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Abstract

We study the reasoning process people utilize to reach a decision in an environ-

ment where final choices are well understood, the associated theory is procedural,

and the decision-making process is observable. In particular, we introduce a two-

person “beauty contest” game played spatially on a two-dimensional plane. Players

choose locations and are rewarded by hitting “targets” dependent on opponents’ lo-

cations. By tracking subjects’ eye movements (termed the lookups), we infer their

reasoning process and classify subjects into various types based on a level-k model.

More than half of the subjects’ classifications coincide with their classifications us-

ing final choices alone, supporting a literal interpretation of the level-k model for

subject’s reasoning process. When choice data is noisy, lookup data could provide

additional separation of types.
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I Introduction

Since Samuelson [1938] developed the theory of revealed preferences, economic theory has

been focusing on interpreting people’s observed choices as directly reflecting their personal

preferences, usually unobserved by outsiders. Based on the theoretical predictions, empir-

ical researchers then collect data either from natural occurring or controlled environments,

and construct econometric models to analyze it. The revealed preference approach has

achieved tremendous success by simply assuming utility optimization. Nonetheless, this

focus on final choices (and the preferences they reflect) does not exclude the possibility

of analyzing the decision-making process in the middle. Just as modern theories of the

firm open up the black box of profit maximization and explore the effect of contracts and

organizational structures within the firm, there is no reason why economic theory cannot

consider the reasoning process prior to the final decision, especially when it is potentially

observable and can help make better predictions.

In many cases, the economic theory could potentially suggest a procedure by which

people calculate and reason to determine what is the best. When economic theories

provide clear predictions on the underlying decision-making process, it is natural to ask

whether one could test these predictions using some form of empirical data. For example,

in extensive form games, subgame perfect equilibrium is typically solved by backward

induction, a procedure that can be carried out (and therefore tested) step-by-step by

players of the game. Hence, Camerer et al. [1993] and Johnson et al. [2002] employ a

mouse-tracking technology called “mouselab” to test predictions of backward induction,

and find evidence against it even in three-stage bargaining games. In addition to testing

predictions, one could also use a procedural theory to analyze how different reasoning

processes can lead to systematically different behavior. For example, Krajbich, Armel and

Rangel [2010] consider an attentional drift-diffusion model and demonstrate how different

decision thresholds can lead to specific premature choices in an individual decision-making

problem. More recently, Koszegi and Szeidl [2013] consider the possibility that people

focus on certain attributes of available options, and hence, become prone to present bias

and time inconsistency problems.

In this paper, we attempt to study the reasoning process as well as final choices in

a game-theoretic environment. In particular, we consider the reasoning process people

utilize to reach a decision, in which they perform different levels of strategic reasoning.

To conduct this alternative research strategy of studying the decision-making process,

there are three important requirements on the task to use. First, we need a setting in

which final choices are well understood and mature theories exist to explain how choices

are made. This is because if there is still no consensus regarding which theory best explains

final choices and why, it is conceivably harder to come up with satisfactory hypotheses
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on reasoning processes to base tests on. Secondly, to make a plausible hypothesis on

reasoning, we want the associated economic theory to be more procedural. In other

words, there is room that if the theory is taken literally, it makes predictions on not only

choices, but also a particular reasoning process that leads to the final choice. Finally, we

require some data collection method that will allow us to observe the reasoning process

and for that purpose the task used has to suit the method.

We design a new set of games, termed two-person spatial beauty contest games, to

analyze individual’s reasoning process by observing lookup patterns with video-based

eyetracking, meeting all three requirements as follows. This new set of games, as its

name suggests, is essentially a graphical simplification of the p-beauty contest games

for two players.1 It is known that initial responses in the p-beauty contest games can

be well explained by theories of heterogeneous levels of rationality such as the level-k

model.2 Since level-k models can predict choices well in these guessing games, the first

requirement that mature theory exists to explai final choices is met. Logically the next

question should be on whether they can also predict the reasoning processes. A key in

the level-k model is that players of higher levels of rationality best respond to players of

lower levels, who in turn best respond to players of even lower levels and so on. This

best response procedural hierarchy is the perfect candidate for modeling the reasoning

process of a subject prior to making the final choice, since in a two-person game, the

final choice should be a best response to the subject’s belief regarding the other player’s

choice, which in turn is a best response to the subject’s belief about the other player’s

belief about her choice, and so on.3 In other words, to figure out which choice to make,

a subject has to go through a particular best response hierarchical procedure. Thus, the

second requirement is squarely met since by taking the level-k model procedurally, one can

come up with a natural hypothesis regarding the reasoning process. Lastly, the graphical

representation of the spatial beauty contest games induces subjects to go through this

hierarchical procedure of best responses by counting on the computer screen (instead of

reasoning in their minds), leaving footprints that the experimenter can trace, and thus

the third requirement is met.

We eyetrack each subject’s reasoning process by recording the entire sequence of lo-

cations she looks at. In other words, we record not only her final choice, but also every

1Nagel [1995], Ho, Camerer and Weigelt [1998] studied the p-beauty contest game. Variants of two-
person guessing games are studied by Costa-Gomes and Crawford [2006] and Grosskopf and Nagel [2008].
However, unlike the two person guessing game considered in Grosskopf and Nagel [2008], choosing the
boundary is not a dominant strategy in our spatial beauty contest game.

2Level-k models are proposed and applied by Stahl and Wilson [1995], Nagel [1995], and Costa-Gomes
and Crawford [2006]. A related model, the cognitive hierarchy model is proposed by Camerer, Ho and
Chong [2004].

3To avoid confusion, the subject is denoted by her while her opponent is denoted by him.
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location the subject has ever fixated at in an experimental trial real-time. Following the

convention, we call this real-time fixation data the “lookups” even though there is really

nothing to be looked up in our experiment. When a subject reasons through a particular

best response hierarchy, designated by her level-k type, each step of thinking is charac-

terized as a “state.” To describe changes between the thinking states of a subject, we

construct a constrained Markov-switching model between these states. Eye fixations con-

ditional on each thinking state are then modeled to allow for logit errors due to imprecise

eyetracking or peripheral vision. We classify subjects into various level-k types based on

maximum likelihood estimation using individual lookup data. Moreover, we adopt an

empirical likelihood ratio test for non-nested but overlapping models proposed by Vuong

[1989] to ensure the distinctive separation of the estimated type from other competing

types. Results show that among the seventeen subjects we tracked, one follows the level-

0 (L0) best response hierarchy the closest with her lookups, six follow the level-1 (L1)

hierarchy, four follow the level-2 (L2) hierarchy, another four follow the level-3 (L3) hier-

archy, and the remaining two follow the equilibrium (EQ) best response hierarchy, which

coincides with level-4 (L4) hierarchy in most games of our experiment. Treating the EQ

type as having a thinking step of 4, the average thinking step is 2.00, in line with results

of other p-beauty contest games.

If the level-k model can predict not only choices but also reasoning processes well, the

estimated level of a player when we analyze her lookups should coincide with her level

when we analyze her choices alone since k reflects her strategic sophistication. To check

whether the lookup data indeed align well with choice data, we classify subjects by using

their final choice data only. We find that choice-based and lookup-based classifications are

pretty consistent, classifying ten of the seventeen subjects as the same type. Consistency

between choice-based and lookup-based classifications suggests that for a high percentage

of subjects, if their lookups are classified as a particular level-k type, their final choices

follow the prediction of that level-k type as well. This is a strong support to a literal

interpretation of the level-k model to explain subjects’ reasoning process and final choice

altogether in the spatial beauty contest game. It means that the corresponding best

response hierarchy implied by each level-k type is literally carried out by subjects.

We look further into the subtle difference between lookup and choice data even though

for the majority of subjects they align well. Among the seven subjects whose two clas-

sifications differ, for all but one subject, the choice-based level-k types are not robust to

a (nonparametric) bootstrap procedure, having a misclassification rate of at least 18% if

one resamples the choice data and performs the same estimation. On the other hand,

for the ten subjects whose two classifications are the same, the average misclassification

rate is less than 5%. The difference is significant, having a p-value of 0.0123 according to
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the Mann-Whitney-Wilcoxon rank sum test. In other words, when the two classifications

differ, it is when the choice data is noisy. When the two classifications agree, choice data

is quite robust. This leaves open the possibility that lookup data may help classify sub-

jects more sharply since when they differ, choice data is noisy and thus there is room to

improve choice estimation.

Even when the level based on lookups and that based on choices differ, the level based

on lookups does a reasonable job in predicting choices and is thus a viable alternative to

the choice-based type. In fact, for six out of seven subjects whose two classifications dif-

fer, their types based on analyzing lookups predict final choices reasonably well, ranking

second in terms of likelihood.4 According to a bootstrap procedure, their lookup-based

types are also the second most successful types in predicting choices. Moreover, we demon-

strate how lookups indeed provide better classification when choice-based estimation is

not robust through an out-of-sample prediction exercise. We estimate the models with

2/3 of the trials and predict the final choices of the remaining trials on the nine subjects

whose final choices are not robust according to the bootstrap procedure. We show that

the lookup-based model is superior in terms of both mean square errors and economic

value (Camerer, Ho and Chong, 2004). To sum up, when the classifications based on

lookups and choices differ, the lookup type predicts choices reasonably well. Moreover,

when the choice data is noisy, we can predict the later choices of a subject better by her

earlier lookup data than by her earlier choice data. In other words, looking into players’

reasoning process gives us valuable information if we are to classify them properly.5

In the related literature, some experimental studies do attempt to investigate “infor-

mation search” patterns in games, in order to capture part of the reasoning process. In

addition to Camerer et al. [1993] and Johnson et al. [2002], Costa-Gomes, Crawford and

Broseta [2001] and Costa-Gomes and Crawford [2006] also employ the mouse-tracking

technology “mouselab” to study payoff lookups in normal form games and information

search in two-person guessing games. Gabaix, Laibson, Moloche and Weinberg [2006] also

use mouselab to observe information acquisition and analyze aggregate information search

patterns to test a heuristic “directed cognition” model. More recently, Wang, Spezio and

Camerer [2010] employ eyetracking to observe the decision-making process of a deceptive

sender in sender-receiver games. In all these studies some information must be withheld,

and “looked-up” by subjects during the experiment. Hence, these studies rely on informa-

tion search to infer certain stages of the reasoning process, instead of directly observing

the entire process itself. Our paper differs from these previous attempts by observing

4The last subject’s type based on lookups ranked third. The most successful type is of course the one
based on analyzing choices.

5Even if we focus on the seven subjects whose two classifications differ, the lookup-based model is still
superior in terms of mean square errors and is comparable in economic value.

5



lookup patterns when there is no explicit hidden information to be acquired. We directly

observe the reasoning process instead of making an inference on it. To the best of our

knowledge, this is the first paper analyzing the reasoning process directly and comparing

it with final choice. Specifically, it is the graphical feature of our design that makes direct

observations of reasoning processes possible. This points to the importance of tailoring

games for tracking decision-making. The structure of the p-beauty contest games implies

a best response hierarchy of reasoning which can be fully exploited in our spatial design.

In other less-structured games, some viable hypotheses concerning the reasoning process

have to be formed and specific designs have to be tailor made so that these reasoning

processes can be directly observed. This leaves open an interesting direction for future

research.6

The remaining of the paper is structured as follows: Section A describes the spatial

beauty contest game and its theoretical predictions; Section B describes details of the

experiment; Section III reports aggregate statistics on lookups; Section IV reports classi-

fication results from the Markov-switching model based on lookups; Section V compares

classification results with those based on final choices alone. Section VI concludes.

II The Experiment

A The Spatial Beauty Contest Game

We now introduce our design, the equilibrium prediction, the prediction by the level-k

model and formulate the hypotheses which will be tested. To create a spatial version

of the p-beauty contest game, we reduce the number of players to two, so that we can

display the action space of all players on the computer screen visually. Players choose

locations (instead of numbers) simultaneously on a 2-dimensional plane attempting to hit

one’s target location determined by the opponent’s choice. The target location is defined

as a relative location to the other player’s choice of location by a pair of coordinates

(x, y). We use the standard Euclidean coordinate system. For instance, (0,−2), means

the target location of a player is “two steps below the opponent,” and (−4, 0) means

the target location of a player is “four steps to the left of the opponent.” These targets

are common knowledge to the players. Payoffs are determined by how “far” (the sum of

horizontal distance and vertical distance) a player is away from the target. The larger

this distance is, the lower her payoff is. Players can only choose locations on a given grid

6Several recent level-k papers estimate population mixture models to infer the fraction of level-k types
within the population (Burchardi and Penczynski [2011]). Instead of investigating the population mixture
of types, we focus on how well individual lookup patterns correspond to a particular level-k best response
hierarchy in an environment where we already know the level-k model predicts aggregate subject behavior
fairly well.
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map, though one’s target may fall outside if the opponent is close to or on the boundary.7

For example, consider the 7 × 7 grid map in Figure I. For the purpose of illustration,

suppose a player’s opponent has chosen the center location labeled O ((0, 0)) and the

player’s target is (−4, 0). Then to hit her target, she has to choose location (−4, 0). But

location (−4, 0) is not on the map, while choosing location (−3, 0) is optimal among all

49 feasible choices because location (−3, 0) is the only feasible location that is one step

from location (−4, 0).8

The spatial beauty contest game is essentially a spatial version of Costa-Gomes and

Crawford [2006]’s asymmetric two-person guessing games, in which one subject would like

to choose α of her opponent’s choice and her opponent would like to choose β of her choice.

Hence, similar to Costa-Gomes and Crawford [2006], the equilibrium prediction of this

spatial beauty contest game is determined by the targets of both players. For example, if

the targets of the two players are (0, 2) and (4, 0) respectively, the equilibrium consists of

both players choosing the Top-Right corner of the map. This conceptually coincides with

a player hitting the lower bound in the two-person guessing game of Costa-Gomes and

Crawford [2006] where αβ is less than 1, or all choosing zero in the p-beauty contest game

where p is less than 1.9 Note that in general the equilibrium need not be at the corner

since targets can have opposite signs. For example, when the targets are (4,−2) and

(−2, 4) played on a 7× 7 grid map, the equilibrium locations for the two players are both

two steps away from the corner (labeled as E1 and E2 for the two players respectively in

Figure I).

