Learning: Reinforcement, Fictitious Play and EWA 學習理論: 制約、計牌與EWA

Joseph Tao-yi Wang 5/15/2015

Outline: Learning

- 1. Learning: What you do after you see "results"...
- 2. What we know now: (various learning rules)
 - 1. Reinforcement
 - 2. Belief learning
 - 3. EWA: a hybrid of reinforcement and belief learning
 - 4. Others: Evolutionary, anticipatory learning, imitation, learning direction theory, rule learning, etc.

3. Further research:

- 1. Beyond: New direction for research in learning
- 2. Application: How can we use these tools?

What you do after you see...

- Suppose you are playing "stag hunt"
- (B, L) happened last time
- What would you do now?

- Change strategy?
- Stick to it?

3, 3

0, 1

В

1, 0

1, 1

What you do after you see...

- A robot (pre-programmed) would stick to it
 - Evolutionary approach
- But humans think twice
- How would you switch?
- Reinforcement:
 - Choices "reinforced" by previous payoffs
 - "Very bad" reasoning

Reinforcement Learning

- Update attractions (tendency to play a certain strategy) after given history
- Reinforcement:
 - Choices "reinforced" by previous payoffs
 - Allow spillovers to "neighboring strategies" ε
- Example: (cumulative reinforcement)
- $A^{B}(t) = \phi A^{B}(t-1) + (1 \epsilon) * 1$
- $A^{T}(t) = \phi A^{T}(t-1) + \epsilon * 1$

Reinforcement Learning

- (More General) Cumulative Reinforcement:
- $A^{B}(t) = \varphi A^{B}(t-1) + (1 \varepsilon) * 1 * [1 \rho (t-1)]$
- $A^{T}(t) = \phi A^{T}(t-1) + \epsilon * 1 * [1 \rho (t-1)]$
- Alternatively,
- Weighted Average Reinforcement:
- $A^{B}(t) = \varphi A^{B}(t-1) + (1 \varphi) (1 \varepsilon) * 1$
- $A^{T}(t) = \phi A^{T}(t-1) + (1 \phi) \epsilon * 1$

What "else" could you do...

- Would you "update your beliefs about what others do"?
 - Belief learning models
- Fictitious play
 - Keep track of frequency
 - Ex: rock-paper-scissors
- Cournot best-response
 - What you did last time is what you'll do now

R

Т

3, 3

0, 1

В

1, C

1, 1

Weighted Fictitious Play

- Other weights? Weighted fictitious play
 - Fictitious play: weigh all history equally ($\rho=1$)
 - Cournot: focus only on the last period (ρ =0)
- Prior:

$$-P_{t-1}(L) = 3/5, P_{t-1}(R) = 2/5$$

Posterior:

$$-P_{t-1}(L) = (3 \rho + 1) / (5 \rho + 1)$$

$$-P_{t-1}(R) = (2 \rho + 0) / (5 \rho + 1)$$

$$-\rho = decay factor$$

Weighted Fictitious Play

Posterior:

$$-P_{t-1}(L) = (3 \rho + 1) / (5 \rho + 1)$$
$$-P_{t-1}(R) = (2 \rho + 0) / (5 \rho + 1)$$

- Use this belief to compute payoffs:
- $A^{T}(t) = [3(3\rho + 1) + 0(2\rho + 0)] / (5\rho + 1)$
- $A^{B}(t) = [1(3\rho + 1) + 1(2\rho + 0)] / (5\rho + 1)$
- Note: Actually payoff received play no role

Could you being doing both?

- Reinforcement does not update beliefs
 - But people DO update!
- Fictitious play doesn't react to actual payoffs
 - But people DO respond
- EWA: a hybrid of two
 - Camerer and Ho(Econometrica, 1999)

L

R

Т

3, 3

0. 1

В

1, C

1, 1

Experience-Weighted Attraction

- Add δ : the weight players give to forgone payoffs from unchosen strategies
 - Law of effect vs. Law of simulated effect
- $A^{B}(t) = [\phi N(t-1) A^{B}(t-1) + 1] / N(t)$
- $A^{T}(t) = \left[\phi N(t-1) \ A^{T}(t-1) + 3\delta \right] / N(t)$ where $N(t) = \phi(1 \kappa) N(t-1) + 1$
- N(t): Experience weight (weakly increasing)

