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Abstract

Wereport resultsfrom an exploratory study using eye-tracking recording
of information acquisition by playersin a gametheoretic learning
paradigm. Eye-tracking isused to observe what infor mation subjects ook
at in 4x4 nor mal-form games, the eye-tracking resultsfavor sophisticated
learning over adaptivelearning and lend support to anticipatory or
sophisticated models of learning in which subjectslook at payoffs of other
playersto anticipate what those players might do. The decision data,
however, are poorly fit by the smple anticipatory modelswe examine. We
discuss how eye-tracking studies of information acquisition can fit into
resear ch agenda seeking to under stand complex strategic behavior and
consider methodological issuesthat must be addressed in order to
maximize their potential.
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1. Introduction

Many theories have been proposed about how plés@ns in games,
leading to a large experimental literature compptireories econometrically
(see Camerer, 2003, chapter 6). Here, we expbking @ye-tracking recording
of information acquisition to inform this empiricéébate. The maintained
hypothesis underlying this approach is that theaan be taken as algorithms
that use specific information about historical aati and payoffs in a precise
way to guide choices. Furthermore, the extent tichvpeople look at the
relevant information is likely to correlate withwdhat information influences
choices. Eye-tracking data can be useful becaisdifficult to identify
learning rules precisely from decision data al@specially once we consider
heterogeneity across subjects (or even across Wiitfeén subjects, as in “rule
learning” models). In an observational study dbimation acquisition, the
goal is to gain insights about behavior that wdaddifficult to establish using
choices alone (and which is inefficient to testydny exogenously varying
what information is available).

Eye-tracking and mouse-tracking (MouselLab) mettiodmeasuring
information acquisition have been used previouslsttidy various topics such
as backward and forward induction (Johnson e2802) and to estimate
decision rules used in normal-form games (Costa-€soet al, 2001) and two
person p-beauty contest games (Costa-Gomes anddCda®006).

The core of our analysis consists of (a) measofresw well models
predict the actual choices of players and (b) measof how often players look
at information relevant to executing a particukarhing rule.

An ideal outcome would be that one theory is sujgobby both
decision and information lookup choices. Unfortehgtthat is not the case.
Instead, we found that in predicting choices, astaphodels in which people
learn by generalized reinforcement (EWA and seifrig EWA) predict more
accurately than simple “sophisticated” (or “antatipry learning”) models in
which agents anticipate that others are learnigwever, the lookup data
suggest that players often look at payoffs as reduyy sophisticated models,
about equally as often as they look at adaptiveehpayoffs. The fact that
behavioral fits favor adaptive models but lookupgof sophisticated ones
suggest there are some models of sophisticatemingaiin which lookups
overlap with those in the models that do not fithlere) which could fit both
lookup and choice data well. We leave developméatich models to future
research.

Details and further analyses are reported in olin@mvorking paper,
Knoepfle, Wang, and Camerer (2008), denoted KWC.

2. Design

2.1 Experiment Structure



Subijects play four asymmetric non-zero-sum two-g@iax4 normal
form games (see KWC Al for the game matrices anébAdesign details).
Each of the four games was played 10 times in damnamatching protocol
with feedback. The order of games was fixed. Expenits were conducted in
groups of six; in each group, two subjects weretegeked. Periods ended
when all subjects had entered their strategy cBoice

2.2Modes

We consider five models of learning: reinforcemi@d), experience-
weighted attraction learning (EWA), self-tuning EW&EWA), and
anticipatory response level one (C1) and two (C2).

EWA is a general adaptive model that nests typesioforcement and
belief-based learning as special cases. In EWAteggies have numerical
attractions which begin as subjective initial attiens A/(0), with initial weight
N(0), and are updated each period after receivimnice feedback, according to

(1) At+1)=0NOAI/N(t+1) + B+(L-5)I(s SO TH(S!, si(D)IN(t+1)

with N(t +1)=9(1-k)N(t)+1. Attractions are then mapped into stratelggice
probabilities using a logit form/R+1)=expdA{(t))/(ZxexpQA(t))). The

EWA parameter$, ¢, andk correspond, respectively, to the weight placed on
the payoffs one would have received had they chagdifierent strategy, the
weight of old attractions, and the degree to whitttactions cumulate rather
than average. Of these parameters, diigs implications for information
search.

For the adaptive models, we assume that subjedtlook up the
information required to update their attractionsheperiod but have perfect
recall of their attractions in the previous peridflwe constraird=0, we get a
reinforcement-type model (Re) in which the onlekeint information is the
payoff received; reinforcement models have the payoff matrix cellr(s(t-
1),si(t-1)) as their lookup area. 30, as in unconstrained EWA, the payoffs
that would have been received are also relevaotrmdtion; thus, EWA has as
its lookup area the own payoff matrix colum(t,si(t-1)) corresponding ta;&-
1), the opponent’s strategy choice in the prevjgsersod.

We also consider a “self-tuning” form of EWA (stEWWproposed by Ho,
Camerer, and Chong (2007), in which two psychokltyiaininteresting
parameters are removed from EWA and the remaimawarameters are
replaced by functions of experience. The reinforeetmveightd on un-chosen
strategies is replaced by 1 for strategies whiehnsgakly better responses than
the chosen strategy (i.ei(s',si(t-1)) > m(s(t-1),si(t-1))) and 0 for worse
responses. In addition, the weight on old expegé@nis specified as a function



of observed choices. The lookup area for stEWtasset of cells in the own
payoff matrix column corresponding tg(t3 with positive weight.

The two “sophisticated” models C1 and C2 are myapiticipatory models
that predict opponents’ play. Let B denote subject i's best-response to his
opponent’s strategy’sConsider the familiar Cournot rule in which sultgec
simply best-respond to their opponent’s previousicg that is, they choose
BRi(si(t-1)). In C1, a player assumes his opponentiisgus Cournot rule and
best-responds accordingly, choosing®R.(s(t-1))). The relevant
information for determining this choiceig(s(t-1),-) andr(- ,BRi(s(t-1))).

The C2 model is one level above the C1 model: ina8Q#ayer assumes his
opponent is using the C1 rule and best-respondsdiogly. A C2 player
chooses BRBR(BRi(si(t-1)))). The relevant information for determigithis
choice isti(-,si(t-1)), Tti(BRi(si(t-1)),-), and(- ,BRi(BRi(si(t-1)))).

2.3. Screen Display
[FIGURE 1 ABOUT HERE]

A mock-up of an experimental task screen is shawFigure 1
(specifically, for a row player in period 5 of ga®e Some key design features
can be seen. First, following Costa-Gomes ef8al01), we separate the
subject’s payoffs and his opponent’s payoffs imto tatrices: the left matrix
contains the subject’s own payoffs and the rightrixaontains his opponent’s
payoffs. Rows in the matrices correspond to thest's own strategies, and
columns correspond to his opponent’s strategieso®l, we display the
history of the subject’s choices, his opponentsicds, and his own received
payoffs at the bottom of the screen. Another stfeet shown here) appears at
the conclusion of each period, displaying the sttljechoice, his opponent’s
choice, and his received payoff for the period;digeuss a possible bias related
to this screen in KWC A6.2.2.

2.3. Modd-Relevant Information and Lookup Areas

At this point, it is worthwhile to discuss and gieeamples of the model
lookup areas. The model lookup areas are arethe glayoff matrices
corresponding to the information relevant to deteimmg the model choice,
defined with respect to the choices of a subjedtrds opponent in the previous
period. Consider the game and its on-screen displeigure 1, and suppose
that in the previous period the player chose gisaieand his opponent chose
strategy 1. The reinforcement cell (the playexgegienced payoff) is row 1,
column 1 in his own payoff matrix; this is Re’s kup area. His corresponding
payoffs for un-chosen strategies are in the otaks of column 1 in his own
payoff matrix; EWA’s lookup area is this entire goin. His strategies 1 and 2

! For simplicity, assume best responses are alwaigsie.



are weakly better responses to his opponent’s guewihoice than his own
previous choice; thus, stEWA's lookup area arecis in row 1 and 2 of
column 1 in his own payoff matrix. Observe thatd®e stEWA's lookup areas
are nested within EWA's; this is always the case.