We derive the equilibrium predictions for the general case as follows. Formally, con-

sider a spatial beauty contest game with targets (a1, b1) and (a2, b2). With some abuse of

notation, suppose player i chooses location (xi, yi) on a map G satisfying (xi, yi) ∈ G ≡

{−X,−X + 1, ..., X} × {−Y,−Y + 1, ..., Y } where (0, 0) is the center of the map. For

instance, (xi, yi) = (X, Y ) means player i chooses the Top-Right corner of the map. The

other player −i also chooses a location (x−i, y−i) on the same map: (x−i, y−i) ∈ G. The

payoff to player i in this game is:

pi(xi, yi; x−i, y−i; ai, bi) = s̄− (|xi − (x−i + ai)|+ |yi − (y−i + bi)|)

where s is a constant. Notice that payoffs are decreasing in the number of steps a player is

away from her target, which in turn depends on the choice of the other player. There is no

7Similar designs of 3 × 3 games could also be found in Kuo et al. [2009]. They addressed different
issues.

8For instance, to go from location (−3, 1) to (−4, 0), one has to travel one step left and one step down
and hence the distance is 2.

9However, choosing the Top-Right corner is not a dominant strategy, unlike in the symmetric two-
person guessing game analyzed by Grosskopf and Nagel [2008].
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interaction between the choices of xi and yi. Hence the maximization can be obtained by

choosing xi and yi separately to minimize the two absolute value terms. We thus consider

the case for xi only. The case for yi is analogous.
10

To ensure uniqueness, in all our experimental trials, ai + a−i 6= 0.11 Without loss of

generality, we assume that ai + a−i < 0 so that the overall trend is to move leftward.12

Suppose a1 < 0. If a1a2 < 0, implying player 1 would like to move leftward but player 2

would like to move rightward, since the overall trend is to move leftward, it is straight-

forward to see that the force of equilibrium would make player 1 hit the lower bound

while player 2 will best respond to that. The equilibrium choices of both, denoted by

(xe
1, x

e
2), are characterized by xe

1 = −X and xe
2 = −X + a2.

13 If a1a2 ≥ 0, since both

players would like to move leftward, they will both hit the lower bound. The equilibrium

is characterized by xe
1 = xe

2 = −X. To summarize, when a1 + a2 < 0, only the player

whose target is greater than zero will not hit the lower bound. Therefore, as a spatial

analog to Observation 1 of Costa-Gomes and Crawford [2006], we obtain:

Proposition 1

In a spatial beauty contest game with targets (a1, b1) and (a2, b2) where two players each

choose a location (xi, yi) ∈ G satisfying G ≡ {−X,−X+1, ..., X}×{−Y,−Y +1, ..., Y },

−2X ≤ a1, a2 ≤ 2X and −2Y ≤ b1, b2 ≤ 2Y , the equilibrium choices (xe
i , y

e
i ) are

characterized by: (I{·} is the indicator function)

{

xe
i = −X + ai · I{ai > 0} if ai + a−i < 0

xe
i = X + ai · I{ai < 0} if ai + a−i > 0

and
{

yei = −Y + bi · I{bi > 0} if bi + b−i < 0

yei = Y + bi · I{bi < 0} if bi + b−i > 0

In addition to the equilibrium prediction, one may also specify various level-k pre-

dictions. First, we need to determine the anchoring L0 player who is non-strategic or

10As an illustrative example, consider a1 = −2 and a2 = +1, indicating that player 1 wants to be two
steps to the left of player 2, while player 2 wants to be one step to the right of player 1.

11Suppose a1 = −2 and a2 = +2. Any location where player 1 is two steps to the left of player 2 is an
equilibrium since player 2 is then two steps to the right of player 1. Note that this corresponds to the case
where αβ = 1 in the two-person guessing game of Costa-Gomes and Crawford [2006]. If ai = −a−i = a,
any feasible xi, x−i satisfying xi − x−i = a constitutes an equilibrium.

12In the illustrative example of a1 = −2 and a2 = +1, (−2) + 1 < 0. Due to symmetry, all other cases
are isomorphic to this case.

13In the illustrative example of a1 = −2 and a2 = +1, the equilibrium is (xe
1
, xe

2
) = (−X,−X +1). We

impose ai ≤ 2X for all games in the experiment, thus we do not need to worry about the possibility that
xe
i lies outside the upper bound X (i.e., xe

i = −X + ai > X). In general, if ai > 2X, player i would hit
the upper bound and thus xe

i = X. Similarly, we assume −2X ≤ ai, so we need not worry about the
possibility that xe

i lies outside the lower bound −X (i.e., xe
i = X + ai < −X).
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näıve. This is usually done by assuming players choosing randomly.14 In a spatial set-

ting, Reutskaja et al. [2011] find the center location focal, while Crawford and Iriberri

[2007a] define L0 players as being drawn toward focal points in the non-neutral display

of choices. In addition, due to a drift-correction procedure of the eyetracker (fixating on

a dot at the center and hitting a button or key) prior to every trial, the center location

is the first fixation of every trial. Therefore, a natural assumption here is that an L0

player will either choose any location on the map randomly (according to the uniform

distribution), which is on average the center (0, 0), or will simply choose the center. An

L1 player i with target (ai, bi) would best respond to an L0 opponent who either chooses

the center on average or exactly chooses the center, and as a von Neumann-Morgenstern

utility maximizer, would choose the same location against these two opponents.15 If an

L0 player chooses (on average) the center, to best respond, an L1 player would choose the

location (ai, bi) unless X, Y is too small so that it is not feasible.16 Similarly, for an L2

opponent j with the target (aj, bj) to best respond to an L1 player i who chooses (ai, bi),

he would choose (ai + aj, bi + bj) when X, Y is large enough. Repeating this procedure,

one can determine the best responses of all higher level-k (Lk) types. Figure I shows the

various level-k predictions of a 7 × 7 spatial beauty contest game for two players with

targets (4,−2) and (−2, 4).

To account for the possibility that one’s target may fall outside the map, we define

the adjusted choice R(X, Y ; (x, y)). Formally, the adjusted choice is given by

R(X, Y ; (x, y)) ≡ (min {X,max {−X, x}} ,min {Y,max {−Y, y}}) .

In words, if the ideal best response which hits the target is location (x, y), the adjusted

choice (x̃, ỹ) ≡ R(X, Y ; (x, y)) gives us the closest feasible location on the map so the

choice (x̃, ỹ) is constrained to lie within the range x̃ ∈ {−X,−X+1, ..., X}, ỹ ∈ {−Y,−Y+

1, ..., Y }. This adjusted choice is the best feasible choice on the map since payoffs are

decreasing in the distance between the ideal best response (target) and the final choice.

Moreover, as shown in Supplementary Appendix A2, since the grid map is of a finite size,

eventually when k for a level-k type is large enough, the Lk prediction will coincide with

the equilibrium. To summarize, we have

Proposition 2

14See Costa-Gomes, Crawford and Broseta [2001], Camerer, Ho and Chong [2004], Costa-Gomes and
Crawford [2006] and Crawford and Iriberri [2007b].

15See proof in Supplementary Appendix A1.This is true because our payoff structure is point symmetric
by (0, 0) over the grid map. Hence, it makes no difference for an L1 opponent whether we assume an L0
player chooses exactly the center, or randomly (on average the center). In our estimation, we assume L0
chooses the center but incorporates random L0 as a special case (when the logit parameter is zero).

16In this case, an L1 player would choose the closest feasible location.
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Consider a spatial beauty contest game with targets (a1, b1) and (a2, b2) where two

players choose locations (x1, y1), (x2, y2) satisfying (xi,yi) ∈ G ≡ {−X,−X +1, ..., X}×

{−Y,−Y + 1, ..., Y }, −2X ≤ a1, a2 ≤ 2X and −2Y ≤ b1, b2 ≤ 2Y . Denote the choice of

a level-k player i by (xk
i , y

k
i ), then (x0

1, y
0
1) = (x0

2, y
0
2) ≡ (0, 0) and

1. (xk
i , y

k
i ) = R

(

X, Y ; (ai + xk−1
−i , bi + yk−1

−i )
)

for k = 1, 2, ...

2. there exists a smallest positive integer k such that for all k ≥ k, (xk
i , y

k
i ) = (xe

i , y
e
i ).

Proof.

See Supplementary Appendix A2.

In Table I we list all the 24 spatial beauty contest games used in the experiment, their

various level-k predictions, equilibrium predictions and the minimum k’s. Notice that in

the first 12 games, targets of each player are 1 dimensional while in the last 12 games,

targets are 2 dimensional. Also, Games (2m − 1) and (2m) (where m = 1, 2, . . . , 12) are

the same but with reversed roles of the two players, so for instance, Games 1 and 2 are

the same, Games 3 and 4 are the same, etc.

The k’s for our 24 games are almost always 4, but some are 3 (Games 1, 10, 17), 5

(Games 5, 11, 12) or 6 (Game 6). This indicates that as long as we include level-k types

with k up to 3 and the equilibrium type, we will not miss the higher level-k types much

since higher types coincide with the equilibrium most of the time. Moreover, as evident

in Table I, different levels make different predictions. In other words, various levels are

strongly separated on the map.17 The level-k model predicts what final choices are made

for each level k. This is formulated in Hypothesis 1.

Hypothesis 1 (Final Choice) Consider a series of one-shot spatial beauty contest games

without feedback, n = 1, 2, . . . , N , each with targets (a1,n, b1,n) and (a2,n, b2,n) where two

players choose locations (x1,n, y1,n), (x2,n, y2,n) satisfying (xi,n, yi,n) ∈ Gn ≡ {−Xn,−Xn+

1, · · · , Xn} × {−Yn,−Yn + 1, · · · , Yn}, −2Xn ≤ a1,n, a2,n ≤ 2Xn, and −2Yn ≤ b1,n, b2,n ≤

2Yn. A level-k subject i’s choice for game n, denoted (xk
i,n, y

k
i,n) is (x

k
i,n, y

k
i,n) = R(Xn, Yn; (ai,n+

xk−1
−i,n, bi,n + yk−1

−i,n)) as defined in Proposition 2, and this k is constant across games.

Since our games are spatial, players can literally count using their eyes how many steps

on the map they have to move to hit their targets. Thus, a natural way to use lookups is

to take the level-k reasoning processes literally in the following sense. Take an L2 player

as an example, the level-k model implies that she best responds to an L1 opponent, who

in turn best responds to an L0. Therefore, for the L2 player to make a final choice, she

17The only exceptions are L3 and EQ in Games 1, 10, 17, L2 and L3 in Games 2, 6, 9, and L2 and
EQ in Game 18. See the underlined predictions in Table I.
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has to first figure out what an L0 would choose since her opponent thinks of her as an L0.

She then needs to figure out what her opponent, an L1, would choose. Finally, she has to

make a choice as an L2. It is possible that this process is carried out solely in the mind of

a player. Yet since the games are spatial, one can simply figure all these out by looking

at and counting on the map. This has the advantage of reducing much memory load and

being much more straightforward. If this hypothesis is true, an L2 player would look

at the center (where an L0 player would choose), her opponent’s L1 choice and her own

final choice as an L2. In other words, the hotspots of an L2 player in her lookups would

consist of these three locations on the map. This is probably the most natural prediction

on the lookup data one can make when the underlying model is the level-k model. Hence

we formulate Hypothesis 2 and base our econometric analysis of lookups on this.

Hypothesis 2 (Lookup) Consider a series of one-shot spatial beauty contest games with

targets (a1,n, b1,n) and (a2,n, b2,n) where two players choose locations (x1,n, y1,n), (x2,n, y2,n)

satisfying (xi,n, yi,n) ∈ Gn ≡ {−Xn,−Xn+1, · · · , Xn}×{−Yn,−Yn+1, · · · , Yn}, −2Xn ≤

a1,n, a2,n ≤ 2Xn, and −2Yn ≤ b1,n, b2,n ≤ 2Yn played without feedback. Denote the choice

of a level-k player i by (xk
i,n, y

k
i,n). Assuming one carries out the reasoning process on the

map, a level-k subject i will also:

a. (Duration of Lookups): Fixate at the following locations in the level-k best response

hierarchy (x0
·,n, y

0
·,n) (L0 player’s choices), . . . , (xk−2

i,n , yk−2
i,n ) (own L(k − 2) player’s

choice), (xk−1
−i,n, y

k−1
−i,n) (opponent L(k − 1) player’s choice), (xk

i,n, y
k
i,n) (own Lk player’s

choice) associated with that particular k longer than random.18

b. (Sequence of Lookups): Have fixation sequences for each game n with many tran-

sitions from (xK−1
−i,n , y

K−1
−i,n ) to (xK

i,n, y
K
i,n) for K = k, k − 2, ..., and transitions from

(xK−1
i,n , yK−1

i,n ) to (xK
−i,n, y

K
−i,n) for K = k − 1, k − 3, ... (steps of the associated level-

k best response hierarchy).

B Experimental Procedure

We conduct 24 spatial beauty contest games (with various targets and map sizes) ran-

domly ordered without feedback at the Social Science Experimental Laboratory (SSEL),

California Institute of Technology. Each game is played twice, once on the two-dimensional

grid map as shown in Figure II (which we denote as the GRAPH presentation), the other

time as two one-dimensional choices chosen separately (see Figure III, denoted as the

SEPARATE presentation).19 Half of the subjects are shown the two-dimensional grid

18The player subscript of (x0

·,n, y
0

·,n) is dropped since both L0 players choose the center.
19Note that these two presentations are mathematically identical. However, the GRAPH presentation

allows us to trace the decision-making process through observing the lookups.
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maps first in trials 1-24 and the two one-dimensional choices later in trials 25-48, while

the rest are shown the two one-dimensional choices first (trials 1-24) and the maps later

(trials 25-48). The results of the two presentations are quite similar, so we focus on the

results of the two-dimensional presentation.20

In addition to recording subjects’ final choices, we also employ Eyelink II eyetrackers

(SR-research Inc.) to track the entire decision process before the final choice is made. The

experiment is programmed using the Psychophysics Toolbox of Matlab (Brainard, 1997),

which includes the Video Toolbox (Pelli, 1997) and the Eyelink Toolbox (Cornelissen

et al., 2002). For every 4 milliseconds, the eyetracker records the location one’s eyes are

looking at on the screen and one’s pupil sizes. Location accuracy is guaranteed by first

calibrating subjects’ eyetracking patterns (video images and cornea reflections of the eyes)

when they fixate at certain locations on the screen (typically 9 points), interpolating this

calibration to all possible locations, and validating it with another set of similar locations.

Since there is no hidden information in this game, the main goal of eyetracking is not to

record information search. Instead, the goal is to capture how subjects reason before

making their decision and to test whether they think through the best response hierarchy

implied by a literal interpretation of the level-k model.

