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Abstract 

 

We study how people learn the correct action in a probabilistic 

situation.  In particular, we create a modified version of the Monty 

Hall problem, and conduct laboratory experiments to show how a 

100-door variant of the problem helps people learn to play optimally 

(always switch). Experimental results show that after playing the 

100-door variant, subjects obtain an average switching rate above 80% 

in the 3-door problem, higher than most of the previous work without 

subject communication and/or competition. Moreover, results from 

estimating structural learning models using subject-level data show 

that the individual learning process is more likely to be an epiphany 

rather than a gradual one. 
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Epiphany Learning for Bayesian Updating: 

Overcoming the Generalized Monty Hall Problem 

 

Introduction 

In 1991, British Petroleum (BP) announced a “no dry holes” policy regarding 

oil exploration, counting every drill that did not produce oil as a failure.  Unlike 

traditional expected-value calculations, this new policy prevented BP’s explorers from 

using probabilistic predictions as a cover of failure, such as, “if we drill ten of these 

1-in-10 wells, we’ll hit at least one of them and we’ll all make a lot of money.”1  

This policy also forced them to carefully evaluate all available information before 

going ahead, instead of learning from holes that did not hit.  In consequence, 

explorers started to systematically aggregate various aspects that support an oil field, 

and only drilled locations where all geological tests are positive.  By 2000, BP’s hit 

rate increased to an industry-leading 2 in 3, which is three times to the success rate of 

1989 (1 in 5).2   

This is an example of people learning the correct action (to drill or not) in a 

probabilistic situation.  In particular, investigations prior to the policy change 

showed that BP explorers were very accurate when they estimated a probability of 

hitting between 20 and 70 percent, but an “estimated probability of 10 percent” was 

more like 1 percent.3  Hence, the company policy of no dry holes forced BP 

explorers to stop fudging with the low probabilities, and concentrate on accurately 

estimating the high probabilities that would eventually lead to an action.  Though we 

                                                      
1 Heath and Heath (2010), p.89. 
2 See p.87-93 of Heath and Heath (2010) for the full story of BP.  For example, the authors also 
discuss another reason why the BP campaign was successful: the new policy forced management to 
stop drilling holes that they deem as “strategic” (usually to please a government or business partner 
relationship they want to maintain) against the evaluation of frontline technical teams.  
3 Heath and Heath (2010), p.88-89. 
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cannot verify whether BP explorers actually learned to estimate various probabilities 

more accurately (since they no longer drilled holes that they perceived as low 

probability), BP’s success in terms of drilling hit rate (2 out of 3), as well as the 

resulting decrease in exploration cost, is an important achievement at where it counts, 

namely the “economic value” (Camerer, Ho and Chong, 2004) of correct probability 

estimation. 

Interestingly, such success is not a result of the conventional adaptive learning 

models usually discussed in economics, such as belief-based fictitious play (Boylan 

and El-Gamal, 1993), reinforcement learning (Erev and Roth, 1998), or hybrid models 

like experience-weighted attraction (EWA) learning (Camerer and Ho, 1999).  

Though these learning models have been successful in describing experimental 

choices in controlled environments that are encountered repeatedly (See Camerer, 

2003, Chapter 6 for a review), they are usually too simplified to capture actually 

learning behavior in more realistic situations.4  Instead, BP’s success is an example 

of firms implementing changes by fine-tuning the situation at hand to create a 

“simpler” environment for its employees to learn and adopt the better practice.  In 

fact, after adopting the no dry holes policy, BP employees could no longer blame their 

failures on bad luck, and had to take full responsibility for their wrong decisions.  

This policy made the environment “simpler” for people to learn to make better 

decisions.  In this regard, they are more close to classroom experiments where 

instructors use simplified situations to teach students about more complicated settings 

(See for example, Ball, Eckel and Rojas, 2006; Dickie, 2006; Durham, Mckinnon and 

Schulman, 2007).   

