Journal Presentation

陳清宜

搜尋工具 圖片 影片 地圖 網頁 新聞 更多 💌

約有 562,000 項結果 (搜尋時間: 0.31 秒)

5月底全台恐限電

中時電子報 - 9 小時前

經濟部評估5月底備轉容量率只剩3%左右,限電風險大增。... 台電興 達電廠機組故障,加上先前核電機組失火,裝置容量驟減7%,台電董 事長黃重球 ...

備轉容量率又亮紅燈5月限電風險高 中央通訊社 - 2015年5月6日

黃重球:5月底<u>限電</u>風險將逐漸升高 聯合財經網 - 21 小時前 經長: 民生若<mark>限電</mark>該負責一定會負責 聯合新聞網 - 22 小時前 限電危機台電提前祭出需量競價 yam天空新聞 - 18 小時前

聯合新聞網

三立新聞網

REAL-TIME USAGE

BILL-TO-DATE

ELECTRICITY PRICE

ESTIMATED MONTHLY USAGE

http://eliq.se/en/products/eliq-energy-display/

Finding

- Households in the price-only group reduce their usage by between 0 and 7 percent on average during pricing events, relative to control. In contrast, those exposed to the same price changes but who also have IHDs, exhibit much larger usage reductions of 8 to 22 percent.
- Empirical evidence suggests that experience with IHDs facilitates consumer learning, improving households' decision making when confronted with high prices.
- In the long run, an evaluation of trends in usage over the days of the summer reveals that households in both the price and price-plusinformation groups are forming conservation habits even when events are not occurring.

Knowledge is (Less) Power: Experimental Evidence from Residential Energy Use K. Jessoe and D. Rapson (AER, Avril 2014) However, basic information may often be unclear.

- Whether agents perfectly know and comprehend the price of a good (i.e., price "salience"). In many settings they do not.
- There is uncertainty about non-price attributes

"Electricity customers traditionally exhibit low price elasticity"

But it may be the features of setting that full information is not accessible

- **Infrequent billing** make it difficult to know both electricity usage at any moment in time and the input requirements of each appliance.
- Electricity comprises only a modest share of household budgets, it may be rational for households not to invest the time and effort to resolve this uncertainty.

An alphabet soup of dynamic pricing structures

- RTP, Real Time Pricing, the first-best
- TOU, Time of Use: different prices for different periods (e.g., on-peak vs. off-peak)
- CPP, Critical Peak Pricing: the supplier announces a CPP event for the next day. CPP events are much less frequent than on-peak hours, but prices in a CPP event are much higher than on-peak prices in TOU

Experiment Design Randomized Control Trial (RCT) (1)

WHERE?

• Connecticut (Bridgeport and New Haven)

WHEN?

- During summer 2011 (July and August): 6 Events
- All events occurred during peak hours, but there was variation in the length and exact timing of events

HOW?

• Partnership with local utility (United Illuminating, UI)

Experiment Design Randomized Control Trial (RCT) (2)

- Users are split in three groups
- 1. No action (control group)
- 2. Receive information on price increase (price only group)
- 3. Receive information on price increase and have an IHD of their electricity consumption (price + IHD group)
- Usage date for each group is collected (15-minute intervals) and analyzed

Participants compensation

\$40 participation incentive: \$20 upon completion of a pre survey prior to assignment, and \$20 upon completion of a survey once the pilot ended

Survey: Demographic and housing unit characteristics, appliance ownership, conservation-related actions, tendency to be home during the day, and the **frequency with which households checked their IHDs**.

Off-bill account initially credited with \$100.

Customers keep the balance at the end of the study=

\$100—[(Value of energy consumed during the price event)— (its value at the regulated rate)]

