Dominance-Solvable Games 優勢可解賽局實驗

Joseph Tao-yi Wang (王道一) Lecture 7, EE-BGT

Dominance

Dominance

Strategy A gives you better payoffs than
 Strategy B regardless of opponent strategy

Dominance Solvable

 A game that can be solved by iteratively deleting dominated strategy

<u>Dominance</u>

- Do people obey dominance?
 - Looking both sides to cross a 1-way street
 - "If you can see this, I can't see you."
 - p-Beauty Contest behavior (guess above 67)
- Will you bet on others obeying dominance?
 Workers respond to incentives rationally
 - Companies do not use optimal contracts
- SOPH: Knowing other's steps of reasoning

Belief of Iterated Dominance

- 1. Obey Dominance,
- 2. Believe that others obey dominance,
- 3. Believe that others believe you will obey dominance,
- 4. Believe that others believe that you believe they obey dominance,
- Believe that others believe that you believe that they believe you obey dominance, etc.

Outline

- A Simple Test: Beard and Beil (MS 1994)
- Centipede:
 - McKelvey and Palfrey (Econometrica 1992)
- Mechanism Design:
 Sefton and Yavas (GEB 1996)
- Dirty Face:
 Weber (EE 2001)

A Simple Test: Beard and Beil (MS 1994)

A Simple	Test:	Beard a	and B	eil (MS	19	94)
Traatmant	Pa	yoffs fron	า	Frequ	uency		Thres-
reatment	(L, I)	(R, I)	(R, r)	L	r R	IN	P(r R)
1 (baseline)	(9.75,3)	(3, 4.75)	(10, 5)	66%	83%	35	97%
2 (less risk)	(<u>9</u> 3)	(3, 4.75)	(10, 5)	65%	100%	31	85%
8(even less risk)	(<u>7</u> , 3)	(3, 4.75)	(10, 5)	20%	100%	25	57%
4(more assurance)	(9.75,3)	(3, <u>3</u>)	(10, 5)	47%	100%	32	97%
(more resentment)	(9.75, <u>6)</u>	(3, 4.75)	(10, 5)	86%	100%	21	97%
6 (less risk, more reciprocity)	(9.75, 5)	(<u>5, 9.75</u>)	(10, 10)	31%	100%	26	95%
7 (1/6 payoff)	(58.5,18)	(18,28.5)	(60,30)	67%	100%	30	97%
	Joseph T	ao-yi Wang D	ominance-S	olvable G	ame		

A Simple Test: Beard and Beil (MS 1994)

- Player 2 mostly DO obey dominance
- Player 1 is inclined to believe this
 - Though they can be convinced if incentives are strong for the other side to comply
- Follow-up studies show similar results:
 - Goeree and Holt (PNAS 1999)
 - Schotter, Weigelt and Wilson (GEB 1994)

Follow-up 1: Goeree & Holt (PNAS 1999)

c		Thres-		Frequency				
Condition	N	N	hold P(r∣R)	(L)	(R, I)	(R, r)	(L)	(r R)
Baseline 1	25	33%	(70, 60)	(60, 10)	(90, 50)	12%	100%	
Lower Assurance	25	33%	(70, 60)	(60, <u>48</u>)	(90, 50)	32%	53%	
Baseline 2	15	85%	(80, 50)	(20, 10)	(90, 70)	13%	100%	
Low Assurance	25	85%	(80, 50)	(20, <u>68</u>)	(90, 70)	52%	75%	
Very Low Assurance	25	85%	(400,250)	(100,348)	(450,350)	80%	80%	

Follow-up 2: Schotter-Weigelt-Wilson (GEB 94)									
	Normal Form	Play	er 2	Game 1M					
	Player 1		r	Frequency					
	L	<u>4, 4</u>	4, 4	(57%)					
	R	0,1	<u>6</u> , <u>3</u>	(43%)					
	Frequency	(20%)	(80%)						
	Sequential Form			Game 1S					
	L	4, 4		(8%)					
		I	r						
	R	0, 1	6, 3	(92%)					
	Frequency	(2%)	(98%)						
	losenh -	Tao-vi Wang Do	ominance-Solva	hle Game					

Normal F	orm		Pla	Player 2			Game 3M
Player	1	Т		Μ	В		Frequency
Т		<u>4, 4</u>		4, <u>4</u>	<u>4, 4</u>		(82%)
М		0,1		<u>6, 3</u>	0, 0		(16%)
В		0, 1		0, 0	3, <u>6</u>		(2%)
Frequen	су	(70%)	(2	(26%) (4%)			
Sequer	ntial F	Form	rm				Game 3S
Т	4, 4	Т					(70%)
		0,1					
				Μ	В		
			Μ	6, 3	0, 0		(100%)
			В	0, 0	3, 6		(0%)
Frequency	/	(13%)		(31%) (69%)	

 $\Big)$

Follow-up 2: Schotter-Weigelt-Wilson (GEB 94)

- Schotter et al. (1994)'s conclusion:
- Limited evidence of iteration of dominance (beyond 1-step), or SPE, forward induction – Can more experience fix this?
- No for forward induction in 8 periods...
 Brandts and Holt (1995)
- But, Yes for 3-step iteration in 160 periods
 Rapoport and Amaldoss (1997): Patent Race

Centipede Game: 4-Move SPNE

• McKelvey and Palfrey (Econometrica 1992)

FIGURE 1.—The four move centipede game.