Recall that C1 plays BBBR.(s(t-1))). Thus, C1 must first find his
opponent’s best response to his own previous giyatieoice. This entails
finding the maximum payoff in the row of his oppatie payoff matrix
corresponding to his own previous strategy chatrategy 1. Thus, C1's
lookup area includes row 1 of his opponent’s payudtrix. Here, his
opponent’s best response is strategy 4. A C1 playst then find his best
response to his opponent’s strategy 4; to do stpdies at the corresponding
column of his own payoff matrix (column 4) and finthe maximum payoff;
the strategy yielding this maximum is his stratefgice. Thus, C1’s lookup
area also includes column 4 of his own payoff matri

The C2 lookup area comes from a similar processcalRthat C2 plays
BRi(BRi(BRi(si(t-1)))); thus, a C2 player must first find his bessponse to his
opponent’s previous strategy choice by lookingtfier maximum payoff in his
corresponding own payoff matrix column, columnTherefore, C2’'s lookup
area includes column 1 of his own payoff matriheTmaximum payoff in this
column corresponds to strategy 2; that is;(BR-1)) = BR(1) = 2. AC2
player must then find his opponent’s best resptm#iais strategy, BRBRi(s
i(t-1))) = BR;(2); this is accomplished by looking for his oppoti® maximum
payoff in row 2 of his opponent’s payoff matrixhds, C2’s lookup area also
includes row 2 of his opponent’s payoff matrix. elethe maximum payoff
corresponds to his opponent’s strategy 4; th&Rs(2) = 4. Finally, a C2
player finds his best response to this strate@y; ith BR(BRi(BRi(si(t-1)))) =
BRi(4). He does so by looking for his maximum payofthe corresponding
column of his own payoff matrix, column 4; this nmaxm, strategy 1, is his
choice. Thus, C2’'s lookup area includes columfidisown payoff matrix.

3. Results

Due to practical and technical reasons, some sishjere excluded
prior to analysis; we use decision data from 44exib and lookup data from
12 subjects. In some cases, players choose thesteategy across all ten
periods of a game. As learning is the topic ofiest, all of the results we
report herein exclude these games and use onl{ednming games” in which
players do not make the same choice every time®é€ A5.3 and A6.3 for
results computed using all games).

3.1 Behavior



[FIGURE 2 ABOUT HERE]

Choices in the games appear to converge to Nashibeigun
relatively rapidly; the frequency of Nash play tertd increase over the ten
periods of each game and averages 79.7% in thiegpfinad (see KWC 5.1).

We fit the learning models to observed behaviongishaximum
likelihood. As a non-learning benchmark, we alstingate a model in which
players are predicted to choose their Nash straté@g adaptive models have
likelihoods specified by the logit-form probabilityap; for the Ck and Nash-
type models, we estimate the likelihood maximizinguch that players choose
the predicted strategy with probability p and ramdm uniformly over the
other strategies. To control for different numbafrparameters, model
parameters are fit on periods 1-7 in each gameyaadhetric mean likelihoods
of observed choices in the hold-out periods 8-E0reported. Parameters are
estimated at the subject level (see KWC A5.2 faaitieon the behavioral
estimation).

Out of sample goodness-of-fit measures are repartedjure 2
separately for eye-tracked subjects and for aljesth. The best models put
predicted probability of about 0.5 on the actualicés, well above a random
guessing benchmark of 0.25. The results are simdeaoss the four games (see
KWC A5.3). Eye-tracked subject fits are worse fome models but not
significantly so (and we have no sensible explanafior the differences).
Pooling tracked and untracked subjects, withinecttgigned rank tests
between models find that EWA and stEWA significamtlitperform C1, C2
and Nash at p<0.01 (all p-values two-tailed, urextgd for multiple
comparisons). Re significantly outperforms C1 (j902@) but is not
significantly better than C2 or the Nash benchnfpr0.067 and p=0.196,
respectively). EWA and stEWA are better than Re=8t.055 and p=0.065,
respectively. The C1 and C2 models are clearlywhest-fitting overall, and
are strongly so within-subjects.

3.2 Eye-tracking

Eye-tracking produces a huge amount of data. Withihcrease in
data volume comes an increase in noise and unt@riaiinterpretation. We
emphasize that our results are conditional on afsssumptions and that the
numbers we report here derive from data which leas Ipreprocessed,
filtered, and transformed in a number of ways. file that our qualitative
results are generally robust to different preprsicgsand analysis choices;
discussion of these preprocessing methods andsimalyoices can be found
in the online appendix (KWC AB).

The eye-trackers recorded gaze location and pilailah samples at
250 Hz. These gaze location samples are procadsefikations and saccades
(which are rapid movements between fixations).atdn locations are
compared with screen areas corresponding to cellei payoff matrices and



other on-screen items; we consider a fixation jrmgoff matrix cell’'s area to be
a “lookup” of that cell's information. Since wevlimited prior knowledge
regarding the relationship between gaze and infdaomacquisition, we take all
fixations within the payoff matrices’ cells as repenting information lookups.
A notable analysis choice is our use of fixationms rather than durations as
the atoms of analysis; see KWC A6.4.5 for discussiathis issue. In addition,
as our on-screen display did not visually sepatéterent history components,
data on history lookups cannot help identify leagninodels without
undesirably strong assumptions. Furthermore, fyisbmkups represent a
small fraction of the observed lookups. We consafdy payoff matrix
lookups here, and discuss observed history lookiyaior in KWC A6.5.

The median (mean) number of payoff matrix lookupngeforth,
“lookups”) per trial was 32 (42.24). There is arghdecline in the average
number of lookups from the first period to the setand a more gradual
decline across the following nine periods of eaaing (see KWC A6.3).

Our first result is very simple but important: tinean share of payoff
matrix lookups corresponding to the opponent’'s ffayatrix is 46.1%; while
there is subject-wise heterogeneity, eight of tird\te subjects have shares
above 40% and all have shares above 25%. This\alig®eT is in stark contrast
to the class of adaptive learning models, in widbrmation about the
opponent’s payoffs isever relevant. Unless we assume an unrealistic Ievel o
noise, we must conclude that many subjects arbataliely acquiring
information about their opponents’ strategic sitwat This result demonstrates
the power of observing information acquisition: whinimal assumptions, we
establish subjects’ interest in opponents’ paywffctures, suggesting that
adaptive learning models ignore important determtimaf choice.

To move from statements about classes of modaigtements about
specific models, we make additional assumptionsiatm@mory and
information relevance. We measure the degree tchwibokups conform to
theories by examining lookup rates in screen ateggsponding to the
information which is relevant inpdating underlying attractions (or beliefs) in
each particular period. That is, we are implicégsuming subjects recall
previous-period attractions and only look up tHerimation needed to update
these attractions. (Note that we did display cheité own-payoff history at the
bottom of the screen, but subjects did not lodk faéquently.)

Under this memory assumption, the theories predattsubjects will
look at a screen area containing certain targét.céle use a linear measure to
score how well lookups correspond to model prealiati Let x equal the “hit
rate”, the proportion of lookups in a period thalt in the target cells, and let a
equal the proportional area of the target cellse Thear measure (LM) equals
x-a, the proportional hit rate minus the proporélerea. Under uniform



random looking, the LM has expectation zero. TheHas a number of
desirable properties (cf. Selten, 1991Areas with positive LM scores are
looked at more than average. Thus, the skeptératake our LM scores for
the various models as mere indications of whatrimédion subjects look at
more than would be predicted by uniform looking.

[FIGURE 3 ABOUT HERE]

Figure 3 shows the mean linear measure scorebdaet of learning
models. The highest score is for the sophistickaahing rule C2, followed by
its sibling C1, then by EWA and stEWA, and findlly Re. All of the scores
are well above a uniform-looking benchmark (zero &bre).

Signed rank tests using subject-wise mean lineassore scores
(learning games only) find that EWA and stEWA haigher scores than Re at
p=0.09 and p=0.001, respectively; there is no Sigmt difference between
StEWA and EWA (p=0.91). C1 is insignificantly sujperto Re, EWA, and
StEWA, with p=0.07, p=0.13, and p=0.13, respecyiveh contrast, C2 is
significantly superior to these adaptive modelshwwi=0.001, p=0.016, and
p=0.002, respectively. Furthermore, C2 is supdddZl at the marginally
significant level p=0.052.

Taking the learning models as cognitive algoriththe,adaptive
models do not predict any particular order in whiokir relevant payoffs are
looked up. In contrast, the Ck models do suggeldred stages of lookups. In
the Ck models, the player must find certain bespoases in order to know
what other information to look at. For exampleCih, the player must first
find BRj(s(t-1)) in “stage 1” in order to determine EBR.(s(t-1))) in “stage
2”. We impose a simple order restriction requiratdeast one lookup in a
stage’s lookup area before lookups in the nextestaayea count as hits, and
adjust the model areas accordingly to maintain egpected LM score under
uniform looking (see KWC 6.2.1 for additional détai Figure 3 shows the
resulting LM scores for the restricted Ck modedbéled C1r and C2r). Adding
the order restriction, the lookup scores drop digdign C1r and slightly for C2r,
so that C1r now scores much worse on lookups bustilPscores better than
the adaptive models. Signed rank tests find thplyang this order restriction
significantly decreases the corresponding scome€Iap=0.007) and C2
(p=0.012). Restricted C2 remains superior to theptive models Re, EWA,
and stEWA with p=0.003, p=0.077, and p=0.034, retpaly; restricted C1 is

2 An oft-suggested alternative measure is the raéiasure x/a. This ratio
averages around 2 for Re and stEWA and 1.4 fathér theories. Selten
(1991) notes that the ratio measure favors poatribs (given a set of equal-
sized areas, the ratio measure is maximized bydehicludingonly the
area(s) with the highest hit-rate). We considarpbor summary of lookups
(see KWC A6.2 for discussion).



insignificantly superior to these models with p=@1p=0.266, and p=0.301. If
C1 and C2 are accurate models of subjects’ cognifrecesses, the simple
lookup order restriction discussed above shouldleotease their scores. That
the scores significantly decrease suggests than@XC2 include relevant
information lookups but are inaccurate descriptiofsue cognitive processes.