Table 2: Summary Statistics by Control and Treatment Group

Panel A: Initial Group

e

-	Contr	ontrol Price		Price+IHD				
	Mean	Obs	Mean	Obs	Difference	Mean	Obs	Difference
Off-peak usage (kWh/h)	1.159	207	1.279	130	0.121	1.203	100	0.044
	(0.687)		(0.737)		(1.524)	(0.646)		(0.542)
Peak usage (kWh/h)	1.422	207	1.529	130	0.107	1.383	100	-0.038
	(1.107)		(1.034)		(0.887)	(0.954)		(-0.298)
TOU Rate (1=yes)	0.184	207	0.200	130	0.016	0.240	100	0.056
	(0.388)		(0.402)		(0.373)	(0.429)		(1.153)
Home ownership (1=yes)	0.768	203	0.798	129	0.030	0.773	97	0.005
	(0.423)		(0.403)		(0.641)	(0.42)		(0.091)
Annual income (\$1000)	72.00	203	74.00	129	2.000	71.00	97	-0.001
	(29.00)		(29.00)		(0.690)	(31.00)		(-0.181)
Home size (1000 square feet)	1.529	189	1.880	119	0.351 **	1.451	91	-0.078
	(1.11)		(1.83)		(2.100)	(1.14)		(-0.550)
Age of home (years)	52.423	156	57.619	97	5.195	52.239	71	-0.184
	(30.29)		(31.34)	A Part and I do	(1.309)	(26.94)		(-0.044)
Panel B: Final Group	11	ntegri	ty of ra	indo	omizatior	ז 		
	Contr	ol		Price	8	Price+IHD		HD
	Mean	Obs	Mean	Obs	Difference	Mean	Obs	Difference
Off-peak usage (kWh/h)	1.161	203	1.294	124	0.121 *	1.202	72	0.044
	(0.69)		(0.73)		(1.52)	(0.62)		(0.542)
Peak usage (kWh/h)	1.432	203	1.551	124	0.107	1.432	72	-0.038
	(1.11)		(1.03)		(0.89)	(0.96)		(-0.298)
TOU Rate (1=yes)	0.182	203	0.202	124	0.016	0.181	72	0.056
	(0.39)		(0.40)		(0.37)	(0.39)		(1.153)
Home ownership (1=yes)	0.774	199	0.821	123	0.030	0.855	69	0.005
	(0.42)		(0.39)		(0.64)	(0.36)		(0.091)
Annual income (\$1000)	72.00	199	75.00	123	0.002	76.00	69	-0.001
	(29.00)		(28.00)		(0.69)	(28.00)		(-0.181)
Home size (1000 square feet)	1.541	185	1.908	114	0.351 **	1.611	66	-0.078
	(1 1 0)		(1 0 4)		(2 10)	(116)		(0 6 60)
	(1.10)		(1.84)		(2.10)	(1.10)		(-0.550)
Age of home (years)	(1.10) 52.221	154	(1.84) 56.574	94	5.195	53.375	56	-0.184

Notes: Means are reported by treatment group, with standard deviations in parentheses below. "Difference" displays the difference in means between each treatment group and control, with t-stats reported in parentheses below. *, **, *** denote significant at the 0.10, 0.05, and 0.01 level.

Asymmetric Attrition

Use intent-to-treat (ITT) and treatmenton-the-treated (ToT) estimators to account for asymmetries in non-compliance.

TABLE 3—GROUP ASSIGNMENT BALANCE ON OBSERVABLES, INITIAL, Afor asymmetries in

	Ini	tial group	Compliers		
	Price	Price + IHD	Price	Price + IHD	
Mean off peak kWh	0.021	-0.019	0.030	0.060	
	(0.040)	(0.040)	(0.029)	(0.071)	
TOU rate (1=yes)	0.010	0.088	-0.018	-0.263**	
	(0.074)	(0.071)	(0.053)	(0.109)	
F-statistic	0.206	0.775	0.579	2.915	
p-value	0.814	0.462	0.562	0.059	
Observations	337	307	130	100	

Notes: Results denoted "Initial group" are from a linear probability model regressing observables on the treatment group indicator. Results denoted "Compliers" are from a LPM regressing observables on a compliance indicator. *p*-value corresponds to probability that coefficients are jointly equal to zero. Control group used as control in each specification. Standard errors in parentheses.

***Significant at the 1 percent level.

Sample Structure

Intent to Treat group (ITT)

Price Events Description

• Day Ahead (DA) : 3 times

Notification that the price of electricity would increase for a few hours the next day by 0.50 \$/kWh (500 \$/MWh),roughly 250% increase over the standard rate

• Thirty Minute (TM): 3 times

Notification that the price of electricity would increase for a few hours starting in 30 minutes by 1.25 \$/kWh (1 250 \$/MWh)

• Households receive notification of these events by email, phone call and/or text message depending on their stated preference

Response to a TM price event

FIGURE 5. AUGUST 17, 2011: 2HR \$1.25 INCREASE, 30-MIN NOTICE

FIGURE 6. AUGUST 26, 2011: 4HR \$0.50 INCREASE, DAY-AHEAD NOTICE

Econometric analysis

$$q_{it} = \beta_0 + \sum_{g \in \{P, P+I\}} \beta_g D_{it}^g + \gamma_g + \delta_e + \mu_{it}$$