EWA Special Case: Reinforcement

- $A^{B}(t) = [\phi N(t-1) A^{B}(t-1) + \pi(B,L)] / N(t)$
- A^T(t) = [ϕ N(t-1) A^T(t-1) + π (T,L) δ] / N(t) where N(t) = ϕ (1 κ) N(t-1) + 1
- $\delta = 0$, N(0) = 1: Reinforcement!
- k = 1: (Simple) cumulative reinforcement
 N(t) = 1 for all t
- $\kappa = 0$: (Weighted) average reinforcement
 - Weights are φ / (φ + 1) and 1/(φ + 1)

EWA S.C.: Weighted Fictitious Play

- $A^{B}(t) = [\phi N(t-1) A^{B}(t-1) + \pi(B,L)] / N(t)$
- A^T(t) = [ϕ N(t-1) A^T(t-1) + π (T,L) δ] / N(t) where N(t) = ϕ (1 κ) N(t-1) + 1
- $\delta = 1$, $\kappa = 0$: Weighted Fictitious Play!
 - Good Homework exercise...
 - Hint: $N(t)=1 + \varphi + ... + \varphi^{t-1}$; Posterior is

$$P_t(L) = \frac{I(L, h(t)) + (\varphi + \cdots \varphi^{t-1}) \cdot P_{t-1}(L)}{1 + \varphi + \cdots \varphi^{t-1}}$$

EWA S.C.: Weighted Fictitious Play

- $A^{B}(t) = [\phi N(t-1) A^{B}(t-1) + \pi(B,L)] / N(t)$
- $A^T(t) = \left[\begin{array}{ccc} \phi \ N(t-1) \ A^T(t-1) + \pi(T,L) \ \delta \end{array} \right] / \ N(t)$ where $N(t) = \phi(1-\kappa) \ N(t-1) + 1$
- $\delta = 1$, $\kappa = 0$: Weighted Fictitious Play!
 - $-\phi = 1$: Fictitious Play
 - $-\phi = 0$: Cournot best-response

EWA Cube: Camerer, Wang, Ho (EJ 2008) vs. Wang, Knoepfle, Camerer (JEEA 2009)

Fig. 2. EWA's Model Parametric Space

δ: attraction weight on forgone payoffs φ: decay of previous attractions κ: growth rate of attractions

Interpretation of EWA Parameters

δ: Decay of previous attractions

k: The rate attractions grow

- N(t): The strength of initial attractions (in units of "experience-equivalence")
 - $-\varphi$: Weight in N(t)

EWA Cube: Camerer, Wang, Ho (EJ 2008) vs. Wang, Knoepfle, Camerer (JEEA 2009)

Prediction Power of EWA

- EWA generally improves accuracy in about 35 games (except for mixed ones)
 - See Camerer and Ho (book chapter, 1999)
 - "Long version" of the Econometrica paper?
- BGT, Ch. 6 provides two examples:
 - Continental Divide
 - p-Beauty Contest

Prediction Power of EWA

- Overfitting: Too many parameters?
- Can be tested:
 - LR test: Restricted fit vs. Unrestricted
- Better Out-of-sample Prediction Power:
 - Estimate parameters and predict "new data"
 - Not prone to overfitting (because of new data)
- 1-parameter "self-tuned EWA" works too:
 - EWA "Lite" does as good as reinforcement or fictitious play, even on data with new games

Other Learning Rules

- Other rules include:
- Anticipatory learning (Sophistication):
 - Sophisticated players are aware that others are learning – BR to Cournot, etc. (level-k)
 - Soph. EWA: Camerer, Ho, Chong (JET 2002)
- Imitation: Imitate average or "best" player
- Learning direction theory: Move toward BR
- Rule learning: Learn which "rule" to use
 - Stahl (GEB 2000)

Further research

- Here is where we stand.
- Are there new direction for research in learning?
 - How does "information acquisition" help us study how people learn?
 - Learning direction theory and imitation are still "loose ends" to be filled

Holy Grail: How do people "actually" learn?

Further research

- How can we use these tools?
- Econometric Properties of learning rules:
 - Salmon (Econometrica 2001): Simulate data via certain learning rules and estimate them
 - Identification is bad for mixed strategy equilibrium and games with few strategies
 - EWA estimation does well on δ, others are okay if 1000 periods (but not 30 periods)
- Can use this to "test designs"

Conclusion

- Learning: How people react to past history
- Reinforcement
- Belief Learning
 - Fictitious play, Cournot, etc.
- EWA: a Hybrid model
 - Performs better even "out-of-sample"
- Design tests: simulate and estimate