4. Discussion

We think our qualitative results imply that leampinas a large
component of sophistication (as the lookups sugdestthe behavioral fits
make it clear we have not yet found the appropriaddel. Our fundamental
conclusion is that researchers should work towapdsifying sophisticated
learning rules that can fit both choices and loski@pmodel that does so is
likely to be a good approximation of true cognitpm®cesses.

It is important to note that different learning pesses can have
identical lookup areas. Given that C1 and C2 perfamorse than the adaptive
models in predicting behavior, one wonders why thaye superior lookup
scores. The true learning process may have a siamiidentical set of relevant
information but map this information into choiceffatently. We explore this
possibility in KWC A5, varying the behavioral spieations corresponding to
the Ck models.

Future studies could improve on our design in ntyriays.
Convergence to equilibrium is rapid here, so gawitdsslower convergence
might provide richer data. Introducing variationa the location and
orientation of on-screen elements could help us gaiunderstanding of biases
in looking patterns and permit more sophisticatealyses of eye-tracking data.

Fundamental changes in the observational paradoytd dielp us to
differentiate genuine information lookups from reofixations with confidence.
Eye-tracking is very noisy. While mouse-trackingidas have much less noise,
they introduce exogenous costs for information &itijon that may bias
subjects’ lookups and behavior. As a complemesytracking designs,
however, they offer a range of alternative balatete/een noise and bias.
Future studies could use a hybrid design combiniogse-tracking features
with eye-tracking recording. For instance, the ffayatrices’ structure could
be freely visible but subjects might be requiregress and hold a key in order
to view the numerical payoffs. If this were condainwvith a strategically
irrelevant cost rate, we could infer that subjefiigitions while the key is
depressed are genuine information lookups. Witlcatrent design, we get
fixations, which we take to be lookups, so longaljects have their eyes open.
This does not invalidate our results, but doesradse and constrain what we
might hope to accomplish with the data. In eyekirsg studies, we accept an
increase in noise and uncertainty in interpretaitioour pursuit of the ideal of
naturalistic observation; hybrid designs coulddesthese tradeoffs.
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Appendices

Daniel T. Knoepfle, Joseph Tao-yi Wang, and Colin F. Camerer
September 1, 2009

Links to Main Text

References in the main text to material in these appendices are listed below in
the order they appear in the paper:

e “Subjects play four asymmetric non-zero-sum two-player 4x4 normal form
games (see KWC Al for the game matrices and A2 for design details).”
See page 3 for section A1l and page 5 for section A2.

e “Another screen (not shown here) appears at the conclusion of each period,
displaying the subject’s choice, his opponent’s choice, and his received
payoff for the period; we discuss a possible bias related to this screen in
KWC A6.2.2.” See page 26 for section A6.2.2.

e “As learning is the topic of interest, all of the results we report herein
exclude these games and use only the “learning games” in which players
do not make the same choice every time (see KWC A5.3 and A6.3 for
results computed using all games).” See page 17 for section A5.3 and
page 28 for A6.3.

e “Choices in the games appear to converge to Nash equilibrium relatively
rapidly; the frequency of Nash play tends to increase over the ten periods
of each game and averages 79.7% in the final period (see KWC 5.1).” See
page 11 for section A5.1.

e “Parameters are estimated at the subject level (see KWC Ab5.2 for details
on the behavioral estimation).” See page 15 for section A5.2.

e “Out of sample goodness-of-fit measures are reported in Figure 2 sepa-
rately for eye-tracked subjects and for all subjects. The best models put
predicted probability of about 0.5 on the actual choices, well above a ran-
dom guessing benchmark of 0.25. The results are similar across the four
games (see KWC A5.3).” See page 17 for section A5.3.

e “We find that our qualitative results are generally robust to different pre-
processing and analysis choices; discussion of these pre-processing methods
and analysis choices can be found in the online appendix (KWC A6).” See
page 23 for section A6.



“A notable analysis choice is our use of fixation counts rather than du-
rations as the atoms of analysis; see KWC A6.4.5 for discussion of this
issue.” See page 44 for section A6.4.5.

“We consider only payoff matrix lookups here, and discuss observed history
lookup behavior in KWC A6.5.” See page 46 for section A6.5.

“There is a sharp decline in the average number of lookups from the first
period to the second and a more gradual decline across the following nine
periods of each game (see KWC A6.3).” See page 28 for section A6.3.

“An often-suggested alternative measure is the ratio measure x/a. This
ratio averages around 2 for Re and stEWA and 1.4 for all other theories.
Selten (1991) notes that the ratio measure favors point theories (given
a set of equal-sized areas, the ratio measure is maximized by a model
including only the area(s) with the highest hit-rate). We consider it a
poor summary of lookups (see KWC A6.2 for discussion).” See page 25
for section A6.2.

“We impose a simple order restriction requiring at least one lookup in a
stage’s lookup area before lookups in the next stage’s area count as hits,
and adjust the model areas accordingly to maintain a zero expected LM
score under uniform looking (see KWC 6.2.1 for additional details).” See
page 25 for section A6.2.1.

“Given that C1 and C2 perform worse than the adaptive models in pre-
dicting behavior, one wonders why they have superior lookup scores. The
true learning process may have a similar or identical set of relevant infor-
mation but map this information into choices differently. We explore this
possibility in KWC A5, varying the behavioral specifications correspond-
ing to the Ck models.” See page 11 for section A5.



Al GAMES

Al Games

The games used in the experiment are asymmetric two-player games and are not
zero-sum. They are shown in Table 1; Nash equilibria are bolded and bracketed,
and the Camerer-Ho-Chong cognitive hierarcy (CH) predicted frequencies are
given on the margins (computed with 7 = 1.5). All four games have unique
pure strategy Nash equilibria. Game 1 has a dominant strategy for the column
player (column 2) and was designed as a warm-up. In all four games, the Nash
equilibria can be found by iterated deletion of dominated strategies.

All four games are 4x4 normal-form games. We chose this size because it
represented a reasonable tradeoff between the desires for type separation and
complexity and the need to work within display constraints. Using smaller
games with pure strategy equilibria would have reduced the type-separation
power and would likely have produced faster Nash-convergence. We would have
liked to have used games with a larger number of strategies; however, increasing
the number of strategies increases the number of payoff boxes that must be fit
onto the screen (see Figures 1 and 2) and necessarily decreases the display sepa-
ration between different pieces of information, increasing the error in associating
gaze with information lookups.

The games were designed to have CH predictions that differ to some extent
from the Nash equilibria. In each game, the CH model’s predicted frequency for
a non-Nash strategy is at least 0.391 for at least one of the players. As the intent
was to study learning behavior in games, and since CH often provides a good
indication of one-shot play or initial play in repeated games, we supposed that
players of these games would move from the non-Nash CH strategies to the Nash
strategy as they learned over time. Note that the row and column players had
different payoff multipliers mapping game payoffs to cash payoffs and that these
multipliers were not common knowledge; this feature was included to prevent
direct summation of the payoffs and thereby help disrupt altruistic or joint-
maximizing behavior. In our analysis, we ignore altruism and social preferences
and assume risk neutrality with respect to game payoffs.
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[ #1 [ 0056 [ 0.832 [ 0.056 | 0.056 |
0.056 || 20,5 -20,9 -40,7 | 110,-1
0.497 || -40,-3 | [100,13] | 40,3 | -60,1
0.391 || 40,13 | 20,29 | 130,11 | 100,7
0.056 || 120,5 0,7 40,-3 | -20,-1
[ #2 ] 0.768 | 0.056 | 0.056 | 0.121 |
0.832 [ 160,10 | -20,11 | 140-6 | 120,16
0.056 || -40,36 | -30,22 | 50,12 | 110,-8
0.056 || 0,14 | 160,-4 | 60,14 | [150,15]
0.056 || -30,30 | -20,5 | 60,5 120,-6
[ #3 ] 0.391 [ 0.056 [ 0.056 [ 0.497 |
0.056 [ 35,16 | 75,8 [ -80,3 | [120,17]
0.832 || 150,13 | 80,15 | 70,12 | 60,24
0.056 | 0-2 | 65,16 | 60,-4 | -30,13
0.056 || -10,30 | 55,-14 | 50,20 | -40,-20
[ #4 ] 0391 [0.056 | 0.246 [ 0.307 |
0.497 || 150-1 [ 0,-3 45,5 -5,-8
0.391 || 95-9 | 5-19 | 60,9 | [50,14]
0.056 || 25,27 | -5,29 | -95,-19 | -55.1
0.056 || 65,15 | 15,-1 | -85,11 | -15,3

Table 1: The games used in the experiment. Subjects play each game for ten consec-
utive periods; the order of the games was fixed and corresponds to the above number
labels. Nash equilibria are bolded and bracketed and CH-predicted frequencies (for
7= 1.5) are given along the margins.
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A2 Experiment Details

The experiments were conducted at the Social Science Experimental Laboratory
(SSEL) at Caltech. Subjects were recruited via email from the SSEL subject
pool. They participated in experiment sessions in groups of six. As described
above, subjects played four two-player 4x4 normal form games. Subjects played
the four games in a set order (corresponding to their numerical labelings), play-
ing 10 consecutive periods of each game. The subjects were randomly paired
with another opponent from their session each period, and if possible, the pair-
ing was performed so that they would not see the same subject in the imme-
diate next period. Each subject maintained their role as row or column player
throughout the experiment.