                                                      
4 For example, Erev, Roth, Slonim and Barron (2007)  found that learning models based on small 
sampling updates (the Inertia, Sampling and Weighting model, I-SAW) outperform conventional 
models in randomized environments.  Using eyetracking data, Knoepfle, Wang and Camerer (2009)  
foundthat the lookup patterns of experimental subjects reject conventional adaptive models in favor of 
more complicated models such as “anticipatory learning” (Selten, 1991). 
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In additional to classroom experiments, several recent studies in experimental 

economics have also dealt with similar issues.  For example, Bednar, Chen, Liu and 

Page (2009) found that when playing two different repeated games simultaneously, 

self-interest behavior in the stage-game prisoner’s dilemma “spilled over” to the other 

game played, while the presence of a “hard” game (where the Pareto dominant 

dynamic equilibrium is alternating between two outcomes) requires a larger cognitive 

load and induces the use of “simpler” strategies such as stage-game dominant 

strategies in the other game.  Dufwenberg, Sundaram and Butler (2010) found that 

subjects learned to play the “game of 21” (a perfect information game similar to Nim 

that requires forward looking ability) if they played the simplified “game of 6” first.   

In this paper, the BP success is replicated in the laboratory: We identify a 

particular environment where it is difficult to learn the optimal action under a 

probabilistic situation, and design a simplified environment where subjects can learn 

to make the correct decision, which will be carried back to the original environment.  

In particular, the difficult environment consists of a modified version of the Monty 

Hall problem, a situation commonly used to study biases in human decision making 

(Friedman, 1998; Kluger and Wyatt, 2004; Kluger and Friedman, 2010). Indeed, 

experimental subjects fail to learn the optimal action even after 30 rounds of repeated 

play.  Then, we design a simplified version of the game (100-door instead of 3-door), 

and demonstrate how most subjects can learn to play the optimal action (always 

switch) within 15 rounds after playing first 15 rounds of the simplified game. 

The Monty Hall problem is one of the strongest choice anomalies studied 

during the past decade.  Originated from a famous game show, the problem involves 

the decision of a contestant choosing between three doors, in which one of them 

contains a big prize.  After selecting one door, the game show host (Monty) opens 

one of the remaining two doors revealing that it is empty.  Then, the contestant has to 
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decide whether to switch to the other opaque door, or keep their initial choice.  

Assuming the host always randomly opens one empty door (among all empty doors 

not chosen), Bayes’ rule suggests the contestant should always switch so the 

probability of winning the prize would be 2/3 compared to 1/3 (if one does not 

switch).  However, most people simply cannot learn that switching is the best 

strategy, even after experiencing the same situation thirty or forty times (Friedman, 

1998). 

Researchers have used the Monty Hall problem as a tool to study judgment 

errors in finance (Kluger and Wyatt, 2004) and attempted to use various treatments to 

teach people how to respond optimally to this problem, i.e. to always switch. These 

treatments include group competition and communication (Slembeck and Tyran, 

2004), providing past history (Friedman, 1998), introducing financial market (Kluger 

and Friedman, 2010), and so on.  One striking result is that it is very difficult for 

subjects to learn to switch.  To achieve a switching rate of 70% or higher, one would 

have to introduce sophisticated institutions, such as group competition or financial 

markets.  This leaves one to wonder whether there exists a “simple” way to teach 

subjects to achieve a switching rate of 70% or higher. 

In this paper, we take on the challenge to design a simple treatment to induce 

subjects to learn that switching is always optimal (when faced with two doors).  

Specifically, subjects play 15 rounds of a 100-door variant of the Monty Hall problem, 

and then play the original 3-door version for another 15 rounds.  The 100-door 

variant consists of 100 doors.  After choosing one door, the host opens 98 doors 

according to the same rules of the standard Monty Hall problem, randomizing with 

equal probability when he has a choice, and allows the subject to switch.  The 

winning probability for switching now soars to 99/100, while not switching wins only 

one out of a hundred times.  As Marilyn vos Savant initially discussed in her news 
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paper column Ask Marylin, “Suppose there are a million doors, and you pick door #1. 

Then the host, who knows what’s behind the doors and will always avoid the one with 

the prize, opens them all except door #777,777.  You'd switch to that door pretty fast, 

wouldn't you?”  (Savant, 1997) 

This design is adopted for several reasons.  First of all, in the 100-door variant, 

the probability of winning if one switches is 99%, matching the BP story where the 

prior probabilities of the new environment are close to one after they adopted the “no 

dry holes” policy.  Secondly, Page (1998) showed that subjects do switch in the 

100-door variant, but this knowledge does not carry over to the 3-door version when 

both games were played simultaneously, but only once.  Hence, it is plausible that 

knowledge gained in the 100-door variant could spill over to the 3-door version after 

sufficient learning.   

