilt plays a role in the overcommunication

Level-k model

- LO senders (with lowest level of sophistication) tells the truth, LO receivers best response to LO senders by following the message
- L1 senders best respond to L0 receivers by inflating the message (stating their preferred states)
- L1 receivers best respond to L1 senders by discounting the message

Measures

- Informativeness of senders' messages by the correlation between the true states S and the messages M
- How trusting the receivers are of the senders by the correlation between messages *M* and actions they take, *A*

The Experiment

- Subjects: 60 Caltech Students
- 6 sessions of 6 subjects randomly paired in the 'hidden bias-stranger' with different receivers in each round
- Other 12 pairs were run in the 'display bias-partner'
- Same game is played 45 times among the pair with random choices of bias b in each round

Results

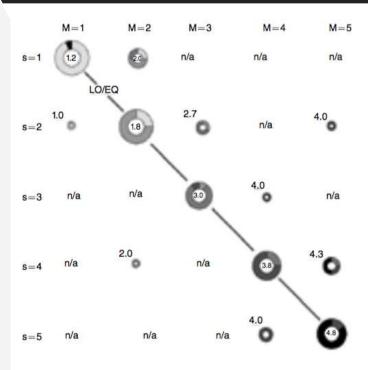


Figure 1. Raw Data Pie Charts (b = 0) (Hidden Bias-Stranger)

- Area of pie chart in each cell is scaled by the number of occurrences for the corresponding state and message
- Rows: senders' behavior w.r.t different states
- Columns: informativeness of each message
- Diagonal lines: predicted messages for various level-k types

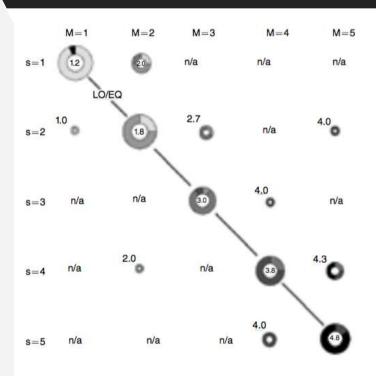


Figure 1. Raw Data Pie Charts (b = 0) (Hidden Bias-Stranger)

- Average receiver action is the number inside the pie
- When b=0, no conflict of interest, large pie charts are concentrated on diagonal line (L0/EQ sender behavior)
- Corresponds to truth-telling equilibrium predicted by equilibrium theory and L0 type in level-k model

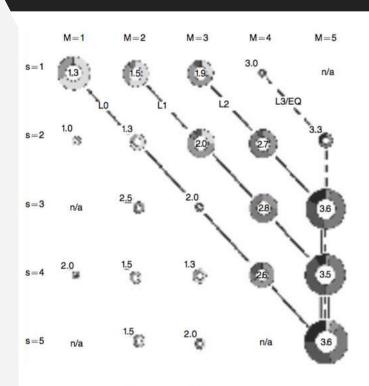


Figure 2. Raw Data Pie Chart (b = 1) (Hidden Bias–Stranger)

- Large tendency for deception
- Lopsided most common messages are the state itself or higher messages
- Consistent with L1 and L2 sender behaviors
- Some information is transmitted

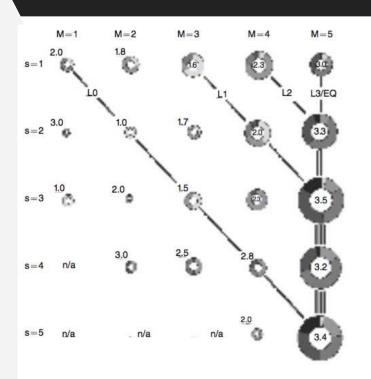


Figure 3. Raw Data Pie Chart (b = 2) (Hidden Bias-Stranger)

- Equilibrium theory predicts a babbling equilibrium
- However, substantial information is transmitted due to non-uniform distribution of state frequencies
- Consistent with level-k model where L1, L2, EQ senders send M=5 for S={3,4,5}

TABLE 2—INFORMATION TRANSMISSION: CORRELATIONS BETWEEN STATES S, MESSAGES M, AND ACTIONS A

Bias	Eyetracked	r(S,M)		r(M,A)		r(S,A)		Predicted $r(S,A)$
0	Yes	0.92	\	0.90	1,,,,,	0.86	1,,,,	HONGEN DAY.
	No	0.94	0.93	0.94	0.92	0.88	0.86	1.00
1	Yes	0.68	0.64	0.73	1071	0.53	}0.49	0.65
	No	0.51	J 0.04	0.61	0.71	0.35	J 0.49	0.03
2	Yes	0.41	\	0.52	1000	0.34	1000	120122741
	No	0.23	0.34	0.63	0.58	0.28	0.32	0.00