At the beginning of the session, subjects played three practice periods on a
different 4x4 game to familiarize themselves with the computer interface. They
were not paid for the practice rounds. In the final stage of the experiment,
subjects were asked to fill out a questionnaire and to answer the free form
question, “What is your strategy?” At the conclusion of the session, they were
paid, in cash, the total amount they earned in the games plus a show-up fee of
$5 or $10 dollars.

The experimental task for non-eye-tracked subjects was coded and run using
the Zurich Toolbox for Readymade Economic Experiments (z-Tree) developed
by Fischbacher (2007)[4]. See Figure 1 for an example of the screen display
during the non-eye-tracked experimental task, and see below for discussion of
the interface design.

After each round of choice, subjects were shown a result screen informing
them the other players’ actions and the payoffs they earn (in this round and
overall). The history of past outcomes (pairs of own/other choices and past
earnings) is also displayed at the bottom of the screen during each round, though
subjects seldom look at them (presumably, they can easily recall them from their
short-term memory).

A2.1 Eye-tracked Subjects

We designed the experiment to have two subjects eye-tracked in each session;
in practice, hardware calibration issues sometimes interfered. The eye-tracked
subjects were taken to a separate location on campus and mounted with Eyelink
IT head-mounted eye-tracking systems (SR Research, Ontario, CA). The eye-
tracked subjects were instructed the same way as the non-eye-tracked subjects,
but were given additional instructions related to the eye-tracking procedure.
Prior to the start of the experimental task, eye-tracked subjects were mounted
with the eye-tracker and underwent a calibration procedure performed in accor-
dance with the manufacturer’s technical instructions. This calibration allows
the eye-tracker to estimate subjects’ gaze locations in screen coordinates on
the basis of raw measurements from head-mounted cameras, two focused on
their eyes and one focused on infrared markers at the corners of the screen.
The calibration was performed by asking the subject to fixate on nine different
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points on the screen and recording the corresponding eye and head positions.
After the calibration, a nine point validation was performed (similar to the
calibration process) to make sure the calibration was accurate. Generally, we
accepted calibrations and allowed subjects to proceed only if their average error
of measurement was less than one degree of viewing angle; recalibrations were
performed if needed, and eye-tracking was halted if these were unsuccessful. At
the beginning of each period, a drift correction was performed to correct for
drifts in the calibration (and a recalibration was performed if necessary).

The eye-tracked subjects used a different task program than the other sub-
jects; this task was coded and run with Matlab, using the Psychophysical
Toolbox version 2.54[1, 7] for task display and subject input and the Eye-
link Toolbox[2] to interface with the eye-tracker hardware.! The experimental
task was displayed on a liyama HM204DT 22-inch monitor with a resolution
of 1600x1200 and a refresh rate of 85 Hz. Subjects were seated approximately
24 inches away from the screen; this distance implies that a 1° change in gaze
equals an approximately 40 pixel change in screen location.

On the screen, payoffs of oneself are placed on the left and the opponent’s
payoffs on the right (to make it easier for the eye-tracker to identify which
payoff cell the subject is viewing). For the column players, we transposed the
payoff matrix so they were visually choosing rows (to make it comparable to the
tracked row players). Subjects were asked to make their choices by fixating on
one of the four boxes on the left of the screen for 0.8 seconds.?

1To avoid the complications of integrating different software packages, experimenters served
as the interface between each eye-tracked subject and the rest of the group, communicating
strategy choices back and forth between a laptop running z-Tree and a response pad connected
to the Psychophysical Toolbox task.

2This input method likely produced some spurious lookups; see A6.1 and A6.4.3 for relevant
discussion. We chose this input method because of one nice feature: when the quality of the
eye-tracker calibration declines beyond a certain point, the subject is unable to proceed. Thus,
it is easier to identify when recalibration is needed. On the whole, however, this input method
is probably undesirable.
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A4 MODELS

A3 Summary of Data Collected

A total of eight sessions were conducted. Five sessions were conducted during
August 12-20, 2005 (Two sessions each on August 12 and 13, and one ses-
sion on August 20), resulting in twenty-four non-eye-tracked subjects and six
eye-tracked row player subjects. Due to technical difficulties, we had to stop
eye-tracking two other eye-tracked subjects during the experiment; these sub-
jects continued with the experimental task and only their behavioral choices are
included in the analysis. Another three sessions were conducted on September
11, 2006, resulting in eight non-eye-tracked subjects and six eye-tracked column
player subjects. Due to a low show-up rate, two of the sessions were conducted
with only four subjects in the group, two of them eye-tracked. Also, due to
experimenter error, a subject’s opponent’s choice was transferred between z-
Tree and the Psychophysics Toolbox incorrectly in one of the periods for two
subjects. We consider it unlikely that this would affect any of our analyses, and
therefore do not exclude these subjects on the basis of these minor errors. In
total, we collected behavioral data for forty-four subjects and lookup data for
twelve of these subjects (six row players and six column players).

A4 Models

We consider five models of learning: reinforcement (Re), experience-weighted
attraction learning (EWA), self-tuning EWA (stEWA), and Cournot-type an-
ticipatory response level one (C1) and two (C2).

A4.1 Experience-Weighted Attraction (EWA)

EWA is a general adaptive model that nests types of reinforcement and belief-
based learning as special cases. In EWA strategies have numerical attractions
which begin with subject-specific initial attractions and are updated based on re-
ceived and foregone payoffs. In its general form, EWA has three psychologically-
inspired parameters: ¢, 4, and k.

Using notation similar to Ho, Camerer, and Chong (2007), we have players
i, games g, and trials ¢; each player chooses strategy j from 1,...,m;. Player
i’s strategy choice in period t of game g is s;4(t); his opponent’s strategy choice
is s_;4(t). Likewise, s{g denotes player i’s j-th strategy in period ¢ of game g.
Players have subject-specific initial attractions A;q(0) = (A%g(()), 5 AR0)
and initial weight N;4(0). Attractions update after the choices and receipt of
information in a trial, according to the following equation:

i * Nig(t — 1)+ Al (t — 1)
Nig(t)
(61 + (1= 0 U(sig (1), ) ) g (5 510 ()
" Niy(t) ’

(A4.1)
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and Nj4(t) updates according to
Nig(t) = ¢ % (1 — K) * Nig(t — 1) + 1. (A4.2)

In (A4.1), the first term is the attraction from the previous period discounted
by some factor and the second term is the weighted reinforcement value corre-
sponding to the strategy. Chosen strategies have a reinforcement weight of 1
whereas unchosen strategies have a reinforcement weight of 4.

These attractions map to strategy choice probabilities via some function;
following Camerer and Ho (1999) and Ho, Camerer, and Chong (2007), we
choose the “logit” form which uses a sigmoid function with a subject-specific
response parameter A. The probability of choosing strategy 52(1 in period t is
the following function of period ¢ — 1 attractions:

exp(\; Al (t— 1))
Sy exp(Aix Al (t = 1))

The lookup area associated with EWA is the own payoff matrix column
corresponding to s_;(t).

A4.2 Reinforcement (Re)

As noted above, in the EWA model, the parameter ¢ is the reinforcement weight
placed on foregone payoffs. In addition to unconstrained EWA, we consider a
reinforcement-type model obtained by fixing 6 = 0, which implies payoffs from
unchosen strategies do not enter into the calculation of attractions and are
therefore irrelevant. Reinforcement-type models have the own payoff matrix
cell corresponding to the chosen strategies of the period m;q(siq(t), s—ig(t)) as
their lookup area.

A4.3 Self-tuning EWA (stEWA)

Ho, Camerer and Chong (2007) created a “self-tuning” form of EWA (stEWA)
in which two psychologically uninteresting parameters are removed and the
remaining free parameters are replaced by functions[5]. The reinforcement
weight § + (1 — 8)I(s],si(t)) is replaced by a function 47 (¢) that equals 1
for strategies which are weakly better responses than the chosen strategy (i.e.,
Tig(81g,5—ig(t)) > Mig(sig(t),5-ig(t))) and 0 for worse responses. In addition,
the decay weight ¢ on old attractions is specified as a function of experience
$ig(t). The stEWA model constrains k = 0 and N(0) = 1. See Ho, Camerer
and Chong (2007) for discussion of the inspiration behind these choices.