A third design issue we had to face is that there are some rules of thumb other 

than Bayesian updating that would also lead to switching in the Monty Hall Problem.  

For example, the heuristic of “Irrelevant Therefore Invariant (ITI)”, documented by 

Shimojo (1989), states that since the host’s action was irrelevant to the contestant’s 

initial choice, the probability of winning with the initial choice is therefore unchanged 

by the host’s action.  Thus, the (posterior) chances of winning if one switches is one 

minus the (prior) winning probability of the initial choice.  Since both ITI and 

Bayesian updating lead to the same choice of switching, we cannot distinguish the 

two reasoning in the standard game.   

Therefore, in our experiments, subjects play a variant of the Monty Hall problem 

so that ITI and Bayesian updating would predict different behavior: One of the three 

doors is transparent, showing that it is empty, and choosing this door would end the 

game immediately.  All other aspects of the game are the same.  By introducing the 
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transparent door, we shift the prior probability from (1/3, 1/3, 1/3) to (1/2, 1/2, 0),5 

making subjects who follow the ITI heuristic indifferent between switching and not.  

In contrast, if one carefully performs Bayesian updating, one would realize that there 

are two separate situations after the host opens the door: If the host opens the other 

non-transparent door, it is obvious one should not switch (since one loses for sure 

switching to a transparent door); if the host opens the transparent door, switching is 

the optimal strategy since the winning probability of switching is still 2/3 and that of 

not switching is 1/3 (same as in the standard game).  Observing behavior in this new 

Monty Hall problem, we are able to separate those who adopt the ITI heuristic from 

those who truly follow Bayesian updating.  Finally, this variant also makes the 

experiment closer to the BP example---subjects initially see only two possible choices, 

drill or not (take the outside option) each having the same chance of success, but after 

investigation (Monty’s move), the posterior probability shifts to 2/3. As BP moves 

from the status quo to the “no dry holes” policy (3-door to 100-door), the posterior 

probability becomes 99/100. 

Comparing the results of subject who underwent the 100-door treatment with 

those who played the same 3-door treatment, we address the following questions: 

Does the 100-door treatment “teach” subjects to always switch in the 3-door one?  

For those who learn the optimal strategy during the experiment, how did they learn? 

 

Experimental Design 

Participants and Procedure 

Participants in the experiment were National Taiwan University (NTU) students 

recruited through the Taiwan Social Science Experimental Laboratory (TASSEL) 

website or from various intermediate-level economics courses in NTU. They were 
                                                      
5 Or (1/100, …, 1/100) to (1/2, 1/2, 0, …, 0) in the 100-door variant. 
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  Figure 2 

We first compare aggregate switching behavior between the treatment and 

control group. Note that there are chances that a subject would face one transparent 

door and one opaque door if the computer opens the other opaque door for him. 

particular situation happens are not interesting since

knowledge that one may win for sure by choosing to stay. As a result, we

Figure 2 the 3-period moving average (with standard error bars) 

for cases in which subjects have a choice between two opaque 

The treatment group starts with a switching rate close to 60%, and quickly 

learns to always switch (> 95%) in the 100-door game. Most subjects

door game, resulting in a stable switching rate around 80%. 

In contrast, the control group starts with a switching rate below 40%, and only 

to 60%. 

Moreover, we conduct a probit regression with random effect

behavior between the treatment and 

here are chances that a subject would face one transparent 

opaque door for him. Cases 

since it is common 

to stay. As a result, we drop these 

(with standard error bars) of 

oice between two opaque 

The treatment group starts with a switching rate close to 60%, and quickly 

Most subjects then carry this 

rate around 80%. 

40%, and only 

with random effects, predicting 
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switching behavior (the probability that the dummy variable Switch equals to 1) with 

a constant term, the period number (correlated with how many periods the subject 

have played the relevant case), and two variables that represent past experience: 

Switch_bonus (the cumulative earning difference between always switching and 

always remaining) and Switch_won (a dummy variable which equals to 1 if switching 

would have won the prize in the most recent period). A similar model was used by 

Friedman (1998) to support reinforcement learning. Consistent with the findings of 

Friedman (1998), results in Table 1 show that the variable Switch_bonus, is strongly 

correlated with Switch (p < 0.05), while Switch_won is not (p > 0.1). 