Before each game, a drift correction is performed in which subjects fixate at the center

of the screen and hit a button (or space bar). This realigns the calibration at the center

of the screen. During each game, when subjects use their eyes to fixate at a location,

the eyetracker sends the current location back to the display computer, and the display

computer lights up the location (real time) in red (as Figures 2 and 3 show). Seeing

this red location, if subjects decide to choose that location, they could hit the space bar.

Subjects are then asked to confirm their choices (“Are you sure?”). They then have a

chance to confirm their choice (“YES”) or restart the process (“NO”) by looking at the

bottom left or right corners of the screen.

In each session, two subjects were recruited to be eyetracked. Since there was no

feedback, each subject was eyetracked in a separate room individually and their results

were matched with the other subject at end of the experiment. Three trials were randomly

drawn from the 48 trials played to be paid. Average payment is US$15.24 plus a show-up

fee of US$20. A sample of the instructions can be found in the Supplementary Appendix.

Due to insufficient showup of eligible subjects, three sessions were conducted with only

one subject eyetracked, and their results matched with a subject from a different session.

Hence, we have eyetracking data for 17 subjects.

20A comparison of the final choices under these two representations is shown in Supplementary Table
2. None of the subjects’ two sets of final choices differ significantly.
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III Lookup Summary Statistics

We first summarize subjects’ lookups to test Hypothesis 2a, namely, subjects do look at

and count on the map during their reasoning process. Then, we analyze subjects’ lookups

with a constrained Markov-switching model to classify them into various level-k types to

test Hypothesis 2b. As a part of the estimation, we employ Vuong’s test for non-nested

but overlapping models to ensure separation between competing types.

According to Hypothesis 2a, subjects will spend more time at locations corresponding

to the thinking steps of a particular best response hierarchy. We present aggregate data

regarding empirical lookups for all 24 Spatial Beauty Contest games in Supplementary

Figures 1 through 24. For each game, we calculate the percentage of time a subject spent

on each location. The radius of the circle is proportional to the average percentage of time

spent on each location, so bigger circles indicate longer time spent. The level-k choice

predictions are labeled as O, L1, L2, L3, E for each game.

If Hypothesis 2a were true, the empirical lookups would concentrate on locations

predicted by the level-k best response hierarchy. For some games, many big circles in

Supplementary Figures 1–24 do fall on various locations corresponding to the thinking

steps of the level-k best response hierarchy.21 However, there seems to be a lot of noise in

the lookup data: Many locations other than those specified in the best response hierarchy

are also looked up.

We attempt to quantify this concentration of attention. First, we define Hit area for

every level-k type as the minimal convex set enveloping the locations predicted by this

level-k type’s best response hierarchy in game n. For instance, for an L2 subject i (with

opponent −i), the best response hierarchy consists of (x0
·,n, y

0
·,n), (x

1
−i,n, y

1
−i,n), (x

2
i,n, y

2
i,n).

Thus we can construct a minimal convex set enveloping these three locations. We then

take the union of Hit areas of all level-k types and see if subjects’ lookups are indeed

within the union. Figure IV shows an example of Hit areas for various level-k types in a

7 × 7 spatial beauty contest game with target (4,−2) and the opponent’s target (−2, 4)

(Game 16).

Figure V shows the empirical percentage of time spent on the union of Hit areas,

or hit time, denoted as ht. Across the 24 games, average hit time is 0.62, ranging from

ht = 0.81 (in Game 9), to ht = 0.36 (in Game 21). However, hit time depends on the

21However, not all locations are looked up. This is likely because the error structure of high speed
video-based eyetracking is very different from the error structure of mouse-tracking (such as MouseLab).
In particular, eyetrackers have imprecise spatial resolution due to imperfect calibration and peripheral
vision, but little temporal error (usually 250 or more samples per second). In contrast, mouse-tracking
has very precise spatial resolution for cursor locations and mouse clicks, but movements of the mouse
cursor need not correspond to movements of the eye. Hybrid methods are a promising direction for future
research.
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size of the area. Even if subjects scan over the map uniformly, the empirical hit time

would not be zero. Instead, it would be proportional to the size percentage of the union

of Hit areas, or hit area size, denoted as has. To correct for this hit area size bias, we

calculate Selten [1991]’s linear “difference measure of predicted success,” ht−has, i.e. the

difference between empirical hit time and hit area size, and report it in Figure VI. Note

that if subjects scan randomly over the map, the percentage of time she spends on the

union of the Hit areas will roughly equal the hit area size. By subtracting the hit area

size, we can evaluate how high the empirical hit time is compared with random scanning

over the map. These measures are all positive (except for Game 21), strongly rejecting the

null hypothesis of random lookups. The p-value of one sample t-test is 0.0001, suggesting

that subjects indeed spend a disproportionately long time on the union of Hit areas.

In fact, sometimes subjects have hit time nearly 1. For example, Figure VII shows the

lookups of subject 2 in round 17, acting as a Member B. The diameter of each fixation

circle is proportional to the length of each lookup. Note that these circles fall almost

exclusively on the best response hierarchy of an L2, which is exactly her level-k type

(based on lookups) according to the fifth column of Table II.

To sum up, the aggregate result is largely consistent with Hypothesis 2a that subjects

look at locations of the level-k best response hierarchy longer than random scanning

would imply, although the data is noisy. We next turn to test Hypothesis 2b and consider

whether individual lookup data can be used to classify subjects into various level-k types.

IV A Markov-Switching Model for Level-k

Reasoning

A The State Space

According to Hypothesis 2b, a level-k type subject i goes through a particular best re-

sponse hierarchy associated with her level-k type during the reasoning process, and carries

out transitions from
(

xK−1
−i,n , y

K−1
−i,n

)

to
(

xK
i,n, y

K
i,n

)

, for K = k, k−2, · · · , and transitions from
(

xK−1
i,n , yK−1

i,n

)

to
(

xK
−i,n, y

K
−i,n

)

for K = k− 1, k− 3, · · · . Taking level-2 as an example, the

two key transition steps are from (x0
i,n, y

0
i,n) to (x

1
−i,n, y

1
−i,n), thinking as a level-1 opponent,

best-responding to her as a level-0 player and from (x1
−i,n, y

1
−i,n) to (x2

i,n, y
2
i,n), thinking

as a level-2 player, best-responding to a level-1 opponent. Hence, the reasoning process

of a level-2 subject i consists of three stages. First, she would fixate at (x0
i,n, y

0
i,n) since

she believes her opponent is level-1, who believes she is level-0. Then, she would fixate

at (x1
−i,n, y

1
−i,n), thinking through her opponent’s choice as a level-1 best responding to a

level-0. Finally, she would best respond to the belief that her opponent is a level-1 by
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making her choice fixating at (x2
i,n, y

2
i,n). These reasoning processes are gone through in

the mind of a subject and may be reflected in her lookups.

We define each stage of the reasoning process as a state. The states are in the mind of

a subject. If she is a level-2, then according to the best response hierarchy of reasoning, in

her mind, there are three states. To distinguish a state regarding beliefs about self from

beliefs about the opponent, if a state is about the opponent, we indicate it by a minus

sign. Thus, for a level-2 player, three states, namely s = 0 (fixating at the location of

(x0
i,n, y

0
i,n) since she thinks her opponent thinks she is a level-0), s = −1 (fixating at the

location of (x1
−i,n, y

1
−i,n) since she thinks her opponent is a level-1), and s = 2 (fixating at

the location of (x2
i,n, y

2
i,n) since she is a level-2), are expected to be passed through during

the reasoning process of a level-2 subject. We hasten to point out that these states are in

the mind of a subject. It is not the level of a player. Take a level-2 subject as an example.

Her level, according to the level-k model, is 2. But there are three states, s = 0, s = −1,

and s = 2, in her mind. Which state she is in depends on what she is currently reasoning

about. A level-2 subject could be at state s = −1 because at that point of time, she is

thinking about what her opponent would choose, who is a level-1 according to the best

response hierarchy. However, this state s = −1 is not to be confused with k = 1 for a

level-1 subject (whose states of thinking consist of s = −0 and s = 1).

More generally, for a level-k subject, define s = k as the highest state indicating that

she is contemplating a choice by fixating at the location (xk
i,n, y

k
i,n), best responding to an

opponent of level-(k − 1). Imagining what an opponent of level-(k − 1) would do, state

s = −(k − 1) is defined as the second highest state when her fixation is at the location

(xk−1
−i,n, y

k−1
−i,n) contemplating her opponent’s choice by best responding to herself as a level-

(k− 2).22 Lower states s = k− 2, s = −(k− 3), ..., etc. are defined similarly. Then, steps

of reasoning of a subject’s best response hierarchy of Hypothesis 2b (associated with a

particular “k”) can be expressed as “0, . . . , k − 2,−(k − 1), k.” We regard these (k + 1)

steps of reasoning as the (k + 1) states of the mind for a level-k player i. Hence, for a

level-k subject, state space Ωk consists of all thinking steps in the best response hierarchy

of this particular level-k type. Thus, Ωk = {0, ...,−(k − 3), k − 2,−(k − 1), k}.

B The Constrained Markov Transition Process

To account for the transitions of states within a subject’s mind, we employ a Markov-

switching model by Hamilton [1989] and characterize the transition of states by a Markov

transition matrix. Instead of requiring a level-k subject to “strictly” obey a monotonic

order of level-k thinking going from lower states to higher states, we allow subjects to

22We use the minus sign (−) to refer to players contemplating about their opponent. Note that the
lowest state 0 can be about one’s own or the opponent. Thus the state 0 and −0 should be distinguished.
For the ease of exposition, we do not make this distinction and call the lowest state 0.

15



move back from higher states to lower states. This is to account for the possibilities that

subjects may go back to double check as may be typical in experiments. However, since a

level-k player best responds to a level-(k−1) opponent, it is difficult to imagine a subject

jumping from the reasoning state of say s = (k − 2) to that of s = k without first going

through the reasoning state of s = −(k − 1). Thus, we restrict the probabilities for all

transitions that involve a jump in states to be zero.23

Specifically, suppose the subject is a particular level-k. Let St be the random variable

representing subject’s state at time t, drawn from the state space

Ωk = {0, ...,−(k − 3), k − 2,−(k − 1), k} .

Let the realization of the state at time t be st. Denote the state history up to time t

by St ≡ {s1, ..., st−1, st}.
24 Since lookups may be serially correlated, we model this by

estimating a constrained Markov stationary transition matrix of states. Let the transition

probability from state St−1 = st−1 to St = st be

Pr(St = st|St−1 = st−1) = πst−1→st . (1)

Thus, the state transition matrices θk for level-k types for k ∈ {0, 1, 2, 3, 4} are

θ0 = (π0→0) = (1) , θ1 =

(

π0→0 π0→1

π1→0 π1→1

)

, θ2 =







π0→0 π0→−1 0

π−1→0 π−1→−1 π−1→2

π2→0 π2→−1 π2→2






,

θ3 =













π0→0 π0→1 0 0

π1→0 π1→1 π1→−2 0

π−2→0 π−2→1 π−2→−2 π−2→3

π3→0 π3→1 π3→−2 π3→3













, θ4 =

















π0→0 π0→−1 0 0 0

π−1→0 π−1→−1 π−1→2 0 0

π2→0 π2→−1 π2→2 π2→−3 0

π−3→0 π−3→−1 π−3→2 π−3→−3 π−3→4

π4→0 π4→−1 π4→2 π4→−3 π4→4

















.

Note that the upper triangle where the column number is greater than one plus the row

number is restricted to zero since we do not allow for jumps.

C From States to Lookups

When a subject is in a particular state, her reasoning will be reflected in the lookups which

we can track. Recall that for each game n, Gn is the map on which she can fixate at.

23Estimation results without such restrictions are similar to the results presented below and are provided
in Supplementary Table 4: 12 of the 17 subjects are classified as the same level-k lookup type.

24In the experiment, subjects could look at the entire computer screen. Here, we only consider lookups
that fall on the grid map and drop the rest.
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Define a state-to-lookup mapping lkn : Ωk → Gn which assigns each state s a corresponding

lookup location on the map Gn according to the level-k model.25 Suppose a level-2 player

is inferred to be in state s = −1, then by the mapping l2n, her lookup should fall exactly

on the location l2n(−1). In words, when a level-2 player is in state s = −1, she is thinking

about what her opponent as a level-1 would choose. Hence, the state-to-lookup mapping

l2n(−1) should be on the location a level-1 opponent would choose. If her lookup is not

on that location, we interpret this as an error. We assume a logit error structure so that

looking at locations farther away from l2n(−1) is less likely.

Formally, the lookup sequence in trial n is a time series over t = 1, ..., Tn where Tn is

the number of her lookups in this game n. Because of the logit error, a level-k subject

may not look at a location with certainty. Therefore, at the t-th lookup, let the random

variable Rt
n be the probabilistic lookup location in Gn and its realization be rtn. Denote

the lookup history up to time t by Rt
n ≡ {r1n, . . . , r

t−1
n , rtn}.

Conditional on St = st, the probability distribution of a level-k subject’s probabilistic

lookup Rt
n is assumed to follow a logit error quantal response model (centered at lkn(st)),

independent of lookup history Rt−1
n . In other words,

Pr(Rt
n = rtn|St = st,R

t−1
n ) =

exp
(

−λk

∥

∥rtn − lkn(st)
∥

∥

)

∑

g∈Gn

exp (−λk ‖g − lkn(st)‖)
. (2)

where λk ∈ [0,∞) is the precision parameter. If λk = 0, the subject randomly looks

at locations in Gn. As λk → ∞, her lookups concentrate on the lookup location lkn(st)

predicted by the state st of a level-k.