As in the vanilla EWA model, attractions update after the choices and receipt
of information in a trial, according to the following equation:

Gig(t) * Nig(t — 1) x Agg(t -1) N 5{g(t) * Tig (szg, s,ig(t))

A0 = Ny (D) Ny (0) !

(A4.4)

10
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and Nj4(t) updates according to
Nig(t) = ¢ig(t) * N(t — 1) + 1. (A4.5)

The function ¢;4(t) is defined to be

m_;

Gig(t) =1 — % > (hf(t) - I(s’ii,s_i(t)))z, (A4.6)

k=1

where

w\»—t

=) I(sk,s (A4.7)

T=1

and the function d;4(¢) is defined to be

$1(0) = {1 if i (s],54(t)) > mi(t) (A4.8)

0 otherwise.

As before, attractions map to probabilities according to (A4.3).
The lookup area for stEWA is the set of cells with positive reinforcement
weight in the own payoff matrix column corresponding to s_;(t).

A4.4 Cournot-type Models (C1 and C2)

The two “sophisticated” models C1 and C2 anticipate opponents’ behavior on
the basis of the observed choice in the previous period. In one model (C1),
players expect others will choose a best response to their own last choice (i.e.,
they expect others use a Cournot rule). Note that this rule requires player ¢ to
look at payoffs m_; (s’ ;, sz(t)) (i.e., the other player’s payoffs given what player

i just did), compute s*; = {s’ , : s’ , = argmax7_;(s;(t),s” )} and then look
at mi(s?, 5% ;).

An iteration of this rule (C2) assumes that row players think column players
think they (the row players) will follow a Cournot rule. This requires looking at
mi(s), s_i(t)), computing st = {s! : 57 = argmaxm(sj —i(t ))} then looking at
W_i(S?,S'Zi) to compute s*, = {s*, . = argmax m_;(s},s*,)}, then looking
at 71'1(83 ,s*,) to choose a best response. (These models obviously could be

iterated further than two steps.)

A5 Behavior

A5.1 Summary of Observed Behavior

Twenty-eight of the forty-four subjects have at least one game in which they
chose the same strategy across all ten periods (sixteen subjects have one, five
subjects have two, six subjects have three, and one subject has four). These

11
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“non-learning games” make up 27.3% of the observed games and 29.2% of the
eye-tracked games. Since we conjecture that lookups and behavior in these
“non-learning games” are less likely to be the result of a learning process, we
focus on the subset of the data which excludes them (we call this the “learning
games” subset).

Graphs of the proportion of subjects playing their Nash strategy in each
period of the four games are Figures 3 and 4, computed for all games and
for the “learning games” subset, respectively. Two features are immediately
evident: there is a substantial amount of non-Nash play in the first period of
each game, and the proportion playing Nash tends to increase over the ten
periods. Furthermore, the proportion of Nash play is reduced in the “learning
games” subset, as would be expected.

12
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A5.2 Methods for Behavioral Estimation

The basic features to note are:
e Initial attractions are burned-in using first period choices.
e Parameters are subject-specific but constrained to be equal across games.
e Choice probabilities are defined by the logit-type map of (A4.3).

e Models are estimated using maximum likelihood.

A5.2.1 Maximum Likelihood Estimation

For each player i and model M, we numerically maximize the likelihood function
with respect to a vector of parameters OM = (uM, oM, AM) subject to relevant
constraints, where M is the (possibly length-0) vector of model parameters, o
is the initial attractions scale parameter (included for adaptive models only),
and A\M is the response parameter in the probability map of (A4.3). Omitting

the model superscript, this likelihood is

L(Oi]si,s—i) = [ [ [T 27y (AL (t = 1; i, 03); M) (A5.1)
t

g

A5.2.2 Initial Attractions

For the adaptive models (EWA and its variants), we need to provide initial
attractions for every player, for each strategy in each game. Instead of fitting
these as free parameters, we “burn-in” the initial attractions using the first-
period choice, and give the initial attractions an unrestricted scale parameter
0;. Specifically, A (0) = 0;*I(s], = 5i4(0)). We also fix N(0) = 1 in all adaptive
models. This is a constraint in stEWA that we apply to Re and EWA as well;
the modulation of initial attraction weight by having N;(0) a free parameter is
accomplished here indirectly by the scale parameter for the initial attractions.

A5.2.3 Nash-type Benchmark

As a non-learning benchmark, we also estimate a model in which players assume
their opponent will choose their unique Nash strategy with certainty (we call
this model “Nash”). In this model, the base attractions are expected payoffs
under this assumption: Aj () = miy(s],, sNa5").

A5.2.4 Ck Model Variants

We consider several variants of the Ck models to examine whether minor changes
to our behavioral specifications affect our qualitative conclusions. These vari-
ants, described below, alter the myopic best response of the basic Ck models,
reducing the responsiveness to opponents’ play in the previous period.

15
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Our base Ck model, as described above, assigns attractions equal to expected
payoffs assuming the opponent is a hard-maximizing C(k — 1) type; that is,

j j C(k—1
Azg(t) = ﬂ-ig(sgg7 ngg ))

A5.2.5 Geometric Ck Variant

The geometric variants of the Ck models assign attractions equal to a geometrically-
discounted average of the current Ck attractions and attractions in the previous
periods. If the base Ck-model attractions for 7 = 1,...,¢ are Bfg(T), the geo-
metric attractions for period t are

t

Al(t) =Y "Bl (1),

T=1

where + is a free parameter.

A5.2.6 p-switch Ck Variant

The p-switch variants of the Ck models simply add a quantity + to the attrac-
tion for the strategy chosen by the player in the previous period. Essentially,
players are predicted to play the same strategy as the previous period with
some probability and to switch to the myopically best-responding Ck strategy
otherwise.

A5.2.7 “Hard” and “Soft” Maximization

The theoretical Ck-type and Nash-type models assume that the opponent will
choose a certain unique strategy with certainty. In these models, the base
attractions are expected payoffs under this assumption; for model M, we have
A () = mig (53, M, (1)):

We can map these attractions into probabilities using either “hard” or “soft”
maximization, depending on our assumptions about the error structure. Essen-
tially, in “soft” maximization, when subjects make “errors” and do not choose
optimal strategies as specified by the model, they are more likely to choose
strategies with higher expected payoffs under the assumptions of the model; in
contrast, with “hard” maximization, these errors are uniform across strategies.
Using “hard” maximization is in a sense the more straightforward choice (and
is the choice we made for results reported in the main paper)—it assumes that
subjects choose the model-specified strategies with probability p and randomize
uniformly over the other strategies.

With “soft” maximization, the expected payoff-based attractions are fed
directly into (A4.3), and the free parameter in the map from attractions to
choice probabilities determines the degree of responsiveness to the model-implied
expected payoffs.

16
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With “hard” maximization, the expected payoff-based attractions are trans-
formed thusly , .
143, (1) = ma; A2, (1)

Z;.n:il I(Agg (t) = max; Agg (t))

and then fed into (A4.3). That is, strategies which are best responses under
the assumptions of the model are given an attraction of one and all others are
given an attraction of zero, and the free parameter in (A4.3) determines the
error probability.

Al (t) = (A5.2)

A5.2.8 Out of Sample Validation

We report goodness of fit for periods outside the sample used for fitting the
models. In these out of sample “validation” fits, we estimate parameters using
choices from periods 2-7 in each game and report the corresponding likelihoods
for the data from periods 8-10.

A5.3 Behavioral Estimation Results

Table 2 reports the validation goodness of fit (as described above), recapitulating
the results reported in the main paper alongside results including all trials. The
goodness of fit is given as geometric mean likelihoods, averaged across subjects.
As can be seen in the table, there are no apparent differences in behavioral fit for
the eye-tracked subjects. Tables 3 and 4 report uncorrected p-values from paired
Mann-Whitney-Wilcoxon tests of equality between each of the behavioral model
specifications, for the “learning games” subset and for all games, respectively.
The “soft” maximization variants have been dropped. Tables 5 and 6 report
results of the same tests, correcting for multiple comparisons by the method of
Holm (1979)[6].

Figure 5 plots the EWA parameter estimates for each subject, fit using the
“learning games” subset and periods 2-7. This plot can be compared with
similar plots in the EWA literature.