Centipede Game: 6-Move SPNE

Centipede Game: Outcome

TABLE IIA

PROPORTION OF OBSERVATIONS AT EACH TERMINAL NODE

		Session	N	f_1	f_2	f_3	f_4	f_5	f_6	<i>f</i> ₇
Four Move	1 2 3	(PCC) (PCC) (CIT)	100 81 100	.06 .10 .06	.26 .38 .43	.44 .40 .28	.20 .11 .14	.04 .01 .09		
High Payoff	Total 4	1–3 (High-CIT)	281 100	.071 .150	.356 .370	.370 .320	.153	.049 .050		
Six Move	5 6 7	(CIT) (PCC) (PCC)	100 81 100	.02 .00 .00	.09 .02 .07	.39 .04 .14	.28 .46 .43	.20 .35 .23	.01 .11 .12	.01 .02 .01
	Total	5–7	281	.007	.064	.199	. 3 84	.253	.078	.014

Centipede Game: Pr(Take)

Implied Take Probabilities for the Centipede Game

	Session	<i>p</i> ₁	p ₂	<i>p</i> ₃	<i>p</i> ₄	p 5	<i>p</i> ₆
	1 (PCC)	.06	.28	.65	.83		
Four Move	2 (PCC)	(100) .10 (81)	(94) .42 (73)	(68) .76 (42)	(24) .90 (10)		
111010	3 (CIT)	.06 (100)	. <u>46</u> (94)	.55 (51)	. <u>61</u> (23)		
	Total 1–3	.07 (281)	.38 (261)	.65 (161)	.75 (57)		
High Payoff	4 (CIT)	.15 (100)	.44 (85)	.67 (48)	.69 (16)		
	5 (CIT)	.02 (100)	.09 (98)	.44	.56	.91	.50
Six Move	6 (PCC)	.00 (81)	.02 (81)	.04 (79)	.49 (76)	.72	.82
	7 (PCC)	.00 (100)	.07 (100)	.15 (93)	.54 (79)	.64 (36)	.92 (13)
	Total 5–7	.01 (281)	.06 (279)	.21 (261)	.53 (205)	.73 (97)	.85 (26)

Centipede Game: Learning Effect (1-5/6-10)

TABLE IIIB

Implied Take Probabilities

COMPARISON OF EARLY VERSUS LATE PLAYS IN THE LOW PAYOFF CENTIPEDE GAMES

Treatment	Game	<i>p</i> ₁	p ₂	<i>p</i> ₃	<i>p</i> ₄	p ₅	p ₆
Four Move	1-5 6-10	.06 (145) .08 (136)	.32 (136) .49 (125)	.57 (92) .75 (69)	.75 (40) .82 (17)	<u></u>	
Four Move	1-5 6-10	.00 (145) .01 (136)	.06 (145) .07 (134)	.18 (137) .25 (124)	.43 (112) .65 (93)	.75 (64) .70 (33)	.81 (16) .90 (10)

Centipede Game: Mimic Model

- What theory can explain this?
- Altruistic Types (7%): Prefer to Pass
- Selfish Types:
 - Mimic altruistic types up to a point (to gain)
- Unraveling: error rate shrinks over time

Centipede Game: Mimic Model

- Selfish guys sometimes pass (mimic altruist)
- Imitating an altruist might lure an opponent into passing at the next move
 - Raising one's final payoff in the game
- Equilibrium imitation rate depends directly on beliefs about the likelihood (1-q) of a randomly selected player being an altruist
 - The more likely players believe there are altruists, the more imitation there is

Mimic: Predictions for Normal Types

- 1. On the last move, Player 2 TAKE for any q
- 2. If 1- q >1/7, both Player 1 and 2 PASS
 Except on the last move Player 2 always TAKE
- 3. If $0 < 1 q < 1/7 \rightarrow$ Mixed Strategy Equilibrium
- 4. If 1- q = 0 both Player 1 and Player 2 TAKE

Joseph Tao-yi Wang Dominance-Solvable Game

Centipede: Mimic Model Add Noisy Play

- We model noisy play in the following way.
- In game t, at node s, if p* is the equilibrium probability of TAKE
- Assume player actually chooses TAKE with probability $(1-\varepsilon_t)p^*$, and makes a random move with probability ε_t