- When bias *b* is large, information transmission is higher and payoffs are higher for senders than predicted by equilibrium theory
- Overcommunication exists

i. Attention to structure:

Expect senders to pay attention to important parameters (state and bias) of the sender-receiver game

TABLE 5-AVERAGE SENDER LOOKUP TIMES (IN SECONDS) ACROSS GAME PARAMETERS

	Response time					
Bias b	Periods 1–15	Periods 31-45	State	Sender payoffs	Receiver payoffs	Sender-to- receiver ratio
0	9.78	7.24	0.83	2.93	1.71	1.72
1	11.77	8.76	0.81	3.80	2.66	1.43
2	16.84	8.99	0.91	4.67	3.26	1.43
all	13.47	8.52	0.86	3.99	2.72	1.47

i. Attention to structure:

Results:

- Senders are thinking carefully about the game
- Senders look at their own payoffs longer
- High receiver-lookup group is more deceptive than the low group, inconsistent with guilt hypothesis

ii. Truth Bias:

- Level-k model assumes subjects best respond to perceived beliefs about their opponents' behaviors
- Sender subjects focus too much on the true state payoff row
- Demonstrates curse of knowledge

TABLE 6—AVERAGE LOOKUP TIME PER ROW DEPENDING ON THE STATE

Bias b	True state rows	Other state rows	True-to-other ratio
0	2.76	0.47	5.89
1	3.88	0.64	6.02
2	4.29	0.91	4.70
overall	3.83	0.72	5.33

ii. Truth Bias:

- Subjects look longer at payoffs in rows corresponding to the true state than payoffs in rows corresponding to other states
- Subjects don't think in others' shoes and cannot fully think like a receiver

iii. Individual Level-K Type Lookup Patterns

Sender subjects focus on the payoffs corresponding to the action A = S (L0 reasoning), A = S + b (L1 reasoning),..., up to the corresponding level-k reasoning for each individual subject based on his or her level-k type.

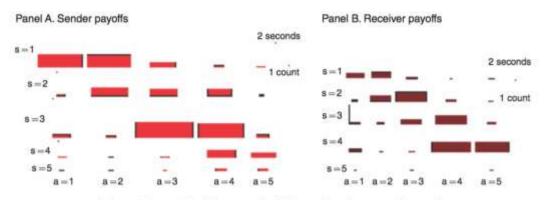


Figure 4: Lookup Icon Graph for b = 1, Hidden Bias-Stranger, Type = L1

iii. Individual Level-K Type Lookup Patterns

- Strong bias for senders to look more at payoffs from the true state
- Similar patterns arise for different bias and types when subjects looking at payoffs corresponding to what level-k model predicts

c. Pupil Dilation

- Results show that deception is reliably correlated with pupil dilation
- Shown by calculating average pupil size before and after the sender's message decision

$$\begin{aligned} \textit{PUPIL}_i &= \alpha \ + \sum_{b=0}^{L} \beta_{1b} \textit{LIE_SIZE} \times \textit{BIAS}_b \ + \sum_{b\neq 2} \beta_{2b} \times \textit{BIAS}_b \ + \sum_{s\neq 3} \beta_{3s} \textit{STATE}_s \\ &+ \sum_{k=1}^{K} (\gamma_{k,1} \textit{ROUND} \times \textit{SUBJ}_k \ + \ \gamma_{k,2} \textit{ROUND}^2 \times \textit{SUBJ}_k) \ + \ \varepsilon \end{aligned}$$

c. Pupil Dilation

	Table 8—Pupil Size Regressions for 400 msec Intervals						
Y	$PUPIL_i$	-1.2~ -0.8 sec	-0.8- -0.4 sec	-0.4~ 0.0 sec	0.0~ 0.4 sec	0.4~ 0.8 sec	
constant	α	107.27 (2.81)	108.03 (2.55)	106.19 (2.57)	109.56 (2.05)	108.67 (2.16)	
LIE_SIZE × BIAS _b interactions	β_{10}	2.83 (1.85)	2.36 (2.23)	3.07 (2.46)	5.35***	5.57**	
interactions	β_{11}	-1.02	-0.46	-0.36	2.16*	2.64**	
	β_{12}	(1.26) 2.06** (0.86)	(1.31) 1.52* (0.79)	(1.28) 1,47** (0.75)	(1.21) 1.83** (0.75)	(1.15) 2.00*** (0.74)	
	N	414	415	414	415	414	
	χ^2	323.86	235.43	194.40	258.49	352.49	
	R^2	0.291	0.299	0.263	0.365	0.438	