 

 (1) 

Control_1 

(2) 

Control_2 

(3) 

Treatment_1 

(4) 

Treatment_2 

VARIABLES Switch  

(=1 if and only if subject switch, =0 otherwise) 

     

Switch_bonus 0.0234*** 0.0119** 0.112** 0.0265*** 

 (0.00654) (0.00475) (0.0460) (0.00674) 

Switch_won 0.113 -0.0276 0.271 -0.225 

 (0.180) (0.164) (0.391) (0.210) 

Period -0.0318 0.0221 -0.495 -0.0942** 

 (0.0347) (0.0243) (0.372) (0.0374) 

Constant -0.533* -1.022** 0.671 0.411 

 (0.272) (0.435) (0.509) (0.458) 

     

Observations 461 495 294 439 

Number of subject 43 43 39 39 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

We drop all observations where there was only one opaque door left. 

Table 1: Probit regression (with random effects) for switching behavior 
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Individual learning model analysis 

In addition to the aggregate results, we (structurally) estimate individual learning 

patterns with two different learning models, epiphany and reinforcement, to calibrate 

individual switching data. The epiphany model is the one that the subject chooses not 

to switch in the first n periods until a certain “epiphany point” where the subject 

realizes the optimal strategy and starts to always switch from then on. Hence, the 

probabilistic model predicts a subject to switch with probability 1-ε before the given 

epiphany point and switch with probability ε after that.  The parameters n and ε are 

estimated by maximizing empirical likelihood for each subject. 

On the other hand, the reinforcement model we used is a special case of the 

Experienced-Weighted Attraction (EWA) model (Camerer & Ho 1999, 2002)6. In this 

model, the probability that a subject chooses (not) to switch increases if and only if he 

choses (not) to switch in the previous period and won the prize, but decays by a fixed 

proportion in all other cases. 

In particular, we use a logit (exponential) reinforcement model to calibrate the 

data in both stages and both groups and the combined data of the two stages in the 

control group (30 periods in total). In this model, the subject chooses his strategy 

according to the following formula: 

P�(t + 1) = eλ∗��()
eλ∗��() + eλ∗��() 

Where P1 (t+1) indicates subject’s probability of choosing strategy 1 (switch) at 

period t+1, λ is a parameter that is estimated via maximum likelihood, and Ri(t) is the 

attraction at period t if one chooses strategy i (= 1 if switch), modeled as: 

R�(t) = �ϕR�(t − 1) + π(t) , if s(t) = s�
ϕR�(t − 1)              , if s(t) ≠ s� � 

                                                      
6 We do not estimate the full EWA model (with 3 free parameters) since we have at most 30 data points 
per subject, which was shown by Salmon (2001) to be inefficient to identify the parameter precisely. 
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where ϕ is also a parameter that is estimated via maximum likelihood, π(t) is 

the pay-off that the subject receive at period t, s(t) is the subject’s strategy at period t, 

si indicates the subject’s strategy choices i (= 1 for switch), and Ri(0) = 50.  We again 

estimate the value of ϕ and λ by maximizing empirical likelihoods. The estimation 

results (see supplemental material) show that the epiphany model has higher mean log 

likelihood for more than 90 percent of the subjects in both the control and treatment 

group. In other words, though aggregate results from the probit regressions support 

some form of reinforcement learning, individual structural estimations indicate 

subjects seem to learn by “epiphany” instead of (purely) reinforcement. 

Moreover, by estimating the epiphany point for each individual, we can measure 

the speed subjects learn to play the optimal strategy. In the control group it takes an 

average of 17.65 (standard deviation 12.25) out of 30 periods to learn, while in the 

100-door game, it takes only 1.21(1.79) periods. After experiencing the 100-door 

game, it now takes subjects only 2.54 (4.86) periods to learn ( to switch) in the 3-door 

game. 