Combining the state transition matrix and the logit error, we can calculate the prob-

ability of observing lookup rtn conditional on past lookup history Rt−1
n :

Pr(Rt
n = rtn|R

t−1
n ) =

∑

st∈Ωk

Pr(St = st|R
t−1
n ) · Pr(Rt

n = rtn|St = st,R
t−1
n ) (1)

25For instance, if a level-2 player with target (4,−2) in game n = 16 (player 1 as shown in Figure I)
is at state s = 0 at a point of time, the mapping l2

16
would give us the location l2

16
(0) = (0, 0) which a

level-0 player would choose (O in Figure I) since at this particular point of time, she is thinking about
what her opponent thinks she would choose as a level-0. Similarly, if a level-2 player is in state −1, then
the l2

16
mapping would give us the location l2

16
(−1) = (−2, 3) which a level-1 opponent would choose (L12

in Figure I) since at this particular point of time, she is thinking about what her opponent would choose
as a level-1. Finally, if a level-2 player 1 is in state 2, then the mapping l2

16
would give us the location

l2
16
(2) = (2, 1) which a level-2 subject would choose (L21 in Figure I) since at this particular point of

time, she is thinking about her choice as a level-2.
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where

Pr(St = st|R
t−1
n )

=
∑

st−1∈Ωk

Pr(St−1 = st−1|R
t−1
n ) · Pr(St = st|St−1 = st−1,R

t−1
n )

=
∑

st−1∈Ωk

Pr(St−1 = st−1|R
t−1
n ) · πst−1→st

=
∑

st−1∈Ωk

Pr(St−1 = st−1|R
t−2
n ) Pr(Rt−1

n = rt−1
n |St−1 = st−1,R

t−2
n )

Pr(Rt−1
n = rt−1

n |Rt−2
n )

·πst−1→st . (2)

The second equality in equation (2) follows since according to the Markov property,

St−1 = st−1 is sufficient to predict St = st. Note that equation (2) depends on the Markov

transition matrix. Meanwhile, the second term on the right hand side of equation (1)

(Pr(Rt
n = rtn|St = st,R

t−1
n )) depends on the logit error. Notice that all the terms on the

last line of equation (2) are now expressed with the time index moving backwards by one

period. Hence, for a given game n, coupled with the initial distribution of states, the joint

density of a level-k subject’s empirical lookups, denoted by

fk
n(r

1
n, ..., r

Tn−1
n , rTn

n ) ≡ Pr(r1n, ..., r
Tn−1
n , rTn

n )

= Pr(r1n) Pr(r
2
n|r

1
n) Pr(r

3
n|r

1
n, r

2
n)...Pr(r

Tn

n |r1n, r
2
n, ..., r

Tn−1
n ),

can be derived.26 The log likelihood over all 24 trials is thus

L(λk, θk) = ln

[

24
∏

n=1

fk
n(r

1
n, ..., r

Tn−1
n , rTn

n )

]

. (3)

Since level-k reasoning starts from the lowest state (here state 0), we assume this

initial distribution of states degenerates to a mass point at the lowest state corresponding

to level-0 (of herself if k is even and of her opponent if k is odd). With this assumption,

we estimate the precision parameter λk and the constrained Markov transition matrix θk

using maximum likelihood estimation for each k, and classify subjects into the particular

level-k type which has the largest likelihood.

To summarize, for each level k, we estimate a state transition matrix and a precision

parameter for the logit error. Thus for a given initial distribution of the states, we know

the probability distribution of states at any point of time using the state transition matrix.

Moreover, at any point of time, the mapping lkn from the state to the lookup gives us the

lookup location corresponding to any state when there is no error. Coupled with the error

26See Supplementary Appendix A3 for a formal derivation.
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structure, we can calculate the probability distribution of various errors and therefore the

distribution of predicted lookup locations. We then maximize the likelihood to explain

the entire observed sequence of lookups. We do this for various levels. The final step is

to select the k in various level-k types to best explain the observed sequence of lookups

for each subject.

D Vuong’s Test for Non-Nested but Overlapping Models

The above econometric model may be plagued by an overfitting problem since higher level-

k types have more states and hence more parameters. It is not surprising if one discovers

that models with more parameters fit better. In particular, the Markov-switching model

for level-k has (k + 1) states with a (k + 1) × (k + 1) transition matrix. This gives the

model
[

k(k+3)
2

]

parameters in the transition matrix alone.27 For example, a level-2 subject

has 3 states 0, −1, and 2 and five (Markov) parameters, but a level-1 subject has only 2

states 0 and 1 and two (Markov) parameters. Hence, we need to make sure our estimation

does not select higher levels merely because it contains more states and more parameters.

However, usual tests for model restrictions may not apply, since the parameters involved

in different level-k types could be non-nested. In particular, the state space of a level-2

subject {0,−1, 2} and the states of a level-1 subject {0, 1} are not nested. Yet, the state

space of a level-1 type, {0, 1}, is nested in the state space of a level-3 type, {0, 1,−2, 3}.

In order to evaluate the classification, we use Vuong’s test for non-nested but overlapping

models (1989).28

Let Lk∗ be the type which has the largest likelihood with corresponding parameters

(λk∗ , θk∗). Let Lka be an alternative type with corresponding parameters (λka , θka). In

our case Lk∗ is the type with the largest likelihood based on lookups. The alternative

type Lka is the type having the next largest likelihood among all lower level types.29 If

according to Vuong’s test, Lk∗ is a better model than Lka, we can be assured that the

maximum likelihood criterion does not pick up the reported type by mere chance. Thus,

we conclude that the lookup-based type is Lk∗. If instead we find that according to

Vuong’s test, Lk∗ and Lka are equally good, then we conservatively classify the subject

as the second largest lower type Lka.

Table II shows the results of the maximum likelihood estimation and Vuong’s test

27Since each row sums up to one and elements with the column index greater than the row index plus
one are zero, we have in total (k + 1)(k + 1)− (k + 1)− [k(k − 1)]/2 = [k(k + 3)]/2 parameters.

28See Supplementary Appendix A4 for the details of Vuong’s test for non-nested but overlapping models.
Note that this is the generalized version of the well-known “nested” Vuong’s test.

29Recall that the reason why we look at Vuong’s test is to avoid overfitting. Hence, if the alternative
type has a larger transition matrix (more parameters) but a lower likelihood, there is no point to perform
a test, since Lk∗ will not suffer from the problem of overfitting because it has fewer parameters but has
a higher likelihood. This leads us to consider only lower level types as the alternative type.
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for each subject. For each subject, we list her Lk∗ type, her Lka type, her Vuong’s

test statistic, and her lookup-based type according to Vuong’s test in order. Six of the

seventeen subjects (subjects 1, 5, 6, 8, 11, 13) pass Vuong’s test and have their lookup-

based type as Lk∗. The remaining eleven subjects are conservatively classified as Lka.

The overall results are summarized in column (A) of Table III. After employing Vuong’s

test, the type distribution for (L0, L1, L2, L3, EQ) is (1, 6, 4, 4, 2).30 The distribution is

slightly higher than typical type distributions reported in previous studies. In particular,

there are two EQ’s and four L3’s, accounting for more than one third of the data. Treating

the EQ type as having a thinking step of 4, we find that the average number of thinking

steps is 2.00, in line with results of the standard p-beauty contest games using Caltech

subjects, but higher than normal subjects.31 Neither employing Hansen [1992]’s test

(to avoid nuisance parameter problems), nor iteratively applying Vuong’s test (until the

likelihood of the current type is significantly higher than that of the next alternative)

alters the distribution of level-k types by much (see A4 and Supplementary Table 3).

Up to now, we have shown that lookups do fall on the hotspots of the best response

hierarchy (Hypothesis 2a). Classifying subjects based on lookups (Hypothesis 2b) gives

us a reasonable level of sophistication as argued above. However, one might still wonder

whether the results reported in Table II is due to a misspecification of possible types.

After all, many assumptions are required for Hypothesis 2b to hold. We take up this

issue now. Our argument is that if we take the level-k theory literally to interpret under-

lying reasoning process, the classification based on lookups should match well with the

classification using final choices alone since the level k reflects a player’s sophistication.

V Matching Up with Final Choices

We first classify subjects using their final choices and compare classifications based on

choices to those based on lookups. We point out the similarity between these two clas-

sification results. Finally we address how lookup data could help classify subjects when

the choice data is noisy.

Following the literature, we classify individual subjects into various level-k types based

on final choices alone. Supplementary Appendix A5 provides details of the maximum

30Ignoring the two pseudo-17 subjects (subjects 3 and 17, both classified as L1) whose choices sug-
gest non-compliance to level-k theory, the type distribution for (L0, L1, L2, L3, EQ) is (1, 4, 4, 4, 2). For
pseudotypes, refer to Costa-Gomes and Crawford [2006].

31Camerer [1997] reports that Caltech students play an average of 21.88 in a p-beauty contest game with
p = 0.7. This is between L2’s choice of 24.5 and L3’s choice of 17.15. Higher than typical distributions
could also result from the spatial beauty contest game being intuitive and not requiring mathematical
multiplication (as compared with say, the standard p-beauty contest game), as Chou et al. [2009] show
that a graphical presentation of the standard p-beauty contest game yields results closer to equilibrium.

20



likelihood estimation and pseudotype test we adopt from Costa-Gomes and Crawford

[2006], and subject-by-subject results are reported in the sixth column of Table II. The

idea of the pseudotype is to treat each subject’s choices as a possible type. This is to

examine whether there are clusters of subjects whose choices resemble each other’s and

thus predict other’s choices in the cluster better than the pre-specified level-k types.

Since we have 17 subjects, we include 17 pseudotypes, each constructed from one of our

subject’s choices in 24 trials. The aggregate distribution of types (with or without the

pseudotype test) are reported in column (B) and (C) of Table III. In Table III, the choice-

based and lookup-based classification results look similar. The choice results indicate

slightly more steps of reasoning (2.12 − 2.13 for choice-based types instead of 2.00 for

lookup-based types). This suggests that the lookup-based estimation (and the underlying

Hypothesis 2b) is in the right ballpark. In fact, if we consider the classification results

on a subject-by-subject basis, the similarity between the two estimations are even more

evident. As reported in Table II, overall, for ten out of the seventeen subjects, their

lookup-based types and the choice-based types are the same. In other words, for most

subjects, when their choices reflect a particular level of sophistication, their lookup data

suggests the same level of sophistication. Such alignment in classification results would

be surprising if one thought Hypothesis 2b was too strong a claim. This supports a literal

interpretation of the level-k model. When a subject’s choice data indicates a particular

level of sophistication, her lookups suggest that the best response hierarchy of that level

is carried out when she reasons.

Since the classification based on lookups and that based on choices align, we next turn

to discuss the subtle differences between them. We evaluate the robustness of individual

choice-based classification by performing bootstrap. This is a departure from past lit-

erature such as Costa-Gomes and Crawford [2006], as they do not consider whether the

maximum likelihood estimation has enough power to distinguish between various types.

For example, reading from Supplementary Table 1, for subject 14, the log likelihood is

−98.89 for L0, −84.17 for L1, −96.99 for L2, −76.67 for L3, and −74.45 for EQ. Maxi-

mum likelihood estimation classifies her as EQ, although the likelihood of L3 is also close.

In this case, classifying this subject as EQ based on maximum likelihood alone may be

questionable. To the best of our knowledge, there has not been any proposed test in

experimental economics for evaluating the robustness of maximum likelihood-based type

classifications. Hence we propose a bootstrap procedure (Efron [1979]; Efron and Tib-

shirani [1994]) to deal with the issue of robustness.32 Imagine that from the maximum

likelihood estimation, a subject is classified as a particular level-k type with the logit

32Costa-Gomes and Crawford [2006] do use various information criteria to perform the horse-race.
However, this still fails to address how much the runner-up is “close” to the winner.
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error parameter λk. Draw (with replacement) 24 new trials out of the original dataset

and re-estimate her k and λk. We do this 1000 times to generate the discrete distribu-

tion of k and the distribution of λk. Then, we evaluate the robustness of k by looking

at the distribution of k. Each level-k type estimated from a re-sampled dataset that is

not the same as her original level-k type is viewed as a “misclassification,” and counted

against the original classification k. By calculating the total misclassification rate (out

of 1000 re-samples), we can measure the robustness of the original classification. This

bootstrap procedure is in the spirit of the test reported in Salmon [2001], which evaluates

the robustness of the parameters estimated in a EWA learning model using simulated

data.

The results of this bootstrap procedure are listed in Table IV. For each subject, we

report the bootstrap distribution of k (the number of times a subject is classified into L0,

L1, L2, L3 or EQ in the 1000 resampled datasets). The bootstrap misclassification rate

(percentage of times classifying the subject as a type different from her original type) is

listed in the last column. For example, subject 14 is originally classified as EQ, but is

only re-classified as EQ 587 times during the bootstrap procedure. Subject 14 is instead

classified as L3 228 times and as L1 185 times. Hence, the distribution on the number

of times that subject 14 is classified into L0, L1, L2, L3 or EQ in the 1000 resampled

datasets is (0, 185, 0, 228, 587) and the corresponding misclassification rate is 0.413.

The bootstrap results align surprisingly well with whether the lookup-based classi-

fications match their choice-based types. In particular, for the ten subjects whose two

classifications match, all but three of them have (choice-based) bootstrap misclassification

rates lower than 0.05, suggesting that their classifications are truly sharp.33 In contrast,

for six of the remaining seven subjects whose two classifications do not match, their

choice-based type have bootstrap misclassification rates higher than 18.4%, suggesting

that misclassifying these subjects into the wrong types using choice data alone (due to in-

significantly larger likelihoods) is possible. The difference is significant, having a p-value

of 0.0123 according to Mann-Whitney-Wilcoxon rank sum test. To sum up, when the

lookup-based types match the choice-based types, it is when the choice-based classifica-

tion is quite sharp. In contrast, when they differ, the classification based on choice is not

that sharp, suggesting that for these subjects, choice data may not be enough.

In this case, one wonders whether lookup data could provide additional separation of

types to predict choices. A closer look at Table IV (see the type underlined) indicates for

ten subjects, when we resample their choices, the level they are most frequently classified

into in the 1000 resampled choice datasets is exactly their level classified using their

33One of these three subjects (subject 17) fails the pseudotype test and is unlikely to resemble any of
the level-k types. The remaining two subjects (subjects 2 and 4) have a misclassification rate of 0.076
and 0.110. These are marginally higher than 0.05.
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lookups.34 For six other subjects, their lookup-based type is the one they are second most

frequently classified into.35 In fact, these subjects’ lookup-based type also rank second in

terms of likelihood based on choices.36 A subject’s lookup-based type is classified using

her lookups, not using her choices. The high predictability of choices by her lookup-based

type suggests that the lookup-based type is a viable alternative for predicting choices even

when the lookup-based types differ from the choice-based types.

In order to evaluate whether lookup data can indeed improve classification, we perform

an out-of-sample prediction horse-race between the lookup-based and choice-based types.