•
$$\varepsilon_t = \varepsilon e^{-\delta(t-1)}$$

• Explains further deviation from mimic model

Centipede Game: Follow-ups

- Fey, McKelvey and Palfrey (IJGT 1996)
 - Use constant-sum to kill social preferences
 - Take 50% at 1st, 80% at 2nd
- Nagel and Tang (JMathPsych 1998)
 Don't know other's choice if you took first
 - Take about half way
- Rapoport et al. (GEB 2003)
 - 3-person & high stakes: Many take immediately
 - CH can explain this (but not QRE) see theory

- Pure coordination game with \$1.20 & \$0.60
- How can you implement a Pareto-inferior equilibrium in a pure coordination games?
- Abreu & Matsushima (Econometrica 1992)
 - Slice the game into T periods
 - -F: Fine paid by first subject to deviate
 - -Will not deviate if F >1.20/ T
 - Can set T = 1, F = \$1.20; more credible if T large

- Glazer and Rosenthal (Economtrica 1992)
 Comment: AM mechanism requires more steps
 - of iterated deletion of dominated strategies
- Abreu & Matsushima (Econometrica 1992)
 - Respond: "[Our] gut instinct is that our mechanism will not fare poorly in terms of the essential feature of its construction, that is, the significant multiplicative effect of 'fines.'"
- This invites an experiment!

- Sefton and Yavas (GEB 1996)
- *F* =\$0.225
- *T*=4, 8, or 12

- Theory: Play inferior NE at T = 8, 12, not T = 4

- Results: Opposite, and diverge...
- Why? Choose only 1 switch-point in middle - Goal: switch soon, but 1 period after opponent

- Glazer and Perry (GEB 1996)
 - Implemental can work in sequential game via backward induction
- Katok, Sefton and Yavas (JET 2002)
 Does not work either
- Can any approximately rational explanation get this result?

– Maybe "Limited steps of IDDS + Learning"?

- Three ladies, A, B, C, in a railway carriage all have dirty faces and are all laughing.
- It sudden flashes on A:
- Why doesn't B realize C is laughing at her? Heavens! / must be laughable.

– Littlewood (1953), A Mathematician's Miscellany

 Requires A to think that B is rational enough to draw inference from C

Dirty Face Game: Weber (Exp. Econ. 2001)

- Independent types X (prob=.8) or O (prob=.2)
 X is like "dirty face"
- Commonly told "At least one player is type X." $-P(XX) = 0.64 \rightarrow 2/3, P(XO) = 0.32 \rightarrow 1/3$
- Observe other's type
- Choose Up or Down (figure out one is type X)
- If nobody chooses Down, reveal other's choice and play again

- Case XO: Players play (Up, Down)
- Type X player thinks...
 I know that "at least one person is type X"
 I see the other person is type O
- So, I must be type $X \rightarrow Chooses Down$
- Type O player thinks...
 - $-\,I$ know that "at least one person is type X"
 - -I see the other person is type X
- No inference \rightarrow Chooses Up

- Case XX First round:
- No inference (since at least one is type X, but the other guy is type X) → Both choose Up
- Case XX Second round:
- Seeing UU in first
 - the other is not sure about his type
 - He must see me being type X
- I must be Type X \rightarrow Both choose Down

		Trial 1		Trial 2		
		XO	XX	XO	XX	
Daurad	UU	0	7*	1	7*	
Round 1	DU	<u>3*</u>	3	4*	1	
	DD	0	0	0	0	
Round 2	UU	-	1	_	2	
	DU	-	5	-	2	
(after UU)	DD	-	1*	-	3*	
	Other	-	_		_	

- Results: 87% rational in XO, but only 53% in 2nd round of XX
- Significance:
- Choices reveal limited reasoning, not pure cooperativeness
 - More iteration is better here...
- Upper bound of iterative reasoning
 Even Caltech students cannot do 2 steps!

Conclusion

- Do you obey dominance?
- Would you count on others obeying dominance?
- Limit of Strategic Thinking: 2-3 steps
- Compare with Theories of Initial Responses

 Level-k: Stahl-Wilson95, CGCB01, CGC06
 Cognitive Hierarchy: CHC04

感謝The Econometric Society 和 Richard D. McKelvey 和 Thomas R. Palfrey這兩位教授讓我們使用下面這篇論文中的圖片 Richard D. McKelvey and Thomas R. Palfrey "An Experimental Study of the Centipede Game," Econometrica, Vol. 60, No. 4 (Jul., 1992), pp. 803-836 感謝Games and Economic Behavior與 Martin Sefton和Abdullah Yavas 這兩位教授讓我們使用下面這篇論文中的圖片 Martin Sefton and Abdullah Yavas "Abreu-Matsushima Mechanisms: Experimental Evidence," Games and Economic Behavior, Volume 16, Issue 2, October 1996, Pages 280–302