 

Discussion and Conclusion 

Results from our experiment show that, even though we introduced a more 

difficult and counter-intuitive version of the Monty Hall Problem, our 100-door 

treatment effectively teaches subjects to learn the optimal strategy.  However, it is 

not clear from the behavioral results alone whether subjects learned true Bayesian 

updating or not.  To at least partially address this, we conducted post experimental 

questionnaires and asked subjects to report their belief about the probabilities of 

wining if they choose to switch/stay.  The results show that more subjects in the 

treatment group report the exact probabilities (66.66%, 66.6%, 66%, or 67%) than 

those in the control group (23.08% versus 6.98%).  Thus, in addition to learning to 
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switch and reap the “economic value” (Camerer, Ho and Chong, 2004) of correct 

probability estimation, we also have some evidence that people do learn the correct 

probabilities themselves.7 

Moreover, close to 40% of the subjects started with switching. This is much 

higher than what is documented in the literature since Friedman (1998) reported an 

initial switching rate around 10%. This could be the result of Asian students being 

more capable of mathematics. However, it could also be due to the fact that the Monty 

Hall problem is more well-known now (say due to the movie “21”) than ten years ago. 

Initially, we did not ask subjects whether they had seen a similar game before, but we 

started to ask this question after seven of the first 30 subjects reported exact 

probabilities. Among the remaining 52 subjects, 18 of them claimed to have at least 

seen a similar game before, while 34 did not.  Among those who have seen it before, 

four of them reported exact probabilities (22.2%), while among those who never seen 

it, only one reported exact probabilities (2.9%). 

Thirdly, although aggregate regression results could indicate reinforcement 

learning, a comparison between the individual epiphany model and the reinforcement 

model suggests that at least 90% of the subjects are more likely to be classified as an 

epiphany learner. Hence, we believe that most of our subjects can learn the optimal 

strategy in the 100-door game because a “eureka” moment occurred after several 

periods, and this epiphany is transferred to the 3-door game. 

Finally, although we now know that epiphany is a better model to calibrate 

subjects’ learning behavior in this case, we still do not know the actual learning 

mechanism behind it. Is it like a real “epiphany” from God in which the subject 

suddenly realizes the optimal strategy at some point in the experiment? Or, is it like a 

                                                      
7 If we allow an estimating error of 5%, the numbers become 30.77% (in the treatment group) and 
11.63% (in the control group). 
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neuron stimulation process with a preset threshold where subjects aggregate stimuli 

when exposed to the games repeatedly and realize the optimal strategy after passing 

the threshold, such as the model estimated by Krajbich, Armel and Rangel (2010)?  

Answers to these questions would await further research. 
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1st Stage Aggregate 3-period Moving Average 

1
st

 Stage             

 
Control 

  
Treatment 

  

Period Switch Chances Ratio Switch Chances Ratio 

1~3 33 91 36.26% 37 63 58.73% 

2~4 42 93 45.16% 44 62 70.97% 

3~5 41 99 41.41% 50 64 78.13% 

4~6 41 104 39.42% 56 65 86.15% 

5~7 37 103 35.92% 59 64 92.19% 

6~8 36 98 36.73% 55 58 94.83% 

7~9 36 93 38.71% 50 50 100.00% 

8~10 39 93 41.94% 50 50 100.00% 

9~11 40 88 45.45% 56 58 96.55% 

10~12 33 84 39.29% 63 65 96.92% 

11~13 31 77 40.26% 66 68 97.06% 

12~14 38 84 45.24% 56 57 98.25% 

13~15 52 89 58.43% 50 51 98.04% 

 

2nd Stage Aggregate 3-period Moving Average 

2
nd

 Stage             

 
Control 

  
Treatment 

  
Period Switch Chances Ratio Switch Chances Ratio 

1~3 43 102 42.16% 77 95 81.05% 

2~4 43 99 43.43% 71 92 77.17% 

3~5 47 103 45.63% 70 91 76.92% 

4~6 47 104 45.19% 67 87 77.01% 

5~7 39 99 39.39% 65 85 76.47% 

6~8 38 103 36.89% 66 85 77.65% 

7~9 47 100 47.00% 69 86 80.23% 

8~10 47 99 47.47% 75 89 84.27% 

9~11 45 92 48.91% 71 86 82.56% 

10~12 43 93 46.24% 74 91 81.32% 

11~13 48 89 53.93% 65 84 77.38% 

12~14 55 92 59.78% 64 79 81.01% 

13~15 57 96 59.38% 64 80 80.00% 

 



Personal Moving Average (Control Group)

 

Personal Moving Average (Treatment Group)

 

 

Personal Moving Average (Control Group) 

Moving Average (Treatment Group) 

 

 



Maximum Likelihood Estimation Results for Epiphany and Reinforcement Learning 

Control Group 
 

1st stage only 
 

Both stages 

Obs. with 2doors   Epiphany Reinforcement   Epiphany Reinforcement 

Subj. 