Note that our lookup-based model makes predictions on lookups, not on final choice per

se. However, we can first classify individual subjects into a particular level-k type based

on either lookups or choices using two thirds of the trials, and see how well the classified

level-k type predicts the final choices of the remaining one third of trials. In particular,

for each subject, we classify her as a level-kl
16 type based on lookups (using the first 16

sequences of lookups) and a level-kc
16 type based on final choices (using the first 16 final

choices) respectively. We then use these particular k’s (one for lookup, the other for

choice) to predict final choices of the last eight trials. Since we are mainly interested in

how lookup data can provide additional separation of types (to predict behavior) when

choice data is insufficient, we group subjects into those whose choice-based classification

is robust (having bootstrap misclassification rates greater than 0.05 as reported in the

right panel of Table II), and those who is not.

To compare the prediction power of the two models, we report mean square errors

of the predicted choices for the lookup-based and choice-based models. In particular,

suppose a subject chose location gn = (xn, yn) in trial n, while the lookup-based and

choice-based models predicted (xl
n, y

l
n) and (xc

n, y
c
n). Then, the mean square errors of the

two models are
∣

∣xn − xl
n

∣

∣

2
+
∣

∣yn − yln
∣

∣

2
and |xn − xc

n|
2+|yn − ycn|

2 respectively. As reported

in Table V, though overall performance of the two models are comparable, among the nine

subjects whose choice-based types are not robust, the lookup-based model has a better

mean square error of 5.75 (compared with 8.67 for the choice-based model) predicting

the last eight trials.37 A Wilcoxon sign rank test shows that this difference is marginally

significant (p = 0.0781).38

To see how significant this gain in prediction power is, we calculate the “economic

34They are subjects 1, 2, 4, 5, 7, 10, 12, 13, 16, 17 (those whose two classifications match).
35They are subjects 3, 6, 8, 9, 11, 15.
36Refer to the likelihood double underlined in Supplementary Table 1.
37Even among the “robust” subjects, subject 7 is the only one whose lookup-based model has a much

larger mean square error than the choice-based model.
38If we focus only on the seven subjects whose two classifications differ, the lookup-based model still

has a better mean square error of 6.55 (compared with 8.68 for the choice-based model), though not
statistically significant.
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value” (cf. Camerer, Ho and Chong, 2004) of the two models, to evaluate how much these

predictions could potentially add to the opponent’s payoffs. In particular, we calculate

the opponent’s payoffs had they followed these models and best responded to the model

predictions, πFollow, and see how much an opponent can gain in addition to his actual

payoffs, πActual, in the experiment. The economic value is the percentage of this gain,

compared with the maximum gain possible, πBR: (Note that economic values could be

negative if the model performs worse than actual subjects.)

EV =
πFollow − π

Actual

πBR − πActual

Results in the last two columns of Table V show that both choice-based and lookup-

based models have good predictive power (compared to actual subjects) and can (on

average) increase opponent payoffs by 39− 41%. Moreover, the bootstrap robustness test

indeed evaluates choice-based models well—the second panel of Table V show that for

the robustness subjects, the average economic value for the choice-based model is 56.3%,

higher than the lookup-based model (42.0%). On the other hand, the lookup-based model

is a good compliment, especially when choice data is not good enough: As shown in the

the first panel of Table V, for the non-robust subjects, the average economic value for the

lookup-based model is 40.4%, compared with 24.3% for the choice-based model. In other

words, among the subjects whose choice-based type is not robust to bootstrap, had the

opponent known her lookup-based level, his payoffs could be increased by 40.4%. As a

comparison, had the opponent known her choice-based level, his payoffs could be increased

by 24.3%.

To summarize, these results show that lookup data can help us confirm classification

results based on choices alone and even provide better classification results when choice-

based classifications are not robust. Moreover, lookup data provide a chance to put the

level-k model to an ultimate test, asking if the model can not only predict final choices,

but also describe the decision-making process employed by subjects by going through the

best response hierarchy specified in Hypothesis 2b. Results in Table II show that the

level-k model does indeed hold up under this test for our spatial beauty contest games.

One ought to keep in mind that explaining the reasoning process is a hard one, if not

harder than explaining choices. Seeing in our dataset, for more than a half of subjects,

their lookup-based types are aligned with their choice-based types should be read as a

strong support to the level-k model. This may be due to the graphical nature of the spatial

beauty contest games. How general this result is should be tested in future experiments

in which the reasoning process can somehow be analyzed.
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VI Conclusion

We introduce a new spatial beauty contest game in which the process of reasoning can

be tracked, and provide theoretical predictions based on the equilibrium and a literal

interpretation of the level-k theory. The theoretical predictions of the level-k model yield

a plausible hypothesis on the decision-making process when the game is actually played.

We then conduct laboratory experiments using video-based eyetracking technology to

test this conjecture, and fit the eyetracking data on lookups using a constrained Markov-

switching model of level-k reasoning. Results show that based on lookups, experimental

subjects’ lookup sequences could be classified into following various level-k best response

hierarchies, which for more than a half of them coincide with types that they were classified

into using final choices alone. Moreover, when the two classifications differ, most of the

choice-based types are not robust to bootstrap, indicating that we might have misclassified

them due to insignificantly larger likelihoods. In fact, lookup-based types often come out

second (if not first) in the bootstrap procedure. Finally, for all subjects whose choice-

based models are not robust to bootstrap, an out of sample prediction exercise shows

that lookup-based models predict final choices better. This suggests that studying the

reasoning process (such as through eyetracking lookups) can indeed help us understand

economic behavior (such as individual’s final choices) better.

Analyzing reasoning processes is a hard task. The spatial beauty contest game is

designed to fully exploit the structure of the p-beauty contest so that subjects are induced

to literally count on the map to carry out their reasoning as implied by the best response

hierarchy of a level-k theory. The high percentage of subjects whose classifications based

on lookups and choices align could be read as a support to the level-k model as a complete

theory of reasoning and choice altogether in the spatial beauty contest game. Whether

this holds true for more general games remains to be seen. Nevertheless, the paper points

out a possibility of analyzing reasoning before arriving at choices. A design exploiting

the structure of the game and is ideal for the tracking technology used seems to be

indispensable.
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Figure I: Equilibrium and Level-k Predictions of a 7x7 Spatial Beauty Contest Game 

with Targets (4, -2) and (-2, 4) (Game 16).  Predictions specifically for player 1 with 

Target (4,-2) are L11 ~ E1, and predictions for player 2 with Target (-2,4) are L12 ~ E2. 

O stands for the prediction of L0 for both players.  Note that Lk1 and Lk2 are the best 

responses to L(k-1)2 and L(k-1)1, respectively.  For example, L22’s choice (1,2) is the 

best response to L11 since (3,-2) + (-2, 4) = (1, 2). 

 

 

 

 

 

 



30 

Figure II: Screen Shot of the GRAPH Presentation 

 

Figure III: Screen Shot of the SEPARATE Presentation 
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Figure IV: Hit Areas for Various Level-k Types in Game 16 (7x7 with Target (4, -2) and 

the Opponent Target (-2, 4). Hit area is the minimal convex set enveloping the locations 

predicted by each level-k type’s best response hierarchy. 

 
Note: If we refer to Figure 1, for player 1, the Hit Area for level-1 is the minimal convex 

set enveloping the locations (O, L11).  The Hit Area for level-2 is the minimal convex 

set enveloping the locations (O, L12, L21), and so on. 

 

Figure V: Aggregate Empirical Percentage of Time Spent on the Union of Hit Areas 

(“Hit Time”) in Each Game 
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Figure VI: Aggregate Linear Difference Measure of Predicted Success in Each Game. It 

measures the difference between hit time and the hit area size. 

 

 

Figure VII: Subject 2’s Eye Lookups in Trial 17 (as a Member B). The radius of the 

circle is proportional to the length of that lookup, so bigger circles indicate longer time 

spent. 
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Table I: Level-k, Equilibrium Predictions and Minimum k ’s in All Games 

Game Map size 
Player 1 

target 

Player 2 

target 
L0 L1 L2 L3 EQ k  

1 9 × 9 -2 , 0 0 , -4 0 , 0 -2 , 0 -2 , -4 -4 , -4 -4 , -4 3 

2 9 × 9 0 , -4 -2 , 0 0 , 0 0 , -4 -2 , -4 -2 , -4 -4 , -4 4 

3 7 × 7 2 , 0 0 , -2 0 , 0 2 , 0 2 , -2 3 , -2 3 , -3 4 

4 7 × 7 0 , -2 2 , 0 0 , 0 0 , -2 2 , -2 2 , -3 3 , -3 4 

5 11 × 5 2 , 0 0 , 2 0 , 0 2 , 0 2 , 2 4 , 2 5 , 2 5 

6 11 × 5 0 , 2 2 , 0 0 , 0 0 , 2 2 , 2 2 , 2 5 , 2 6 

7 9 × 7 -2 , 0 0 , -2 0 , 0 -2 , 0 -2 , -2 -4 , -2 -4 , -3 4 

8 9 × 7 0 , -2 -2 , 0 0 , 0 0 , -2 -2 , -2 -2 , -3 -4 , -3 4 

9 7 × 9 -4 , 0 0 , 2 0 , 0 -3 , 0 -3 , 2 -3 , 2 -3 , 4 4 

10 7 × 9 0 , 2 -4 , 0 0 , 0 0 , 2 -3 , 2 -3 , 4 -3 , 4 3 

11 7 × 9 2 , 0 0 , 2 0 , 0 2 , 0 2 , 2  3 , 2 3 , 4 5 

12 7 × 9 0 , 2 2 , 0 0 , 0 0 , 2 2 , 2 2 , 4 3 , 4 5 

13 9 × 9 -2 , -6 4 , 4 0 , 0 -2 , -4 2 , -2 0 , -4 2 , -4 4 

14 9 × 9 4 , 4 -2 , -6 0 , 0 4 , 4 2 , 0 4 , 2 4 , 0 4 

15 7 × 7 -2 , 4 4 , -2 0 , 0 -2 , 3 1 , 2 0 , 3 1 , 3 4 

16 7 × 7 4 , -2 -2 , 4 0 , 0 3 , -2 2 , 1 3 , 0 3 , 1 4 

17 11 × 5 6 , 2 -2 , -4 0 , 0 5 , 2 4 , 0 5 , 0 5 , 0 3 

18 11 × 5 -2 , -4 6 , 2 0 , 0 -2 , -2 3 , -2 2 , -2 3 , -2 4 

19 9 × 7 -6 , -2 4 , 4 0 , 0 -4 , -2 -2 , 1 -4 , 0 -4 , 1 4 

20 9 × 7 4 , 4 -6 , -2 0 , 0 4 , 3 0 , 2 2 , 3 0 , 3 4 

21 7 × 9 -2 , -4 4 , 2 0 , 0 -2 , -4 1 , -2 0 , -4 1 , -4 4 

22 7 × 9 4 , 2 -2 , -4 0 , 0 3 , 2 2 , -2 3 , 0 3 , -2 4 

23 7 × 9 -2 , 6 4 , -4 0 , 0 -2 , 4 1 , 2 0 , 4 1 , 4 4 

24 7 × 9 4 , -4 -2 , 6 0 , 0 3 , -4 2 , 0 3 , -2 3 , 0 4 

Note: Each row corresponds to a game and contains the following information in order: (1) the 

game number, (2) the size of the grid map for that game, (3) the target of player 1, (4) the target 

of player 2, (5) the theoretic prediction of L0 for player 1, (6) the theoretic prediction of L1 for 

player 1, (7) the theoretic prediction of L2 for player 1, (8) the theoretic prediction of L3 for player 

1, (9) the theoretic prediction of EQ for player 1, and (10) the minimum k  for player 1 such that 

as long as the level is weakly higher, the choice of that type is the same as the choice of EQ. Non-

separating types are underlined. 
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Table II: Level-k Types Based on Lookup Data (and Final Choice Data) 

(1) (2) (3) (4) (5) (6) (7) 

subject Lk* Lka Vuong’s V Lkl  Lkc 
bootstrap 

miss rate 

1 L3 L2 4.425 + L3 L3 0.000* 

2 L3 L2 0.689  L2 L2 0.076 

3 L3 L1 1.577  L1 L3 0.244 

4 L3 L1 1.597  L1 L1 0.110 

5 EQ L2 2.977 + EQ EQ 0.012* 

6 EQ L2 2.400 + EQ  L2 0.236 

7 L2 L0 1.582  L0 L0 0.034* 

8 L3 L1 2.812 + L3 EQ 0.000* 

9 EQ L2 1.001  L2 L0 0.472 

10 L3 L1 1.226  L1 L1 0.000* 

11 L3 L2 2.087 + L3 L2 0.365 

12 L3 L1 0.853  L1 L1 0.010* 

13 L3 L1 3.939 + L3 L3 0.004* 

14 L3 L1 1.692  L1 EQ 0.413 

15 L3 L2 1.470  L2 L3 0.184 

16 L3 L2 1.342  L2 L2 0.000* 

17 L3 L1 1.778  L1 L1 0.232 

Note: + indicates Vuong’s statistic V is significant or |V|>1.96.  (Lk* denotes the type with the largest 

likelihood; Lka denotes the alternative lower level type which has the next-largest likelihood; Lkl 

denotes the classified type based on Vuong’s test; Lkc denotes level-k type based on final choices 

alone.) 

* indicates misclassification rate less than 0.05. 10 pairs of boldfaced level-k types in columns (5)-

(6) indicate agreement between the two.  

 

Each row corresponds to a subject and contains the following information in order: (1) the subject 

number, (2) based on her lookups, the type with the largest likelihood, (3) based on her lookups, 

the alternative lower level type which has the next-largest likelihood, (4) Vuong’s statistic in 

testing whether Lk* and Lka are equally good models, (5) subject’s lookup type based on Vuong’s 

test result, (Notice that in (5) we classify a subject as her Lk* type if according to Vuong’s test, Lk* 

is a better model than Lka. If Lk* and Lka are equally good, since Lka has fewer parameters, to avoid 

overfitting, we classify a subject as her Lka type. The result in (5) is summarized in column (A) of 

Table 3.) (6) her choice-based level-k type denoted by c

Lk , (7) the bootstrap misclassification rate, 

i.e., the ratio that she is not classified as her original choice-based type ( c

Lk ).  