- Households are indexed by i, periods are indexed by t
- q_{it} is the logarithm of consumption (in kWh) by household i in period t
- Dg_{it}=1 if household i is in group g and if a pricing event occurs for household i in period t
- $\Upsilon_g=1$ if household i is in group g, and $\delta_e=1$ if pricing event occurs during period t
- β_P and β_{PI} are consistent estimates of the average percentage change in electricity usage from assignment to treatment during pricing events

Econometric results: Treatment Effects

All	A11	A11	All	Day Ahead (DA)	30min (TM)
(1)	(2)	(3)	(4)	(5)	(6)
	Panel A: IT	T Unbalanced	Panel		
-0.031	-0.054	-0.027	-0.038	-0.071*	0.006
(0.036)	(0.036)	(0.036)	(0.036)	(0.042)	(0.044)
-0.116**	-0.137***	-0.123***	-0.137***	-0.171***	-0.084
(0.048)	(0.048)	(0.047)	(0.046)	(0.051)	(0.057)
0.096*	0.098*	0.051*	0.044**	0.066*	0.130
0.00	0.05	0.54	0.58	0.58	0.58
N	Y	N	Y	Y	Y
N	N	Y	Y	Y	Y
6	6	6	6	3	3
437	437	437	437	437	401
	All (1) -0.031 (0.036) -0.116** (0.048) 0.096* 0.00 N N N 6 437	All All (1) (2) Panel A: IT -0.031 -0.054 (0.036) (0.036) -0.116** -0.137*** (0.048) (0.048) 0.096* 0.098* 0.00 0.05 N Y N Y N N 6 6 437 437	All All <td>All All All<td>AllAllAllAllDay Ahead (DA)(1)(2)(3)(4)(5)Panel A: ITT Unbalanced Panel-0.031-0.054-0.027-0.038-0.071*(0.036)(0.036)(0.036)(0.042)-0.116**-0.137***-0.123***-0.137***-0.171***(0.048)(0.047)(0.046)(0.051)0.096*0.098*0.051*0.044**0.066*0.000.050.540.580.58NYNYYNNYYY6663437437437437437</td></td>	All All <td>AllAllAllAllDay Ahead (DA)(1)(2)(3)(4)(5)Panel A: ITT Unbalanced Panel-0.031-0.054-0.027-0.038-0.071*(0.036)(0.036)(0.036)(0.042)-0.116**-0.137***-0.123***-0.137***-0.171***(0.048)(0.047)(0.046)(0.051)0.096*0.098*0.051*0.044**0.066*0.000.050.540.580.58NYNYYNNYYY6663437437437437437</td>	AllAllAllAllDay Ahead (DA)(1)(2)(3)(4)(5)Panel A: ITT Unbalanced Panel-0.031-0.054-0.027-0.038-0.071*(0.036)(0.036)(0.036)(0.042)-0.116**-0.137***-0.123***-0.137***-0.171***(0.048)(0.047)(0.046)(0.051)0.096*0.098*0.051*0.044**0.066*0.000.050.540.580.58NYNYYNNYYY6663437437437437437

The inclusion of household and time controls does not meaningfully alter the magnitude of treatment effects provides further evidence for the integrity of the randomization.

•

 Provide strong evidence that the cumulative effect of real-time information feedback in this setting is to increase the price elasticity of demand.

Econometric results: ToT

Event Type:	A11	A11	A11	A11	Day Ahead (DA)	30min (TM)
Column:	(1)	(2)	(3)	(4)	(5)	(6)
Price Only	-0.032	-0.056	-0.028	-0.040	-0.074*	0.007
-	-0.037	-0.037	-0.037	-0.037	-0.044	-0.046
Price + IHD	-0.143**	-0.170***	-0.153***	-0.170***	-0.217***	-0.100
	-0.058	-0.058	-0.057	-0.057	-0.064	-0.067
Prob(P = P+I)	0.061*	0.052*	0.030**	0.023**	0.025**	0.115
R-Square	0.00	0.05	0.54	0.58	0.58	0.58
Hour-by-day FFs	N	v	N	v	v	v
HH FEs	N	Ň	Y	Ŷ	Ŷ	Ŷ
Number of Events	6	6	6	6	3	3
Number of HHs	437	437	437	437	437	401

 The treatment effect on treated households (ToT) is the causal effect of the price and price + IHD treatments on compliers.