ID# 

1st 

Stage 

2nd 

Stage 
  

mean 

log-L 

Epiphany 

Point 

mean 

log-L 

mean log-L 

difference 
  

mean 

log-L 

Epiphany 

Point 

mean 

log-L 

mean log-L 

difference 

1 12 10   0.00 0 -0.12 0.12   -0.54 0 -0.52 -0.02 

2 13 12 
 

-0.54 8 -0.68 0.14 
 

-0.59 8 -0.69 0.10 

3 10 13 
 

-0.50 15 -0.69 0.19 
 

-0.46 23 -0.63 0.17 

4 6 13 
 

0.00 14 -0.46 0.46 
 

0.00 30 -0.15 0.15 

5 12 8 
 

0.00 14 -0.17 0.17 
 

-0.42 17 -0.59 0.16 

6 13 11 
 

0.00 15 -0.05 0.05 
 

0.00 27 -0.30 0.30 

7 11 9 
 

-0.59 5 -0.66 0.07 
 

-0.56 30 -0.65 0.09 

8 12 12 
 

0.00 0 -0.12 0.12 
 

0.00 0 -0.06 0.06 

9 12 11 
 

0.00 0 -0.06 0.06 
 

0.00 0 -0.03 0.03 

10 12 11 
 

-0.67 13 -0.75 0.08 
 

-0.63 30 -0.72 0.09 

11 12 13 
 

-0.56 15 -0.46 -0.10 
 

-0.37 28 -0.47 0.10 

12 9 9 
 

-0.53 4 -0.67 0.14 
 

-0.64 4 -0.66 0.03 

13 11 11 
 

-0.47 6 -0.68 0.21 
 

-0.66 27 -0.69 0.03 

14 11 11 
 

-0.30 14 -0.60 0.30 
 

-0.40 14 -0.53 0.13 

15 13 15 
 

-0.54 3 -0.64 0.10 
 

-0.67 20 -0.69 0.02 

16 12 12 
 

0.00 15 -0.06 0.06 
 

0.00 30 -0.09 0.09 

17 13 14 
 

-0.27 14 -0.59 0.32 
 

-0.48 27 -0.63 0.15 

18 13 8 
 

-0.27 12 -0.58 0.31 
 

-0.41 27 -0.57 0.16 

19 12 11 
 

0.00 12 -0.25 0.25 
 

0.00 12 -0.13 0.13 

20 9 10 
 

0.00 8 -0.22 0.22 
 

-0.58 26 -0.67 0.09 

21 10 12 
 

-0.33 15 -0.14 -0.19 
 

-0.30 21 -0.32 0.01 

22 11 12 
 

-0.30 14 -0.56 0.26 
 

-0.39 30 -0.56 0.18 

23 10 12 
 

-0.61 13 -0.59 -0.02 
 

-0.59 22 -0.59 0.00 

24 12 14 
 

-0.45 14 -0.69 0.24 
 

-0.62 30 -0.69 0.08 

25 6 12 
 

-0.64 12 -0.69 0.06 
 

-0.35 30 -0.45 0.10 

26 11 11 
 

-0.66 1 -0.65 -0.01 
 

-0.54 1 -0.52 -0.02 

27 13 12 
 

-0.43 15 -0.64 0.21 
 

-0.44 29 -0.59 0.15 

28 8 9 
 

-0.56 8 -0.69 0.13 
 

-0.65 30 -0.69 0.04 

29 10 10 
 

-0.50 15 -0.52 0.02 
 

-0.33 30 -0.26 -0.06 

30 9 11 
 

-0.68 0 -0.76 0.08 
 

-0.70 23 -0.69 0.00 

31 12 13 
 

0.00 13 -0.06 0.06 
 

0.00 30 -0.03 0.03 

32 11 15 
 

-0.31 12 -0.54 0.23 
 

-0.44 30 -0.53 0.09 

33 10 13 
 

-0.33 3 -0.52 0.20 
 

-0.57 3 -0.62 0.05 

34 12 13 
 

0.00 0 -0.06 0.06 
 

0.00 0 -0.03 0.03 

35 8 13 
 

0.00 10 -0.18 0.18 
 

-0.60 10 -0.65 0.05 

36 11 12 
 

0.00 0 -0.06 0.06 
 

0.00 0 -0.03 0.03 

37 10 10 
 

0.00 0 -0.07 0.07 
 

0.00 0 -0.03 0.03 

38 12 13 
 

0.00 1 -0.36 0.36 
 

-0.17 1 -0.32 0.15 

39 9 11 
 

-0.35 6 -0.67 0.33 
 

-0.50 6 -0.67 0.17 

40 8 10 
 

0.00 14 -0.09 0.09 
 

0.00 30 -0.04 0.04 

41 7 11 
 

-0.41 2 -0.55 0.14 
 

-0.21 2 -0.22 0.01 

42 13 11 
 

-0.43 13 -0.59 0.16 
 

-0.51 21 -0.66 0.15 

43 9 12   0.00 0 -0.08 0.08   0.00 0 -0.03 0.03 

Mean 
   

8.56 
    

17.65 
  

(std) 
   

(5.93) 
    

(12.25) 
  



Treatment Group 
 

1st stage 
 

2nd stage 

Obs. with 2doors Epiphany Reinforcement   Epiphany Reinforcement 

Subj. 