35 

Table III: Distribution of Types under Various Specifications 

 (A) Lookup-based (B) Choice-based (C) Choice-based 

 with Vuong’s test without Pseudotypes with Pseudotypes 

L0 1 2 2 

L1 6 4 3 

L2 4 4 4 

L3 4 4 3 

Equilibrium 2 3 3 

Pseudo-17 - - 2 

Aver. step 2.00 2.12  2.13 

Note: In each row we list the number of subjects of that particular type based on various 

classifications. In the bottom row we list the average of thinking steps. We consider 

three ways to classify subjects. The first classification, reported in column (A), is 

based on the lookup data and we classify subjects to the type with the largest 

likelihood if according to Vuong’s test, this type is a better model than the type with 

the next largest likelihood among all lower level types (and to the type with the next 

largest likelihood among all lower level types otherwise). The second classification, 

reported in column (B), uses the choice data in which pseudotypes are not included. 

The third classification, reported in column (C), also uses the choice data but in 

addition, pseudotypes are included.  
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Table IV: Distribution of Types in 1000 Bootstraps of Final Choice Data 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

subject Lkl  Lkc L0 L1 L2 L3 EQ
bootstrap 

miss rate 

1 L3 L3 0 0 0 1000 0 0.000* 

2 L2 L2 1 0 924 75 0 0.076 

3 L1 L3 0 233 1 756 10 0.244 

4 L1 L1 63 890 11 36 0 0.110 

5 EQ EQ 0 0 1 11 988 0.012* 

6 EQ  L2 0 3 764 5 228 0.236 

7 L0 L0 966 0 12 17 5 0.034* 

8 L3 EQ 0 0 0 0 1000 0.000* 

9 L2 L0 528 3 440 4 25 0.472 

10 L1 L1 0 1000 0 0 0 0.000* 

11 L3 L2 0 0 635 363 2 0.365 

12 L1 L1 0 990 6 4 0 0.010* 

13 L3 L3 0 1 3 996 0 0.004* 

14 L1 EQ 0 185 0 228 587 0.413 

15 L2 L3 0 9 165 816 10 0.184 

16 L2 L2 0 0 1000 0 0 0.000* 

17 L1 L1 0 768 1 231 0 0.232 

Note: * indicates misclassification rate less than 0.05. (Lkl denotes the classified type based on lookup 

data; Lkc denotes level-k type based on final choices alone.)  10 pairs of boldfaced level-k types in 

columns (2)-(3) indicate agreement between the two. Underlined numbers in columns (4)-(8) 

indicate each subject’s lookup-based type.  Notice that they are typically the second most frequent 

types subjects are classified into (if not the most frequent) if we resample their choices. The only 

exception is subject 14. 

 

Each row corresponds to a subject and contains the following information in order: (1) the subject 

number, (2) subject’s lookup type based on her lookups, (3) her choice-based level-k type denoted 

by Lkc, (4)-(8) the number of times that she is classified as an L0/L1/L2/L3/EQ  in 1000 times of 

bootstrapping her choice data, (9) the bootstrap misclassification rate, i.e., the ratio that she is not 

classified as her original choice-based type (Lkc).  
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Table V: Out-of-Sample Forecasting: Choice-based and Lookup-based Classifications 

Note: 
16

l
Lk  denotes a subject’s lookup-based type if we use the first 16 trials. 

16

c
Lk  denotes a subject’s 

choice-based type if we use the first 16 trials. 

We use the first 16 trials to estimate each subject's level-k type, and predict their final choices in 

the remaining 8 trials. The top panel is for the nine subjects whose choice data is not robust (i.e. 

those with misclassification rate greater than 0.05 as reported in the last column of Table 2). The 

bottom panel is for the eight subjects whose choice data is robust. We list in order (1) the subject 

number, (2) her lookup-based type if we use the first 16 trials, (3) her choice-based type if we use 

the first 16 trials, (4) the mean square error of the predicted choices for the remaining 8 trials 

based on the lookup-based type, (5) the mean square error of the predicted choices for the 

remaining 8 trials based on the choice-based type, (6) the economic value for the lookup-based 

type, (7) the economic value for the choice-based type. In the bottom row for each panel we list 

the mean and standard deviation of the mean square error and the economic value. 

Group subject 
Type Mean Square Error Economic Value 

    
16

l
Lk  

16

c
Lk  

16

l
Lk  

16

c
Lk  

16

l
Lk  

16

c
Lk  

    

Not 

Robust to 

Bootstrap 

2 L2 L3 0.750  4.875  0.790  0.422  
    

3 L1 L3 14.625  27.750  -0.243  -0.450  
    

4 L1 L0 0.000  7.750  1.000  -0.062  
    

6 L2 L2 1.500  1.500  0.813  0.813  
    

9 L2 L0 5.250  6.125  0.317  0.425  
    

11 L3 L3 3.000  3.000  0.415  0.415  
    

14 L2 EQ 16.125  14.375  -0.186  0.065  
    

15 L2 L3 1.875  4.000  0.669  0.501  
    

17 L1 L1 8.625  8.625  0.060  0.060  
    

Group Average 5.750  8.667  0.404  0.243  
    

(Std) (6.058)  (8.091)  (0.452)  (0.375)     

Robust to 

Bootstrap 

1 L3 L3 1.875 1.875 0.735 0.735     

5 EQ EQ 19.375 19.375 0.401 0.401     

7 L3 L0      27.375  7.875 -0.490 0.249     

8 L3 EQ 3.500 4.000 0.590 0.611     

10 L1 L1 0.625 0.625 0.793 0.793     

12 L1 L1 3.375 3.375 0.172 0.172     

13 L3 L3 2.750 2.750 0.624 0.624     

16 L3 L2 16.125  14.375 0.535 0.917     

Group Average 7.844 5.078 0.420 0.563     

(Std) (9.876)  (6.217)  (0.416)  (0.265)     

Whole-sample Average 6.735 6.978 0.411 0.393    

(Std) (7.886)  (7.283)  (0.422)  (0.358)    
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Supplementary Appendix [For Online Reference Only] 

A1  Alternative L0 Specification 

For player i’s choice ( , )
i i
x y and player i’s target ( , ),

i i
a b  let player i’s payoff be 

( , ; , ; , ) (| ( ) | | ( ) |)
i i i i i i i i i i i i i
p x y x y a b s x x a y y b

− − − −

= − − + + − +  where s  is a constant.  

Suppose player i is level-1 with a continuous von Neumann-Morgenstern utility 

function ()u ⋅ that values only monetary payoffs.  Then, choosing location ),(
ii
ba  is 

the best response to a level-0 opponent -i who chooses randomly over the entire 

map, { }( , ), { , 1, ..., }, { , 1, ..., }x y x X X X y Y Y Y∈ − − + ∈ − − + .  

Proof.Proof.Proof.Proof. To best respond to the choice of player -i, player i should find ( , )
i i
x y that 

solves the maximization 

[ ]( )
,

1
( , ) argmax | ( ) | | ( ) | .

(2 1)(2 1)
i i

Y X

i i i i i i
x y

y Y x X

x y u s x x a y y b
X Y

− −

− −

=− =−

= − − + + − +

+ +
∑ ∑

 

To show that ( , ) ( , )
i i i i
x y a b=  is the arg max, it suffices to show that 

( , ) (0,0)x y′ ′ = solves the maximization 

 [ ]( )
', '

argmax | | | | .
i i

Y X

i i
x y

y Y x X

u s x x y y

− −

− −

=− =−

′ ′− − + −∑ ∑  (1) 

For any given 
i

y
−

, y′, let 
i i

Y y y
− −

′= − . Then the summation over x, given 
i

y
−

, y′

, can be expressed as 

 ( )| | ,
i

X

i i

x X

u s Y x x

−

− −

=−

′− − −∑  (2) 

which is symmetric by 0x′ = .   

     Without loss of generality, consider two choices of x′, 0X x t′≥ = >  and 0x′ = . 

Player i’s payoff when choosing x t′ =  differs from that when choosing 0x′ =  by 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 2

0

1 2

2 1

1

| | | 0 |

| | | |

| | | |

| | | | 0,

i i

X X

i i i i

x X x X

X t X

i i

k t k

X

i i

k t k X t

X

i i

k X t

u s Y t x u s Y x

u s Y X k u s Y X k

u s Y X k u s Y X k

u s Y t k u s Y k

− −

− − − −

=− =−

−

− −

=− =

−

− −

=− = − +

− −

= + −

− − − − − − −

= − − − − − − −

= − − − − − − −

= − − + − − − <  

∑ ∑

∑ ∑

∑ ∑

∑
                   

(3) 

where the equalities follow because of simple algebra and the last inequality holds 

since | | | |t k k+ >  for all 1X t k X+ − ≤ ≤ (notice that X t≥ implies that 
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1 1X t+ − ≥ ), and ()u ⋅  is increasing. Hence, choosing x t′ =  is worse than choosing 

0.x′ = Since (2) is symmetric by 0x′ = , the same argument applies to show that 

choosing x t′ = −  is worse than choosing 0.x′ =  Thus 0x′ =  maximizes the 

summation of (2) for any given 
i

y
−

 , y′. 

Similarly, 0y′ =  maximizes ( (| 0 | | |)).
i i

Y X

i i

y Y x X

u s x y y

− −

− −

=− =−

′− − + −∑ ∑  Therefore, 

( , ) ( , )
i i i i
x y a b=  is optimal if the (level-0) opponent chooses uniformly on the 

map. 

A2  Proof of Proposition 2 

(1) 1 1
( , ) ( , ; ( + , + ))

k k k k

i i i i i i
x y R X Y a x b y− −

− −

=  for {1,2,...}k∈ and 0 0 0 0

1 1 2 2
( , ) ( , ) (0, 0).x y x y= ≡  

Proof. Proof. Proof. Proof. Following the notations defined above in A1, to find ( , )
k k

i i
x y that solves 

( )1 1

,
max ( | ( ) | | ( ) | )k k

i i i i
x y

u s x x a y y b− −

− −

− − + + − + , we may solve k

i
x  and k

i
y  separately 

since there is no interaction between the choice of k

i
x  and k

i
y . Hence, by 

symmetry we only need to show that { }{ }1
min ,max , + .

k k

i i i
x X X a x

−

−

= −  Notice that  

 { }{ }

1

1 1 1

1

, +

min ,max , + + ,   + { , 1,... }.

, +

k

i i

k k k

i i i i i i

k

i i

X x a X

X X x a x a x a X X X

X x a X

−

−

− − −

− − −

−

−

− < −


− = ∈ − − +
 >

 

In other words, when the unadjusted best response 1
+

k

i i
x a

−

−

 is lower than the 

lowest possible choice of k

i
x  on the grid map, the adjusted best response is the 

lower bound X− . When it is higher than the highest possible choice of k

i
x  on the 

grid map, the adjusted best response is the upper bound X . When the 

unadjusted best response 1
+

k

i i
x a

−

−

 is within the possible range of k

i
x  on the grid 

map, the adjusted best response coincides with the unadjusted best response.  

Notice that:  

1. If 1
+ { , 1,..., }

k

i i
x a X X X

−

−

∈ − − + , 1

{ , 1,..., }
min ( ) 0k

i i
x X X X

x x a
−

−
∈ − − +

− + =  at 1
+

k

i i
x x a

−

−

= ;  

2. If 1
+

k

i i
x a X

−

−

> , ( ) ( )1 1

{ , 1,..., }
min

k k

i i i i
x X X X

x x a X x a
− −

− −
∈ − − +

− + = − + +  at x X= ;  

3. If 1
+ ,

k

i i
x a X

−

−

< −  ( ) ( )1 1

{ , 1,..., }
min

k k

i i i i
x X X X

x x a X x a
− −

− −
∈ − − +

− + = − − +  at x X= − . 

Thus, { }{ }1
min ,max , +

k k

i i i
x X X x a

−

−

= −  indeed maximizes player i’s utility (which 

is decreasing in the distance between the target 1
+

k

i i
x a

−

−

 and the choice).   
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(2) there exists a smallest integer k  such that for all k k≥ , ( , ) ( , )
k k e e

i i i i
x y x y=  and 

( , ) ( , ).
k k e e

i i i i
x y x y
− − − −

=  

Proof.Proof.Proof.Proof. It suffices to show that there exists a smallest positive integer k  such that 

( , ) ( , ) 
k k e e

i i i i
x y x y=  for all k k≥  when 

1 2
 0a a+ < . All other possibilities can be 

argued analogously.   

There are 2 cases to consider:  0
i i
a a

−

< ≤  and 
1 2

 , 0a a < . 

Case 1:  0
i i
a a

−

< ≤  .  

We show that when k

i
x X> − , 2k

i
x

+  is strictly less than k

i
x , and when k

i
x X= − , 

2k

i
x X

+

= − . Then all subsequences taking the form of 2 4
{ , , ,...}

k k k

i i i
x x x

+ + will 

eventually converge to e

i
x X= − , implying the sequence 0 1 2

{ , , ,...}
i i i
x x x  also 

converges to e

i
x X= − .   

For any nonnegative integer k ,  

{ }{ }2 1
min ,max ,

k k k k

i i i i i
x x X X x a x

+ +

−
− = − + −  

where 

{ {

{ }

1

0

min ,max ,

      min , .

{ }{ }k k

i i i

X

k

i i

x X X x a

X x a

+

− −

≥− ≥

−

= − +

= +

 

If k

i
x X> − ,  

{ }{ }

{ }{ }{ }

{ }{ }

2

1

0

   

min , max ,

min ,max , min ,

min ,max , min ,

max , min ,

max , min

{ }

{

{ }

{

{ }

k k

i i

k k

i i i

k k

i i i i

k k

i i i i i

X

X

X

k k

i i i i i

k

i

x x

X X x a x

X X X x a a x

X X X a x a a x

X X a x a a x

X x X a

+

+

−

−

−

<

<

<

−

<

−

= − + −

= − + + −

= − + + + −

= − + + + −

= − − +

123

14444244443

14444444244444443

14243

, 0.} }
k

i

k

i

k k

i i i i i

x

x

x a a x
−

<

<

+ + − <
14243

14444244443

 
If k

i
x X= − ,  
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{ }{ }

{ }{ }{ }
{ }{ }{ }

{ }

2

1

0

   

min ,max ,

min , max ,min ,

min ,max , min , ( )

min ,max ,min , ( )

min , ( )

( ) 0.

{ }{ }{ }

k k

i i

k k

i i i

k k

i i i i

i i

i i i

X

X

x x

X X x a x

X X X x a a x

X X X X a a X

X X X a X a a X

X X X

X X

+

+

−

−

−

−

<

<−

<−

−

= − + −

= − + + −

= − − + + − −

= − + − + + − −

= − − −

= − − − =

123

1442443

14444244443

 

For player -i, we know from Case 1 that there exists a positive integer 
i
k  

where the opponent chooses k e

i i
x x X= = −  for all 

i
k k≥ . This implies 

1k e

i i i
x x X a

+

− − −
= = − +  for all ,

i
k k≥  since { }{ }1

min ,max , .
k k

i i i
x X X x a

+

− −
= − +  

Case 2: 
1 2

 , 0a a < .  