- After decision is made (0s -0.8s later), β_{1b} coefficients are significantly higher at about 2% for all biases
- Sending less accurate messages is correlated with pupil dilation

c. Pupil Dilation

 Note: Bias condition itself does not generate pupil dilation (i.e. nearly all coefficients β_{2s} are insignificant and are omitted)

d. Results of the Display Bias-Partner Design

- Display bias-partner condition brings about more overcommunication compared to the hidden biasstranger condition
- The pupil dilation results are stronger than in the hidden bias—stranger design

e. Lie-Detection and Prediction

Asked receivers to predict the true state using only messages and lookup patterns

$$\log[\Pr(STATE \geq j)] = \theta_j + \sum_{b=1,2} (\beta_{1b} MESSAGE + \beta_{2b} ROW_{self} + \beta_{3b} ROW_{other}) BIAS_b + \varepsilon$$

- \triangleright β_{1h} : information about S contained in M
- β_{2b} : effects of the "most viewed row" of one's own payoffs
- \triangleright β_{3b} : effects of the "most viewed row" of opponent's payoffs

e. Lie-Detection and Prediction

X		Hidden bias-stranger		
MESSAGE × BIAS = 1	β_{11}	0.46*	(0.12)	
$MESSAGE \times BIAS = 2$	β_{iz}	0.421	(0.09)	
$ROW_{MO} \times BIAS = 1$	β_{12} β_{21}	1.07*	(0.24)	
$ROW_{HO} \times BIAS = 2$	B ₂₂	1.72†	(0.20)	
$ROW_{other} \times BIAS = 1$	B_{11}	1.27	(0.22)	
$ROW_{other} \times BIAS = 2$	β_{32}	0.449	(0.15)	
total observations N*		357		
N used in estimation		238.3		
N used to predict		118.7		
		Actual data	Holdout sample	
Percent of wrong prediction $(b = 1)$		58.5	28.9	
Percent of errors of size $(1,2,3+)$ (b	= 1)	(61, 28, 11)	(79, 19, 2)	
Average predicted payoff $(b \approx 1)^{11}$		87.5 (28.8)	101.71 (2.1)	
Percent of wrong prediction $(b = 2)$	0.20	77.9	37.9	
Percent of errors of size $(1,2,3+)$ $(b$	= 2)	(60, 30, 10)	(72, 24, 4)	
Average predicted payoff $(b = 2)^n$		80.9 (26.9)	98.01 (2.2)	

- β_{1b} significance indicates that messages are informative about states, smaller message indicates a smaller true state
- Lookup data is significantly correlated with states, improving predictability even when controlling for the message

e. Lie-Detection and Prediction

X		Hidden bias-stranger		
MESSAGE × BIAS = 1	β_{11}	0.46*	(0.12)	
$MESSAGE \times BIAS = 2$	β_{iz}	0.421	(0.09)	
$ROW_{MO} \times BIAS = 1$	β_{12} β_{21}	1.07*	(0.24)	
$ROW_{HO} \times BIAS = 2$	B ₂₂	1.72†	(0.20)	
$ROW_{other} \times BIAS = 1$	B_{11}	1.27	(0.22)	
$ROW_{other} \times BIAS = 2$	β_{32}	0.449	(0.15)	
total observations N*		357		
N used in estimation		238.3		
N used to predict		118.7		
		Actual data	Holdout sample	
Percent of wrong prediction $(b = 1)$		58.5	28.9	
Percent of errors of size $(1,2,3+)$ (b	= 1)	(61, 28, 11)	(79, 19, 2)	
Average predicted payoff $(b \approx 1)^{11}$		87.5 (28.8)	101.71 (2.1)	
Percent of wrong prediction $(b = 2)$	0.20	77.9	37.9	
Percent of errors of size $(1,2,3+)$ $(b$	= 2)	(60, 30, 10)	(72, 24, 4)	
Average predicted payoff $(b = 2)^n$		80.9 (26.9)	98.01 (2.2)	

- Model accuracy is better than the actual performance of the receiver subjects in the experiment
- We can almost erase the cost to receivers for not knowing the true state just by looking at attention along with messages

Conclusion

Main takeaway: experiment shows "overcommunication", where messages are more informative of the state than they should be, in **equilibrium**.

Reiteration of key findings

Senders do not appear to be thinking strategically enough Senders' pupils also dilate when they send deceptive messages (M ≠ S) and dilate more when the deception |M − S| is larger in magnitude.

Reiteration of key findings

Combining sender messages and look up patterns can help to predict the true state, which will increase receiver's payoff

Thank you

Q&A