17
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all subjects eye-tracked subjects
all trials learning games all trials learning games
Re 0.555 0.474 0.497 0.405
EWA 0.561 0.499 0.559 0.454
stEWA 0.588 0.505 0.601 0.460
c1 hard 0.535 0.420 0.557 0.400
soft 0.496 0.409 0.532 0.411
geometric C1 hard 0.541 0.433 0.566 0.399
soft 0.530 0.450 0.556 0.438
pswitch C1 hard 0.582 0.481 0.556 0.450
soft 0.573 0.464 0.603 0.471
2 hard 0.538 0.425 0.576 0.429
soft 0.511 0.429 0.551 0.433
seometric (2 hard 0.540 0.425 0.586 0.437
soft 0.519 0.442 0.557 0.441
pswitch C2 hard 0.605 0.509 0.602 0.491
soft 0.587 0.493 0.577 0.470
Nash hard 0.549 0.444 0.573 0.425
soft 0.512 0.431 0.560 0.437

Table 2: Validation fits by subset. Results reported in the main paper correspond to
columns 2 and 4. Qualitatively, it can be seen that validation fit is uniformly worse
when considering the “learning games” subset instead of all the trials. In addition,
there are no significant differences in validation fit between eye-tracked subjects and
untracked subjects.
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Re EWA  stEWA C1 C2
EWA | 0.38506
stEWA | 0.39109 0.88776
C1 | 0.19226 0.03474 0.00026
C2 | 0.39109 0.04109 0.00204 0.61312
Nash | 0.58907 0.08306 0.01088 0.11182 0.56593

Table 5: Pairwise validation fit Mann- Whitney- Wilcozon tests using all subjects and
the “learning games” subset. The Ck and Nash models use “hard” mazimization, and
other Ck variants have been dropped. In this table, p-values are corrected for multiple
comparisons by the method of Holm (1979).

Re EWA  stEWA C1 C2
EWA | 1.00000
stEWA | 1.00000 1.00000
C1l | 041177 0.41177 0.06282
C2 | 0.46801 0.46801 0.06027 1.00000
Nash | 1.00000 0.79661 0.29604 0.09237 0.79661

Table 6: Pairwise validation fit Mann- Whitney- Wilcozon tests using all subjects and
all games. The Ck and Nash models use “hard” maximization, and other Ck variants
have been dropped. In this table, p-values are corrected for multiple comparisons by the
method of Holm (1979).
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0.0 0.0

Figure 5: EWA parameter cube plotting the estimated parameters for each subject,
computed using the “learning games” subset, periods 2-7.
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A6 Eye-tracking

A6.1 Preprocessing and Filtering

Gaze samples were parsed into fixations and saccades by the EyeLink II on-line
parser, using standard parameters for cognitive studies[9]. Fixations map to
lookups via defined interest areas, which are boxes partitioning the screen area
on and around the displayed payoff matrices into corresponding cells. A fixation
in a payoff matrix cell’s interest area counts as a lookup of that payoff matrix
cell. Consecutive fixations in the same cell were combined and considered as one
lookup. We use fixation counts for our analysis and not fixation durations (with
the exception of the analysis in A6.4.5); thus, combining consecutive fixations
prevents us from double-counting lookups. See Figure 6 for an example of the
preprocessed output from the eye-tracker, showing interest areas, fixations, and
saccades prior to combining consecutive fixations or filtering.

The figure should also convey how noisy eye-tracking data can be and how
difficult it is to unambiguously map fixations to information lookups. Note that
we chose a relatively clean trial; nonetheless, there are fixations outside defined
interest areas that might reasonably be considered lookups, depending on the
(unknown) discrepancy between the calibrated estimated screen locations of fix-
ations and the true gaze location, and also on the angle from the gaze location
within which subjects can read our displayed payoff numbers. Furthermore,
a number of fixations are located near edges or corners of interest areas and
might very well represent lookups of several different payoff matrix cells. In this
study, we tend to take our lookups at face value and hope that noise in our data
translates to noise, but not bias, in our analysis results (and especially in rela-
tive comparisons across theories). Our main results derived from eye-tracking
data aggregate observations across trials, games, and eventually subjects; thus,
these results should be reasonable estimates of the average relative weight of
visual attention on different pieces of information within subjects and within
our experimental population. Other analyses, like those described in A6.2.1,
involve assumptions or interpretations of the data that are less robust to noise
and calibration error.

We perform minor filtering of the fixations after combining consecutive fix-
ations in a cell but prior to any analysis. We always drop the first fixation in a
trial, as it represents the gaze location at the moment when the payoff matrices
are displayed, and should not represent an information lookup. We also always
drop the last fixation (not counting the fixation that chooses a strategy and
ends the trial), as this fixation often appeared to represent a spurious lookup
produced while the subject was attempting to make a strategy choice (recall
that we used a “choose-with-eyes” input method; see A2.1). After this filtering,
all lookups outside payoff matrix or history interest areas are dropped; history
lookups are dropped for the majority of our analysis and discussed in A6.5.
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A6.2 Model Lookup Predictions and Measures

We assume that each learning model implies an area theory corresponding to
the cells containing the minimal set of information necessary to implement the
learning model. Define the following measures as functions of the hit-rate z and
the proportional area a:

e Linear measure:

LM(z,a) =z —a (A6.1)

e Ratio measure: T
RM(z,a) = — (A6.2)

a

e Quter measure: .
OM(z,0) = T— (A6.3)

The hit-rate x can be taken as the proportion of time fixated, the proportion of
fixations, or the proportion of observed cells. Arguments made by Selten (1991)
suggest that the linear measure is in some sense optimal [8]. The ratio measure is
an oft-suggested alternative, but, as Selten (1991) notes, it favors point theories.
The outer measure is another alternative; noting  —a = (1 —z) — (1 — a), we
can write

OM(z,a) = L= =(1=a) (A6.4)

1—a

which is simply the ratio measure for the area model’s complement. The outer
measure favors large area theories.

A6.2.1 Time Course-Restricted Ck Models

In addition to area predictions, the level-k “anticipatory” models suggest certain
restrictions on the order of lookups. Specifically, the C1 model suggests that
subjects undergo the following stages:

1. Look at the row in their opponent’s payoff matrix corresponding to their
previous choice and find their opponent’s best response strategy BR_;(s;(t—

1)).

2. Look at the column in their own payoff matrix corresponding to this best
response and find their best response to it BR;(BR_;(s;(t — 1))).

Likewise, the C2 model suggests that subjects undergo the following stages:

1. Look at the column in their own payoff matrix corresponding to their oppo-
nent’s previous choice and find their best response strategy BR;(s_;(t—1)).

2. Look at the row in their opponent’s payoff matrix corresponding to this
best response and find their opponent’s best response to it BR_;(BR,;(s_;(t—

1)))-
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3. Look at the column in their own payoff matrix corresponding to this best
response and find their best response to it BR;(BR_;(BR;(s_;(t — 1))))3.

We examine lookup scores for “restricted Ck” models (denoted “Clr” and
“C2r”); for these models, we implement a simple form of order restrictions by
requiring that subjects hit » = 1 of the four cells in the first stage area before
counting lookups in the second stage area as hits for the model, and likewise,
for three-stage models, require that subjects hit » = 1 of the four cells in the
second stage area (subject to the first stage restriction) before counting lookups
in the third stage area as hits for the model.*

In order for the linear measure scores for these restricted models to have
zero expectations under random looking, we must adjust the areas a to account
for the restrictions.

The relevant distribution is the negative binomial, which, for a series of i.i.d.
Bernoulli trials with success probability p, gives the probability of receiving the
r-th success on the (k + r)-th trial:

. kE+r—1Y\ .
NegBin(k;r,p) = ( L )p (1—p)*

For a trial with n total fixations, the expected count-wise hit rates under uniform
random lookup for the three stages can be written as:

ai =p

S et rir ) (222)

n

ag

u=1
az = 1 i NegBin(u — r;7,p) nz_uNegBin(v —r;r,p) pn—u—v)
3 n o s Iy < s 1y n

Thus, the adjusted two-stage model area is a = a1 + a2 and the adjusted
three-stage model area is a = a1 + as + as.

A6.2.2 Post-Period Feedback and “Reinforcement-enhanced” Scores

A notable feature of our experimental task for eye-tracked subjects is the inclu-
sion of a post-period feedback screen displaying the subject’s strategy choice,
his opponent’s strategy choice, and the subject’s received payoff for the period.
Importantly, this information on the subject’s received payoff is exactly the in-
formation contained in the “reinforcement cell” of the payoff matrices. Given
this redundancy, one wonders if the reinforcement-type model has well-defined
lookup predictions in our experiment.

3Note that in the C2 model the third stage area and first stage area can coincide in certain
trials (in equilibrium, for instance). When they do, C2 is effectively a two-stage model.

4Lookups in earlier stage areas continue to count as hits after later stage areas become
operative.
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One strategy for dealing with this issue attempts to integrate this feedback
screen information into our lookup counts by adding some number of hypothet-
ical automatic lookups of the reinforcement cell in every trial. For instance, we
could suppose that subjects’ viewing of the post-period feedback screen trans-
lates into one automatic lookup of the reinforcement cell in the subsequent trial.
This strategy implicitly assumes that ignoring the post-period feedback screen
undercounts the true lookups of the reinforcement cell information (the sub-
ject’s received payoff). We’ll call the lookup scores produced using this strategy
“Reinforcement-enhanced scores”. In subsequent sections, we include figures,
tables, and analysis of these Reinforcement-enhanced scores. There is further
discussion of the Reinforcement-enhanced scores interacting with our assump-
tion that the number of lookups is exogenous in A6.4.4.