ID# 

1st 

Stage 

2nd 

Stage 
  

mean 

log-L 

Epiphany 

Point 

mean 

log-L 

mean log-L 

difference 
  

mean 

log-L 

Epiphany 

Point 

mean 

log-L 

mean log-L 

difference 

1 6 13   0.00 0 -0.12 0.12   -0.43 0 -0.56 0.13 

2 8 14 
 

0.00 1 -0.17 0.17 
 

0.00 0 -0.10 0.10 

3 8 13 
 

0.00 3 -0.26 0.26 
 

-0.43 7 -0.57 0.14 

4 8 8 
 

0.00 1 -0.17 0.17 
 

-0.38 13 -0.36 -0.02 

5 5 9 
 

0.00 1 -0.28 0.28 
 

-0.35 15 -0.56 0.21 

6 7 13 
 

-0.60 0 -0.58 -0.02 
 

-0.43 0 -0.48 0.05 

7 6 9 
 

0.00 0 -0.12 0.12 
 

-0.35 13 -0.39 0.39 

8 9 10 
 

0.00 2 -0.15 0.15 
 

-0.33 0 -0.47 0.47 

9 10 13 
 

0.00 3 -0.28 0.28 
 

0.00 0 -0.05 0.05 

10 5 10 
 

0.00 1 -0.28 0.28 
 

0.00 0 -0.14 0.14 

11 4 12 
 

0.00 0 -0.17 0.17 
 

-0.64 1 -0.57 0.12 

12 9 10 
 

-0.53 4 -0.62 0.09 
 

-0.50 11 -0.53 0.03 

13 5 11 
 

0.00 0 -0.14 0.14 
 

-0.59 0 -0.65 0.06 

14 6 12 
 

0.00 0 -0.12 0.12 
 

0.00 0 -0.06 0.06 

15 8 12 
 

0.00 0 -0.09 0.09 
 

-0.45 5 -0.68 0.23 

16 9 10 
 

0.00 2 -0.23 0.23 
 

0.00 0 -0.07 0.07 

17 12 10 
 

0.00 1 -0.12 0.12 
 

0.00 0 -0.07 0.07 

18 9 12 
 

0.00 0 -0.08 0.08 
 

-0.29 0 -0.32 0.04 

19 9 12 
 

0.00 4 -0.31 0.31 
 

0.00 0 -0.06 0.06 

20 7 12 
 

0.00 0 -0.10 0.10 
 

0.00 0 -0.06 0.06 

21 5 11 
 

0.00 4 -0.55 0.55 
 

-0.69 0 -0.43 -0.05 

22 9 10 
 

-0.35 0 -0.28 -0.07 
 

0.00 0 -0.07 0.07 

23 9 11 
 

0.00 0 -0.08 0.08 
 

0.00 0 -0.06 0.06 

24 10 10 
 

0.00 0 -0.07 0.07 
 

0.00 0 -0.07 0.07 

25 6 11 
 

0.00 1 -0.23 0.23 
 

0.00 0 -0.06 0.06 

26 9 9 
 

0.00 0 -0.08 0.08 
 

0.00 0 -0.15 0.15 

27 5 11 
 

0.00 0 -0.14 0.14 
 

0.00 0 -0.06 0.06 

28 7 13 
 

0.00 0 -0.10 0.10 
 

-0.27 4 -0.27 0.00 

29 2 13 
 

0.00 0 -0.35 0.35 
 

-0.67 0 -0.69 0.02 

30 6 7 
 

-0.70 6 -0.81 0.11 
 

-0.76 2 -0.79 0.04 

31 10 14 
 

0.00 5 -0.28 0.28 
 

-0.65 15 -0.69 0.28 

32 7 9 
 

0.00 1 -0.20 0.20 
 

0.00 0 -0.08 0.08 

33 7 13 
 

0.00 1 -0.20 0.20 
 

0.00 0 -0.05 0.05 

34 7 12 
 

-0.41 0 -0.36 -0.05 
 

-0.29 0 -0.32 0.04 

35 7 12 
 

0.00 0 -0.10 0.10 
 

0.00 0 -0.06 0.06 

36 8 11 
 

0.00 0 -0.09 0.09 
 

0.00 0 -0.13 0.13 

37 8 9 
 

0.00 6 -0.26 0.26 
 