 The ToT specification uses <u>initial treatment assignment</u> as an instrument for receipt of treatment, and is estimated using two-stage least squares. Empirical evidence suggests that experience with IHDs facilitates consumer learning, improving households' decision making when confronted with high prices.

Hypothesis:

Consumers learn through experience with the IHDs, and that this plays an important role in the reagents differential.

Were the differential response to exist because IHDs increase awareness of price events?

Notification and Awareness of Price Events: Making electricity price changes salient.

- By having the utility send all customers in the price and price + IHD groups notification in the form of a combination of a text message, e-mail and/or phone call in advance of each event.
- Conditional on confirmation of event notification, reject the null that the coefficient estimates are equal with 95 percent confidence overall, and with 90 and 85 percent confidence when estimating DA and TM events separately—> IHDs do not appear to be either informing households of events or enabling unaware households to respond.

Notification and Awareness of Price Events

How to conquer?

By making electricity price changes salient.

Control:

Having the utility send all customers in the price and price + IHD groups notification in the form of a combination of a text message, e-mail and / or phone call in advance of each event.

Hypothesis:

Consumers learn through experience with the IHDs, and that this plays an important role in the reagents differential.

Did IHDs facilitate learning about the electricity usage associated with the portfolio of household production alternatives?

	Percent of HHs	All events	DA events	TM events		
Price + IHD \times 1[0/None]	4	-0.453** (0.196)	-0.690*** (0.181)	-0.161 (0.338)		
Price + IHD \times 1[1–2 times]	10	-0.013 (0.139)	-0.028 (0.137)	0.007 (0.160)		
Price + IHD \times 1[3–5 times]	8	0.02 (0.083)	-0.02 (0.083)	0.06 (0.091)		
Price + IHD \times 1[More than 5 times]	40	-0.248*** (0.077)	-0.279*** (0.085)	-0.204** (0.086)		
Price + IHD \times 1[Missing]	38	-0.023 (0.096)	-0.065 (0.095)	0.037 (0.119)		
<i>p</i> -value (PIHD $\times >5 =$ PIHD $\times 1-2$) <i>p</i> -value (PIHD $\times >5 =$ PIHD $\times 3-5$)		0.123 0.011**	0.102 0.017**	0.225 0.020**		
HH FEs Hour-by-day FEs Number of HHs	fucation	Yes Yes 307	Yes Yes 307	Yes Yes 273		
<i>R</i> ¹ learning about the quantity of electricity consumed by energy consuming						

TABLE 7—FREQUENCY OF IHD INTERACTION

Neters Treatment offect and survey remorted initial weekly frequency of UID interaction

In the long run, an evaluation of trends in usage over the days of the summer reveals that households in both the price and price-plus-information groups are **forming conservation habits** even when events are not occurring.

		Price	Price + IHD
12-1 рм Calendar day trend		-0.0023 (0.0016)	-0.0030** (0.0015)
1-2 рм Calendar day trend	Early hours:	-0.0024 (0.0015)	-0.0027* (0.0014)
2-3 рм Calendar day trend	Change Larger	-0.0025* (0.0014)	-0.0032** (0.0013)
3-4 рм Calendar day trend		-0.0027* (0.0014)	0.0031**(0.0013)
4-5 рм Calendar day trend		-0.0033** (0.0014)	-0.0034^{***} (0.0013)
5-6 рм Calendar day trend		-0.0032** (0.0014)	-0.0033** (0.0013)
6-7 рм Calendar day trend		-0.0038** (0.0015)	-0.0032^{**} (0.0014)
7-8 рм Calendar day trend		-0.0037** (0.0017)	-0.0029** (0.0015)
HH FEs Hour-by-day FEs	Peak hours Pe	eriod: Ye	es es
Number of HHs R^2	Change Lai	rger 0.5	56

TABLE 9—HABIT FORMATION

12-1PM: Daily decrease (gradient) in usage of 0.23 percent for price-only households during this noontime hour

14 % decrease in usage on August relatively to July 1.

Notes: Results from a single regression specification which interacts a calendar day time trend for each peak hour with initial treatment assignment. The sample is restricted to all non-pricing event weekdays in July and August, and includes only households that were present for all treatment events (what we are calling the balanced panel). Standard errors clustered by household in parentheses

hold in parentheses.

*** Significant at the 1 percent level.

**Significant at the 5 percent level.

*Significant at the 10 percent level.

One should hardly have to tell academicians that information is a valuable resource: knowledge is power. And yet it occupies a slum dwelling in the town of economics. Mostly it is ignored... —George Stigler (1961)