It’s important to remember, however, that all of the models we consider, with
the exception of C1, have lookup area predictions that include the reinforcement
cell. Specifically, EWA’s lookup area is the entire column in the subject’s own
payoff matrix corresponding to his opponent’s strategy choice in the previous
period; stEWA’s lookup area is some subset of this EWA column but always
includes the reinforcement cell. Furthermore, since the C2-type player first finds
his best response to his opponent’s strategy choice in the previous period, C2’s
lookup area always contains the EWA column. Recall that, as we have defined
the hierarchy of models, the Ck-type player assumes his opponent is C(k — 1);
the Cl-type player assumes his opponent uses a Cournot rule and simply best-
responds to his opponent’s previous strategy. Thus, any Ck model with k even
will have a lookup area that includes the EWA column and thus the reinforce-
ment cell. C1’s lookup area does not necessarily contain the reinforcement cell,
but it contains the EWA column (and thus the reinforcement cell) if the op-
ponent’s previous strategy choice was a best response to the subject’s previous
strategy choice. In our data (eye-tracked subjects, “learning games” only), C1’s
lookup area contained the EWA column 64.9% of the time.®

Thus, while our lookup counts may be undercounting the true attention
to the reinforcement cell information, “correcting” this bias using the above
strategy only affects comparisons between C1 and the other models.® The
“Reinforcement-enhancement” affects the magnitudes of the lookup scores for
the other models, but these magnitudes aren’t particularly interesting, beyond
the fact that every model scores above the uniform looking benchmark.

It is debatable whether the post-period feedback would affect all of the types
in the same way, as hypothesized above, by providing the information contained
in the reinforcement cell. Practically, subjects implementing something like
a Reinforcement-type model might use the reinforcement cell information on
its own to update attractions; those implementing something like the other

5The same statistic computed using all trials from eye-tracked subjects, including the “non-
learning games”, is 74.0%; it is of course higher, as these “non-learning games” tend to have
steady Nash play.

6As our lookup scores use the linear measure LM (x,a) = = — a, which is linear in both
the hit-rate  and the proportional area a, comparisons between models depend only on the
hit-rates in areas that differ between the models.
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models may wish to have that information available at the same time as other
payoff information. Certainly, we might expect this to be the case with subjects
who, like those implementing a C2-type model, would use the information in
the reinforcement cell when comparing payoffs in that column to find a best
response. It could even be argued that lookups of the reinforcement cell of
the payoff matrix represent evidence against Reinforcement-type reasoning, as
subjects implementing a simple Reinforcement-type learning model receive the
only information they consider relevant on the post-period feedback screen; they
should have no motivation to look for it in the payoff matrix, and it would surely
stick in their short-term memory long enough for them to make their strategy
choice.

A6.3 Eye-tracking Results

Table 7 contains mean LM scores, both raw and “Reinforcement-enhanced” (as
described above in A6.2.2), computed using all trials or using only “learning
games”. The results reported in our main paper are the mean raw LM scores
computed using only “learning games”. Table 8 contains p-values for pairwise
Mann-Whitney-Wilcoxon tests between models’ LM scores (uncorrected for mul-
tiple comparisons), using “learning games” only; these are the tests reported in
the main paper. Table 9 reports results of the same tests, corrected for multiple
comparisons using the method of Holm (1979)[6].

Figures 7 and 8 display mean numbers of lookups across periods of the games,
broken down by their location (own payoff matrix, opponent payoff matrix, and
total), for the “learning games” subset (Figure 7) and for all trials (Figure 8).
There is an apparent downward trend in all three statistics across periods of
each game, but no apparent trend in the relative share of lookups on one’s own
payoff matrix versus one’s opponent’s payoff matrix.
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Re EWA stEWA C1 C2 Clr
EWA | 0.09229
stEWA | 0.00098 0.90967

C1 | 0.07715 0.12939 0.12939

C2 | 0.00146 0.01611 0.00244 0.05225

Clr | 0.10986 0.26611 0.30127 0.00684 0.00049

C2r | 0.00342 0.07715 0.03418 0.46973 0.01221 0.23340

Table 8: Pairwise LM score Mann- Whitney- Wilcoxon tests, computed using “learning
games” only. These are the tests reported in the main paper. In this table, as in the
main paper, p-values are uncorrected for multiple comparisons. Table 9 reports results
from these tests corrected for multiple comparisons by the method of Holm (1979)

Re EWA stEWA C1 C2 Clr
EWA | 0.849
stEWA | 0.020 1.000

C1 | 0.849 0.906 0.906

C2 | 0.028 0.226 0.044 0.627

Clr | 0.879 1.000 1.000 0.109 0.010

C2r | 0.058 0.849 0.444 1.000 0.183 1.000

Table 9: Pairwise LM score Mann- Whitney- Wilcoxon tests, computed using “learning
games” only. In this table, p-values are corrected for multiple comparisons by the
method of Holm (1979).
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Figure 7: Number of own payoff matriz lookups, other payoff matriz lookups, and total
payoff matriz lookups by game and period, computed using only “learning games”.
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Figure 8: Number of own payoff matriz lookups, other payoff matriz lookups, and total
payoff matriz lookups by game and period, computed using all trials (both “learning
games” and “non-learning games”).
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A6.4 Eye-tracking Data Breakdown
A6.4.1 Variation by Game and Period

Figure 9 plots the mean LM scores, computed using only “learning games”,
broken down by game, along with the mean number of lookups for each game.
While there is some variation in mean LM scores across games, it does not ap-
pear substantial. There is no apparent trend in mean number of lookups across
games. Figure 10 plots the mean LM scores, computed using only “learning
games”, broken down by period, along with the mean number of lookups for
each period. There is substantial variation in mean LM scores across periods,
but no clear trends in relative scores. As seen above, there is an apparent down-
ward trend in the number of lookups across periods of a game. Figure 11 shows
the LM score and number of lookups in each period for a single subject.

A6.4.2 Subjectwise Heterogeneity

An anonymous referee noted the importance of examining subjectwise hetero-
geneity. To this end, Table 10 contains the mean LM scores and share of lookups
on opponents’ payoffs for each subject, including only “learning games”. Note
that four of the twelve subjects have opponent payoffs lookup shares above 50%,
four have shares between 40% and 50%, and four have shares below 40%; the
minimum share is 27.5%. Thus, all subjects have substantial numbers of lookups
in their opponents’ payoff matrices, and most look at their opponents’ payoffs
nearly as much as at their own.
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A6.4.3 Breakdown by Time Within a Trial

We examined the variation in lookup scores within the time course of a trial by
computing the scores for moving windows of fixations within the trials.

~ Specifically, for subject i, game g, and trial ¢, we have a string of K fixations

ot ,zgt, e }?t; for each fixation compute its order percentile q}cgt = 100%
k/K. We define a moving window of size s as Wy = [0, s]. Then, taking samples
U ={1,...,100 — s}, we compute the LM scores for each u € U taking only
fixations for which q,zcgt € u+ Ws. The scores are aggregated within subjects by
taking an unweighted mean, and aggregated between subjects by taking another
unweighted mean.” We also estimate the standard error of this latter mean.

The moving window LM scores (+1 standard error) for the five models are
graphed in Figure 12 with window size 20%. Figure 13 shows the corresponding
LM scores for two area masks of interest: the own payoff matrix (labeled “own”)
and the own payoff matrix row corresponding to the period’s choice (labeled
“own choice, own matrix”). This latter figure shows an important characteristic
of the lookup data: near the end of each trial, there is a substantial tendency
for lookups to be in the own payoff matrix; furthermore, there is a strong bias
towards the row in the own payoff matrix corresponding to the strategy chosen
in the period. This was most likely produced by the task design—since eye-
tracked subjects chose their strategies by fixating on choice boxes in line with
the strategy rows to the left of the own payoff matrix on the screen, their
gaze must move leftwards prior to their choice. Furthermore, any difficulty in
triggering the gaze-contingent selection of their strategy (due to poor calibration
of the eye-tracker, for instance) is likely to produce fixations nearby the choice
box; with enough error in the gaze location, these fixations may overlap the own
payoff matrix (most likely in the row corresponding to their choice).

Seminar participants at the 2007 North American meeting of the Economic
Science Association suggested that subjects implementing adaptive-type learn-
ing might produce lookup scores unfavorable to these models if they make the
relevant lookups quickly, early in the trial, and then make lookups randomly
or driven by “curiosity” for the remainder of the period. Examining Figure 12
in light of the above issues, we find that the order of the models’ LM scores
is generally maintained within the time course of a trial; the drop in C1 (and
slight drop in C2) towards the end can be explained by the discussion above.
There appears to be a downward trend in adaptive scores in the first quarter
of a trial, but this trend is matched in the C1 and C2 scores. The stability
of our ordinal conclusions across the time course within a trial provides some
slight evidence against the suggestion that the “true” types are obscured by
non-learning looking during the later parts of a trial.