As in Case 1, again we show that when k

i
x X> − , 2k

i
x

+  is strictly less than k

i
x , 

and when k

i
x X= − , 2k

i
x X

+

= − . Then all subsequences taking the form of 

2 4
{ , , ,...}

k k k

i i i
x x x

+ + will eventually converge to e

i
x X= − , implying the sequence 

0 1 2
{ , , ,...}

i i i
x x x  also converges to e

i
x X= − .  Since 

{ {
{ }1

0

min ,max , max , ,{ }{ }k k k

i i i i i

m

m

x X X x a X x a
+

− − −

≤ <

<

= − + = − +

14243

 

{ }{ }

{ }{ }{ }

{ }{ }

2 1
 min ,max ,

min ,max ,max ,

min ,max ,max ,

 min ,max , .

{ }{ { }}

k k k k

i i i i i

k k

i i i i

k k

i i i i i

X

k k

i i i i

x x X X x a x

X X X x a a x

X X X a x a a x

X X x a a x

+ +

−

−

−

<−

−

− = − + −

= − − + + −

= − − + + + −

= − + + −

14243

 

If k

i
x X> − ,  

2

0 0

min ,max , 0.{ }{ }k k k k

i i i i i i
x x X x X x a a

+

−

< <

− = − − − + <
14243 123

 

If k

i
x X= − ,  
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{ }

2

0

min ,max , ( )

min , ( )

0.

{ }{ }k k

i i i i

X

x x X X X a a X

X X X

+

−

<

<−

− = − − + + − −

= − − −

=

123

1442443

 

Then we can argue as in Case 1 that player –i will eventually choose .
k e

i i
x x X
− −

= =  

A3  Initial Distribution of States 

Formally, we start with the assumption that 
0 0

Pr( ) 1s= =S  when the 

initial state 
0
s  is 0 and zero otherwise. Then we derive the following step by 

step. First, for 
0

Pr( )s  given by the initial distribution of states and 
1 0

Pr( | )s s  

given by the Markov transition matrix,
 

[ ]
0

1 0 1 0
Pr( ) Pr( ) Pr( | )

k
s

s s s s
∈Ω

=∑  .  

Second, for 
1

Pr( )s  given by the first step and 1

1
Pr( | )

n
r s  given by the logit 

error,
 1

1 1

1 1
Pr( ) Pr( )Pr( | )

k
n n

s

r s r s
∈Ω

 =  ∑ . Third, we update the state by the 

current lookup or 1 1 1

1 1 1
Pr( | ) Pr( ) Pr( | ) Pr( )

n n n
s r s r s r =    where terms in the 

numerator and the denominator are both derived in the second step. Fourth, for 
1

1
Pr( | )

n
s r  derived in the third step and 

2 1
Pr( | )s s  given by the Markov 

transition matrix, we derive the next state from the current lookup, or 

1 1

1 1 1 1

2 1 2 1 1 2 1
Pr( | ) Pr( | )Pr( | , ) Pr( | )Pr( | )

k k
n n n n

s s

s r s r s r s s r s s
∈Ω ∈Ω

   = =   ∑ ∑  

where the second equality follows because by Markov, the transition to the next 

step only depends on the current state.  

Fifth, for 1

2
Pr( | )

n
s r  given by the fourth step and 

2 1 2

2 2
Pr( | , ) Pr( | )

n n n
r r s r s=  given by the logit error, we derive the next lookup 

from the current lookup or 
2

2 1 1 2 1

2 2
Pr( | ) Pr( | )Pr( | , )

k
n n n n n

s

r r s r r r s
∈Ω

 =  ∑ . Sixth, 

as in the third step, we update the state by the lookups up to now or  
1 2 1

1 2 2 2

2 2 1

Pr( | ) Pr( | , )
Pr( | , )

Pr( | )

n n n

n n

n n

s r r r s

s r r

r r

=  

where terms in the numerator and the denominator are both derived in the fifth 

step.   

Seventh, as in the fourth step, for 1 2

2
Pr( | , )

n n
s r r  derived in the sixth step 

and 
3 2

Pr( | )s s  given by the Markov transition matrix, we derive the next state 

from the lookups up to now or 
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2 2

1 2 1 2 1 2 1 2

3 2 3 2 2 3 2
Pr( | , ) Pr( | , )Pr( | , , ) Pr( | , )Pr( | ) .

k k
n n n n n n n n

s s

s r r s r r s r r s s r r s s
∈Ω ∈Ω

   = =   ∑ ∑  

Eighth, as in the fifth step, for 1 2

3
Pr( | , )

n n
s r r  given by the seventh step and  

3 1 2 3

3 3
Pr( | , , ) Pr( | )

n n n n
r r r s r s=  given by the logit error, we derive the next lookup from the 

lookups up to now, or 
3

3 1 2 1 2 3 1 2

3 3
Pr( | , ) Pr( | , )Pr( | , , )

k
n n n n n n n n

s

r r r s r r r r r s
∈Ω

 =  ∑ .  

Continuing in this fashion and multiplying altogether the second step, the fifth 

step, the eighth step, and so on, we derive 
11 2 1 3 1 2 1 2

Pr( ) Pr( | ) Pr( | , )...Pr( | , ,..., )n n
T T

n n n n n n n n n n
r r r r r r r r r r

−  or (5). Regarding the assumption on 

the initial state, alternatively, we could follow the tradition in the Markov literature 

and assume uniform priors, or 
0 0

Pr( ) 1 ( 1)s k= = +S  for all 
0 k
s ∈Ω . But this raises the 

question how subjects could figure out locations of higher states without even actually 

going through the best response hierarchy. This is the reason why we employ the 

current assumption that 
0 0

Pr( ) 1s= =S  when the initial state 
0
s  is 0 and zero 

otherwise. 

A4  Vuong’s Test for Non-Nested But Overlapping Models 

Let Lk∗  be the type which has the largest likelihood with corresponding 

parameters ( , ).
k k

λ θ
∗ ∗

 Let a

Lk  be an alternative type with corresponding 

parameters ( , ).
a a

k k
λ θ  To test if these two competing types, Lk

∗

 and a

Lk , are 

equally good at explaining the true data, or it is the case that one of them is a 

better model, we choose a critical value from the standardized normal 

distribution. If the absolute value of the test statistic is no larger than the critical 

value, then we conclude that Lk
∗

 and a

Lk  are equally good at explaining the 

true data. If the test statistic is higher than the critical value, then we conclude 

that Lk∗  is a better model than a

Lk . Lastly, if the test statistic is less than the 

negative of the critical value, then we conclude that a

Lk  is a better model than 

Lk
∗ . 

Equation (6) can be rearranged as 
24

1

( , ) ( , ),
k k n k k

n

L lrλ θ λ θ

=

=∑  

where 11
( , ) ln ( ,..., , ).n n

T Tk

n k k n n n n
lr f r r rλ θ

−

≡  This indicates that we assume subject’s 

lookups are independent across trials and follow the same Markov switching 

process, although each trial’s lookups sequence may be serially-correlated. 

To perform Vuong’s test, we construct the log-likelihood ratio trial by trial: 
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( , ) ( , )
a an n nk k k k

m lr lrλ θ λ θ
∗ ∗

= −  for trial n=1,…, 24. 

Let 
1

1
N

n

n

m m
N

=

= ∑ , N=24. Vuong (1989) proposes a sequential procedure 

(p.321) for overlapping models.  Its general result describes the behavior of  

1

2

1

1

,
1

( )

N

n

n

N

n

n

N m
N

V

m m
N

=

=

 
 
 =

−

∑

∑

 

when the sample variance 2 2

1

1
( )

N

N n

n

m m
N

ω

=

= −∑ is significantly different from zero 

(the variance test).  If the variance test is passed (which is the case for all of our 

subjects), V has the property that (under standard assumptions): 

(V1) If Lk∗ and a

Lk are equivalently good at fitting the data, 

(0,1)
D

V N→ ; 

(V2) if Lk
∗

 is better than a

Lk  at fitting the data, 
. .A S

V →∞ ; 

(V3) if a

Lk  is better than Lk
∗

 at fitting the data, 
. .AS

V→−∞. 

Hence, Vuong’s test is performed by first conducting the variance test, then 

calculating V and applying the above three cases depending on whether V c< − , 

V c< , or V c> .  (c=1.96 for p-value = 0.05.)  Notice that this is the 

generalized version of the well-known “nested” Vuong’s test, which does not 

require the variance test prior to calculating V. 

Note that in our case Lk∗  is the type with the largest likelihood based on 

lookups, and the alternative type a

Lk  be the type having the next largest 

likelihood among all lower level types. Hence, either (V2) applies so that Lk∗  is a 

better model than 
a

Lk , or (V1) applies so that Lk∗  and a

Lk  are equally good 

(and we conservatively classify the subject as the second largest lower type a

Lk ).  

(V3) does not apply since 0V >  by construct. 

Two points are worth noting regarding Vuong’s test in our setting. First, one 

might worry about non-identification issues caused by nuisance parameters when 

the two competing types are strictly nested and if the subject were truly Lka. 

Hence, as an alternative, we perform Hansen’s test (Hansen, 1992). Columns 7 

and 8 of Supplementary Table 3 report the nearly identical results (to those 

based on Vuong’s test). Secondly, we only perform Vuong’s test once, and if we find 
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Lk* and Lka explain the data equally well, we classify subjects as Lka, the lower level type 

that has the next largest likelihood. It is possible that the lower level type with the next-

largest likelihood is still not different from the even lower level type with the even-next-

largest likelihood (and so on). Hence, one might wonder whether we should stop here. 

Thus, we employ an iterative Vuong’s test and classify subjects as the type that is, for 

the first time, significantly different from a lower level type of which the likelihood is 

immediate lower. We re-classify only two L2 subjects as L1, one L2 subject as L0 and 

two L1 subjects as L0, making the average number of thinking steps drop to 1.65. This 

provides a lower bound to the possible type distribution. The iterative Vuong’s test result 

is reported in the sixth column of Supplementary Table 3. 

 

A5 Level-k Classification Based on Final Choices 

 

We classify subjects into various (level-k) behavioral types based on their 

final choices using maximum likelihood estimation. In addition, a bootstrap 

procedure is employed to evaluate the robustness of the classification.  In 

particular, similar to Costa-Gomes and Crawford (2006), we perform a 

maximum likelihood estimation to classify each individual subject into a 

particular behavioral level-k type.  In particular, we model subjects following a 

particular level-k type but playing quantal response using the following logit 

error structure.1 Let all possible level-k types be 1,...,k K= and each subject 

goes through trial 1,..., 24.n =  For a given trial n ,  according to Hypothesis 1, a 

level-k subject i’s final choice is denoted as ( )
, ,

,

k k k

n i n i n n
c x y G= ∈  where 

{ }( , ) { , 1,..., }, { , 1,..., }
n n n n n n n

G x y x X X X y Y Y Y= ∈ − − + ∈ − − +   

is the finite countable choice set for trial n . (2 1)(2 1)
n

G X Y= + +  is the 

number of elements in 
n

G , which depends on the map size (X, Y) of the game 

in that particular trial.2 For any two elements of 
n

G , 
1 1 1 2 2 2

( , ), ( , )g x y g x y= = , 

their distance is defined as 
1 2 1 2 1 2
g g x x y y− = − + − , i.e. the “steps” on the 

map (the sum of vertical and horizontal distance) between 
1 2
,g g . Then, if a 

                                         
1 Since we do not have a large choice set as in Costa-Gomes and Crawford (2006), we employ 

a “logit” specification instead of a “spike-logit” specification to describe the error structure of 

subjects’ choices. 
2 For instance, as shown in Figure 1, the grid map of Game 16 (as listed in Table 1) has a 

choice set of { }( , ) | { 3, 2,...,3}, { 3, 2,...,3}
n

G x y x y= ∈ − − ∈ − −  consisting of the 7x7 = 49 

locations. 
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subject chooses a location 
, ,

( , )
n i n i n

g x y=  in trial n, the distance between her 

choice 
n
g  and the choice of a level-k subject k

n
c  is 

, , , ,

.

k k k

n n i n i n i n i n
g c x x y y− = − + −  

In a logit error model with precision 
k
λ , the probability of observing 

n
g  is 

( )
( )

exp || ||
( )

exp || ||
n

k

k n nk

n k

k n

g G

g c
d g

g c

λ

λ

∈

− × −

=

− × −∑
 

When 0
k

λ → , 
1

( )
| |

k

n

n

d g
G

=  and the subject randomly chooses from the 

choice set 
n

G . As 
k
λ →∞, 

1,  if 
( )

0,  if 

k

k n n

n k

n n

g c
d g

g c

 =
= 

≠
 and the choice of the subject 

approaches to the level-k choice k

n
c . The log likelihood over all trials with 

choices
1 2 24

( , ,..., )g g g trial-by-trial can then be expressed as 

                                ( )
24

1

ln .
k

n
n

d g
=

∏                                                      (1) 

For each k, we estimate the precision parameter
k
λ   by fitting the data 

with the logit error model to maximize empirical likelihood. Then we choose the 

k which maximizes the empirical likelihood and classify the subject into this 

particular level-k type. We consider all the level-k types separable in our games: 

L0, L1, L2, L3, and EQ.  Results are reported in column (B) of Table 3. Among 

the 17 subjects, there are two L0, four L1, four L2, four L3, and three EQ. The 

average number of thinking steps is 2.12, similar to the lookup-based 

classifications.3  

One possible concern is whether some subjects do not follow any of the 

pre-specified level-k types, and hence, the model is misspecified. To incorporate 

all empirically possible behavioral types, we follow Costa-Gomes and Crawford 

(2006) and perform the pseudotype test by including 17 pseudotypes, each 

constructed from one of our subject’s choices in 24 trials. This is to see whether 

there are clusters of subjects whose choices resemble each other’s and thus 

predict other’s choices in the cluster better than the pre-specified level-k types. 

We report results of the pseudotype test in Supplementary Table 1 where 

pseudo-i is the pseudotype constructed from subject-i,. We find that two 

subjects (subject 3 and subject 17) have likelihoods for each other’s pseudotype 

higher than all other types. So, based on the same criteria of Costa-Gomes and 

                                         
3 We treat the EQ type as having a thinking step of 4 in calculating the average number of 

thinking steps.   
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Crawford (2006), these two subjects could be classified as a cluster (pseudo-17).  