-0.69 12 -0.69 0.34 

38 7 12 
 

0.00 0 -0.10 0.10 
 

-0.45 0 -0.29 -0.16 

39 7 14   0.00 0 -0.10 0.10   -0.26 1 -0.42 0.17 

Mean 
   

1.21 
    

2.54 
  

(std) 
   

(1.79) 
    

(4.86) 
  

Note:  
  

       
  

 

These tables report the MLE result of fitting individual choices into different learning models. 

The last column reports the differences between two models' log-liklihood result. 

Shaded row are those subjects who are better predict under the reinforcement model. 

  



Questionnaire Result (Control) 

Subject Part1p1 Part1p2 Part2p1 Part2p2

1 75 25 75 25

2 60 40 50 50

3 50 50 33 75

4 50 50 60 40

5 80 20 80 20

6 50 50 70 30

7 60 40 40 60

8 66 34 66 34

9 66.6 33.3 50 50

10 20 80 70 30

11 50 50 50 50

12 50 50 80 20

13 50 50 50 50

14 75 25 75 25

15 50 50 50 50

16 50 50 50 50

17 50 50 50 50

18 30 50 50 50

19 20 80 80 20

20 70 30 50 50

21 10 90 90 10

22 40 60 50 50

23 50 50 75 25

24 40 60 50 50

25 20 80 40 60

26 70 30 90 10

27 40 60 50 50

28 40 60 40 60

29 18 82 5 95

30 0.5 0.5 0.5 0.5

31 40 60 60 40

32 50 50 50 50

33 50 50 50 50

34 66 33 66 33

35 50 50 50 50

36 66 33 66 33

37 60 40 60 40

38 67 33 50 50

39 60 40 50 50

40 20 80 20 80

41 30 70 90 10

42 60 40 60 40

43 50 33 50 33  

 

 

 



Questionnaire Result (Treatment) 

Subject Part1p1 Part1p2 Part2p1 Part2p2

1 99 1 50 50

2 100 0 75 25

3 50 50 70 30

4 30 70 50 50

5 1 99 50 50

6 90 10 90 10

7 25 75 50 50

8 50 50 100 0

9 100 0 60 40

10 99.5 0.5 66.7 33.3

11 99 1 67 33

12 50 50 70 30

13 0 100 50 50

14 99 1 67 33

15 50 50 50 50

16 100 0 100 0

17 99 1 50 50

18 99 1 66 34

19 100 0 90 10

20 99 1 66 33

21 100 0 50 50

22 100 0 50 50

23 99 1 67 33

24 50 50 66.7 33.3

25 100 0 70 30

26 99 1 75 25

27 100 100 70 100

28 100 0 50 50

29 100 0 50 50

30 50 60 50 60

31 100 0 50 50

32 100 0 80 20

33 100 0 87.5 12.5

34 100 0 50 50

35 80 20 66 34

36 65 35 60 40

37 100 0 66 34

38 90 10 50 50

39 100 0 50 50  

The second and fourth column report subject’s belief about the wining probability of 

choosing to switch (part1 means in the 1st stage), and the third and fifth column report 

the opposite probability. 