There are other arguments against this suggestion, of course. Since each trial
ends when all subjects have entered their strategy choice, there is a disincen-
tive to spend extra time on irrelevant looking. Furthermore, uniform random
looking (or looking that is uncorrelated with the locations of the model-relevant

"This does not weight by the number of observations (trials) each subject has in the
included subset.
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information) should merely decrease the difference in observed LM scores. Also,
one wonders why a subject would be “curious” about other payoff information
but not use this payoff information in choosing their strategy.
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Figure 12: Moving window analysis of LM scores within each trial by fixation index
%, with window size 20%. The bars are 1 standard error.

39



A6.4 Eye-tracking Data Breakdown A6 EYE-TRACKING

o
g i —e— own matrix —e— own choice, own matrix
!
To}
-
o
il
s N
— o
c o~
©
8 o
IS
e
0 /x
Q o
o
(=3 Ll
Q —]
pd L

Figure 13: Moving window analysis of the LM scores corresponding to the own payoff
matriz (“own”) and the own payoff matriz row corresponding to the period’s choice
(“own choice, own matriz”) within each trial by fization index %, with window size
20%. The bars are £1 standard error.
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A6.4.4 Breakdown by Number of Lookups

It must be emphasized that our analysis takes the number of lookups to be
exogenous. We lack a framework for determining the number of lookups implied
by various models or player-types, especially in the context of eye-tracking.
While we might suppose that implementing a given model requires looking up a
certain set of information, this assumption would oblige us to place a great deal
of confidence in our ability to identify information lookups from our eye-tracking
data, and especially our ability to infer that the absence of an information lookup
of a payoff matrix cell from the absence of a recorded fixation in a payoff matrix
cell. Instead, we consider our eye-tracking data as representing a rough measure
of the weight of visual attention on different pieces of information, and believe
that the data provides useful results when it is combined across trials.

We can, however, examine whether our results change if we look at subsets
of the data with different numbers of lookups. Figures 14 and 15 display the
mean LM scores for the models as a function of a minimum lookups cutoff. For
value n on the z-axis, the scores are computing excluding trials with number of
payoff matrix lookups less than or equal to n. Figure 14 shows limited variation
in mean raw LM scores and rankings with varying n, especially for reasonable
cutoff choices (as can be seen in the bottom graph, if we were to increase n to
40 and above, we would be discarding more than half of our observed periods).

Figure 15 shows important trends for the Reinforcement-enhanced LM scores
discussed above in A6.2.2. Ignoring the restricted-Ck scores for a moment, note
that all of the [unrestricted] models’ scores decline steeply as n increases from
zero. This is because of two facts: all of the models gain from the automatically-
added reinforcement cell lookup (with C1 gaining in 64.9% of trials, and the
other models gaining in every trial), and the contribution of this lookup is ap-
proximately proportional to the reciprocal of the number of actual lookups in
a period. This first fact is especially notable—recall that Re, stEWA, EWA,
and C2 all predict relevance of the reinforcement cell mig(s:(t — 1), 5—44(t — 1))
in every trial. Furthermore, note that C1 predicts relevance of this cell when
the previously-chosen strategy is a best response to their opponent’s best re-
sponse to their previous-chosen strategy, e.g., when both the subject and their
opponent played their Nash strategy in the previous period. Now, considering
the restricted-Ck models, note that the reinforcement cell is predicted to be
relevant in the first stage of a C2 player’s reasoning but is never predicted to be
relevant for a C1 player until the second stage of his or her C1 reasoning. Thus,
applying the simple order restriction discussed in 6.2.1 (and ignoring the au-
tomatic reinforcement cell lookup with regards to satisfying order restrictions),
the automatic reinforcement cell lookup continues to count as a hit for C2r but
never counts as a hit for Clr. As a result, the score for Clr for small n is hurt
by the automatic reinforcement cell lookup.
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A6.4.5 Breakdown by Fixation Duration Cutoff

We considered the possibility that fixation duration might carry some useful
information about whether a given fixation represents an information lookup.
Crawford (2007) notes the exclusion of short lookups (less than 180 ms) in
previous mouse-tracking studies of information search in games, suggesting that
these lookups are “too short for comprehension”[3]. A comparable threshold for
fixations in eye-tracking experiments should be lower, but there is no commonly
agreed-upon threshold for these kinds of experiments. Figure 16 displays the
model scores as a function of a minimum fixation duration cutoff. The fixations
(and thus their durations) are combined when consecutive fixations lie in the
same cell (see A6.1). One fact readily apparent in the figure is the absence of any
fixations with duration less than 50 ms. This is a consequence of the parameters
used in preprocessing of gaze location samples into fixations. Fixations of less
than 100 ms in duration could reasonably be considered “short” for the purposes
of cognitive studies and are often discarded; here, after preprocessing, they
represent only 4.4% of fixations[9]. The graph shows no substantial changes in
scores for the range of minimum durations from 0 ms to 250 ms. As a result, we
chose to report results without a minimum fixation duration, and believe that
results would be nearly identical for any reasonable choice of minimum fixation
duration.
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Figure 16: The top graph displays mean LM scores by minimum fixation duration
cutoff; below, the corresponding histogram for fixation durations.
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A6.5 History Looking

As can be seen in Figure 2, the task program for eye-tracked subjects displays
history information in boxes at the bottom of the screen. Each box corresponds
to a period of the game and contains the subject’s chosen strategy, his oppo-
nent’s chosen strategy, and his own payoff for that period. Unfortunately, the
limited display area implies any increase in the space used for history informa-
tion must decrease the size of the displayed payoff matrices. Thus, by design,
the different pieces of history information are not visually separated. As a re-
sult, observed patterns of history information acquisition cannot contribute to
identification of learning models or features thereof without imposing strong
assumptions about the cognitive processes implied by the models. A player
observed to be doing frequent history lookups might be implementing belief
learning, computing his opponent’s choice frequencies; he might be implement-
ing reinforcement learning, recalculating his strategy attractions on the basis
of his received payoffs; he might instead be an anticipatory or sophisticated
player, examining his opponents’ choices and weighting his Ck model prediction
accordingly (perhaps along the lines of the geometric or p-switch Ck behav-
ioral variants), or using their observed behavior as hints for finding dominance
relationships or equilibria.

While we might have gained additional insights by emphasizing visual sep-
aration of history lookup components in our design, some basic analyses of
history looking in our data suggests that it is fairly meager. The amount of
observed history box looking is limited relative to payoff matrix looking. There
are about 17.6 payoff matrix lookups for every lookup of a history box, even
including lookups in empty history boxes corresponding to future periods; if we
consider only non-empty history boxes (prior period boxes), this ratio increases
to about 26.5 payoff matrix lookups per non-empty history box lookup. In
addition, one subject never looked at any history boxes, empty or non-empty.
Furthermore, if we ignore this subject and consider only history box lookups
and calculate the subject-wise mean LM scores for the non-empty box area in
each period, four of the eleven subjects have negative scores, implying that they
looked at empty boxes more often than informative boxes.
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A7 Experiment Instructions

EXPERIMENT INSTRUCTIONS

The experiment you are participating in consists of 4 sessions, each having 10
rounds. At the end of the last session, you will be asked to fill out a questionnaire
and paid the total amount you have accumulated during the course of the sessions in
addition to a $5 show-up fee. Everybody will be paid in private after showing the
record sheet. You are under no obligation to tell others how much you earned.

During the experiment all the earnings are denominated in POINTS. Your dollar
earnings are determined by a private POINT/$ exchange rate, which will be displayed
on the computer screen and is only known to you.

In each round, you will be paired with another participant to form a group. In each
group, one participant will be member A, and the other member B. The matching is
done randomly and so that you will NOT see the same participant again in the next
round. Member A and member B will simultaneously choose an action. Member A
will choose R1, R2, R3, or R4, while member B will choose C1, C2, C3, or C4. Each
member’s earnings depend on the two actions chosen, as shown in the tables
displayed on the screen. Note that your POINT/$ exchange rate is different from the
other participant, and hence, even if you and the other participant earn the same
amount of points, you will NOT earn the same amount of dollars.

Practice Session: 3 Rounds
Session 1: 10 Rounds
Session 2: 10 Rounds
Session 3: 10 Rounds
Session 4: 10 Rounds

Additional Information: Two participants will be wearing eye-tracking device and will
participate from another location in campus. Below are special instructions for these
participants:

You will wear an eye-tracking device which will track your eye movements. As a
result, you will receive an additional $5 beside the normal show up fee. Please make
sure you are not wearing contact lenses. You will be seated in front of the computer
screen, showing the earnings tables, and make your choice by looking at the R1, R2,
R3, R4 boxes on the side of the screen. When looking at a box, it will light up, and
will become your choice of action if you keep looking at it for 0.8 seconds.

At the beginning of each session, the experimenter will adjust and calibrate the
eye-tracker if needed. The calibration is done by looking at the black dot at the
center of the screen, and tracing it around as it appears at different locations. This
procedure is done twice to validate your calibration. At the start of each round, you
will perform a drift-correction by looking at the center of the screen (black dot) and
hit the space bar. Please tell the experimenter if you have any concerns.

NOTE: Your payments will be rounded up to the next dollar. Thank you for
your participation.
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