In other words, there may be a cluster of pseudo-17 type subjects (subjects 3 

and 17) whose behaviors are not explained well by the predefined level-k types. 

Despite of this, there are still 15 subjects out of 17 who can be classified into 

level-k types, comparable to Costa-Gomes and Crawford (2006), who find 12.5% 

(11/88) of their subjects fail the pseudotype test and could be classified as 5 different 

clusters. Table 3 lists the classification with and without pseudotypes in columns 

(C) and (B) respectively.  The distribution of level-k types in column (C) of 

Table 3 does not change much even if we include pseudotypes, having two L0, 

three L1, four L2, three L3, and three EQ. The average of thinking steps is 

2.13, nearly identical to that without pseudotypes.4 This suggests that in our 

games, the level-k classification is quite robust to empirically omitted types that 

explain more than one subject.  In other words, Hypothesis 1 is confirmed is the 

sense that most subjects indeed follow the prediction of a particular level-k type 

for choices, and few alternative models can explain the behavior of more than 

one subject.5 

 

                                         
4 In calculating the average number of thinking steps, we ignore the two pseudo-17 subjects. 

For these two pseudo-17 subjects, one is re-classified as L1, and the other L3 when 

pseudotypes are not included. 
5 Given that we have only seventeen subjects, it is true that we cannot rule out the possibility 

that our small pool of subjects did not capture all possible behavioral types.  However, Costa-

Gomes and Crawford (2006) also find few omitted types in their pool of 88 subjects. 
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Supplementary Table 1: Subject’s Maximized Likelihood for Various Level-k Types and Pseudotypes Based on Final Choices 

 

Subject Lk type         Pseudotype  

  L0 L1 L2 L3 EQ 
pseudo-

1 

pseudo-

2 

pseudo-

3 

pseudo-

4 

pseudo-

5 

pseudo-

6 

pseudo-

7 

pseudo-

8 

pseudo-

9 

pseudo-

10 

pseudo-

11 

pseudo-

12 

pseudo-

13 

pseudo-

14 

pseudo-

15 

pseudo-

16 

pseudo-

17 

 

1 -98.89  -88.92  -79.24  -52.32  -67.21  . -98.27  -98.89  -97.34  -81.26  -85.83  -98.89  -84.57  -98.57  -92.07  -77.82  -91.05  -97.86  -97.81  -85.92  -86.76  -98.89  L3 

2 -97.16  -93.70  -81.14  -85.76  -90.68  -96.12  . -97.47  -94.69  -97.09  -91.68  -98.47  -95.52  -96.63  -98.55  -92.85  -97.14  -86.30  -93.32  -97.06  -89.75  -97.60  L2 

3 -98.89  -93.70  -97.84  -93.13  -95.03  -98.89  -98.76  . -98.89  -98.89  -98.89  -96.50  -98.89  -98.74  -98.89  -98.89  -98.89  -95.56  -95.28  -98.89  -98.87  -61.67 pseudo-17 

4 -96.92  -90.37  -96.82  -95.96  -97.36  -95.15  -95.24  -98.89  . -95.27  -96.40  -98.55  -96.69  -97.76  -91.42  -93.75  -93.73  -98.82  -98.89  -95.38  -96.31  -98.85  L1 

5 -98.89  -97.28  -86.53  -82.12  -70.69  -83.19  -98.89  -98.89  -98.21  . -87.17  -98.89  -90.70  -98.89  -98.04  -91.52  -97.98  -97.25  -95.28  -94.69  -93.74  -98.89  EQ 

6 -98.89  -90.71  -69.22  -78.98  -73.24  -84.16  -93.91  -98.89  -97.49  -83.63  . -98.89  -82.34  -98.32  -91.09  -79.83  -90.67  -94.70  -97.29  -89.75  -80.90  -98.89  L2 

7 -94.15  -98.89  -98.69  -98.88  -98.87  -98.40  -98.17  -93.04 -98.00  -98.89  -98.89  . -98.89  -96.99  -98.89  -98.64  -98.67  -97.75  -98.59  -98.69  -98.64  -91.95 L0 

8 -98.89  -93.43  -89.58  -81.62  -70.02  -87.23  -98.71  -98.89  -98.86  -91.38  -86.73  -98.89  . -98.89  -96.49  -91.17  -98.09  -98.25  -96.93  -94.93  -90.87  -98.89  EQ 

9 -92.52  -97.28  -93.37  -95.39  -95.76  -96.80  -96.74  -97.47  -97.49  -97.35  -97.21  -97.55  -98.34  . -98.66  -95.98  -98.38  -95.95  -97.51  -95.60  -94.78  -98.25  L0 

10 -98.89  -39.73  -93.07  -86.98  -94.00  -90.22  -98.89  -98.89  -92.67  -96.01  -90.68  -98.89  -93.16  -98.89  . -87.94  -75.40  -98.89  -98.89  -89.36  -93.45  -98.89  L1 

11 -97.77  -85.59  -68.30  -70.72  -77.28  -74.45  -93.62  -98.89  -93.88  -86.59  -78.18  -98.88  -85.40  -96.43  -86.75  . -82.33  -95.75  -98.54  -80.56  -74.79  -98.89  L2 

12 -98.24  -72.01  -86.53  -84.90  -92.83  -86.82  -97.09  -98.89  -92.99  -94.22  -88.02  -98.82  -93.87  -98.32  -73.09  -81.09  . -98.89  -98.89  -84.44  -89.75  -98.89  L1 

13 -98.89  -85.59  -81.74  -72.14  -79.36  -97.74  -90.12  -95.65  -98.89  -96.01  -95.63  -98.89  -96.97  -98.01  -98.89  -97.55  -98.89  . -75.94  -98.51  -92.86  -94.94  L3 

14 -98.89  -84.17  -96.99  -76.67  -74.45  -98.89  -98.83  -98.60  -98.89  -97.81  -98.89  -98.89  -98.47  -98.89  -98.89  -98.89  -98.89  -83.53  . -98.89  -98.89  -98.56  EQ 

15 -98.89  -90.71  -84.53  -82.12  -86.72  -83.19  -97.94  -98.89  -96.09  -91.08  -88.82  -98.89  -90.70  -96.63  -88.87  -81.09 -86.22  -97.75  -98.81  . -88.95  -98.89  L3 

16 -98.89  -92.88  -57.64  -80.59  -80.35  -83.68  -90.91  -98.39  -96.67  -89.50  -79.42  -98.89  -85.40  -95.56  -92.69  -74.91  -91.05  -90.50  -95.78  -88.56  . -98.85  L2 

17 -98.89  -92.88  -98.17  -95.19  -97.36  -98.89  -98.59  -60.42 -98.89  -98.89  -98.89  -94.87  -98.89  -98.85  -98.89  -98.89  -98.89  -93.99  -94.35  -98.89  -98.89  . pseudo-17 

Note: Each row corresponds to a subject and contains the following information in order: subject number, the likelihood of various level-k types, the likelihood of various 

pseudotypes (excluding the pseudotype corresponding to the subject herself), and the type with the largest likelihood of level-k types (listed in the last column) unless a 

pseudotype cluster is identified. Note that the likelihoods are based on choice data and the type with the largest likelihood among the various level-k types is underlined, 

which the largest likelihood among the pseudotypes are in bold when it is higher than that of all level-k types. The likelihood of a subject’s lookup type, when different 

from her choice type, is double underlined. 
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Supplementary Table 2: Comparisons on Final Choices of GRAPH and SEPARATE Presentations 

Subject Average Difference 
Fitting GRAPH data 

(with logit) 

  in X axis (s.e.) in Y axis (s.e.)  lambda (s.e.) 

          

1 0.032  (0.209) 0.127  (0.315)  0.542* (0.108) 

2 0.032  (0.406) 0.196  (0.363)  0.085  (0.074) 

3 -0.048  (0.112) -0.024  (0.140)  1.287* (0.195) 

4 -0.066  (0.243) -0.012  (0.271)  0.426* (0.103) 

5 0.141  (0.268) 0.152  (0.329)  0.272* (0.091) 

6 -0.033  (0.255) -0.075  (0.154)  0.583* (0.110) 

7 -0.017  (0.293) 0.073   (0.260) 0.256* (0.095) 

8 0.029  (0.233) 0.056  (0.311)  0.374* (0.096) 

9 -0.109  (0.213) -0.103  (0.420)  0.177* (0.081) 

10 0.044  (0.210) 0.023  (0.131)  0.857* (0.149) 

11 -0.071  (0.142) 0.000  (0.235) 0.680* (0.126) 

12 0.029  (0.186) 0.066  (0.140)  0.696* (0.129) 

13 0.122  (0.218) 0.077  (0.183) 0.449* (0.109) 

14 -0.006  (0.029) -0.004  (0.113)  2.061* (0.354) 

15 0.014  (0.176) -0.039  (0.242)  0.579* (0.119) 

16 0.064  (0.193) 0.351  (0.286)  0.150 (0.087) 

17 -0.003  (0.175) 0.035  (0.145)  0.765* (0.138) 

Note: * denotes significance at the 0.05 level. 

Each row corresponds to a subject and contains the following information in order: (1) subject 

number, (2) the average difference of choices in the X axis in the two presentations (standard 

errors in parentheses), (3) the average difference of choices in the Y axis in the two presentations 

(standard errors in parentheses), (4) the precision parameter of the logit error if we treat each 

subject’s choice in the SEPARATE presentation as a pseudotype to fit her choice in the GRAPH 

presentation. Notice that if a subject’s choices in the two presentations are similar, we should 

expect that her average difference of choices in either the X axis or the Y axis should not be 

significantly different from zero. Moreover, we should expect that her choices in the SEPARATE 

presentation as a pseudotype can predict her choices in the GRAPH presentation well and hence 

the precision parameter in the error structure should be significantly different from zero. This is 

indeed the case. For none of the subjects, the average difference in either axis is significantly 

different from zero. For fifteen of the seventeen subjects, the precision parameters are significantly 

different from zero. 

 

 

 

  



50 

Supplementary Table 3: Distribution of Types Based on Hansen’s Test and Iterative Vuong’s Test 

subject Lk* Lka 
Vuong’s

(V)
 Lkl 

Iterative 

Vuong 

Hansen’s

p-value
 LkHansen 

1 L3 L2 4.425 + L3 -         -  - 

2 L3 L2 0.689  L2 L1         -  - 

3 L3 L1 1.577 L1 L0 0.084  L1 

4 L3 L1 1.597 L1 - 0.095  L1 

5 EQ L2 2.977+ EQ - 0.023 * EQ 

6 EQ L2 2.400+ EQ - 0.053  L2 

7 L2 L0 1.582 L0 - 0.769  L0 

8 L3 L1 2.812+ L3 - 0.025 * L3 

9 EQ L2 1.001 L2 - 0.498  L2 

10 L3 L1 1.226 L1 - 0.497  L1 

11 L3 L2 2.087 + L3 -         -  - 

12 L3 L1 0.853 L1 - 0.500  L1 

13 L3 L1 3.939+ L3 - 0.015 * L3 

14 L3 L1 1.692 L1 L0 0.096  L1 

15 L3 L2 1.470  L2 L0         -  - 

16 L3 L2 1.342  L2 L1         -  - 

17 L3 L1 1.778 L1 - 0.082  L1 

Note:  + indicates the Vuong statistic V is significant or |V|>1.96. 

* indicates p-value less than 0.05. 

Each row corresponds to a subject and contains the following information in order: (1) 

subject number, (2) based on her lookups, the type with the largest likelihood 

(denoted by Lk*, also reported under the Lk* column of Table 2), (3) based on her 

lookups, the alternative lower level type which has the next largest likelihood (denoted 

by Lka, also reported under the Lka column of Table 2), (4) Vuong’s statistic in 

testing whether Lk*  and Lka are equally good models, (5) subject’s type based on 

Vuong’ test result, (6) types of those subjects who, based on the iterative Vuong’s 

test, have different types from those based on Vuong’s test, (7) p-value in Hansen’s 

test if Lk*  and Lka are strictly nested, (8) types based on Hansen’s test result when 

Lk*  and Lka are strictly nested. Note that among the twelve subjects whose Lk*  and 

Lka are strictly nested, Vuong’s test results are almost identical to Hansen’s test 

results. The only exception is that for subject 6 (her LkHansen type underlined), her 

Vuong’s test statistic V is 2.400>1.96 while the p-value of the Hansen’s test is 0.053, 

at the margin of significance. 
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Supplementary Table 4: Distribution of Types Based on Lookup Data (Unconstrained Markov) 

subject 
Unconstrained 

Lk* 

Unconstrained 

Lka 

Vuong’s 

statistic V 
 

Unconstrained 

Lkl  

Constrained  

Lkl  

1 L3 L2 3.818 + L3 L3 

2 L3 L2 0.704  L2 L2 

3 EQ L3 0.824  L3 L1 

4 L3 L1 1.740  L1 L1 

5 EQ L2 4.482 + EQ EQ 

6 EQ L3 0.890  L3 EQ  

7 L2 L0 1.385  L0 L0 

8 EQ L3 0.929  L3 L3 

9 EQ L2 1.381  L2 L2 

10 L3 L1 1.600  L1 L1 

11 L3 L2 2.290 + L3 L3 

12 L3 L1 1.480  L1 L1 

13 L3 L1 4.224 + L3 L3 

14 L3 L1 2.301 + L3 L1 

15 L3 L2 2.149 + L3 L2 

16 L3 L2 0.881  L2 L2 

17 L3 L1 2.191 + L3 L1 

Note: + indicates Vuong’s statistic V is significant or |V|>1.96. 

Unconstrained Lk* denotes the type with the largest likelihood. 

Unconstrained Lka denotes the alternative lower level type which has the next-largest 

likelihood. 

Unconstrained Lkl denotes the classified type based on Vuong’s test result for the 

unconstrained Markov-switching model. 

Constrained Lkl denotes the classified type based on the constrained Markov model. 

 

Each row corresponds to a subject and contains the following information in order: (1) 

the subject number, (2) based on her lookups, the type with the largest likelihood 

using the unconstrained Markov-switching model, (3) based on her lookups, the 

alternative lower level type which has the next-largest likelihood, (4) Vuong’s statistic 

in testing whether Lk* and Lka are equally good models, (5) subject’s lookup type 

based on Vuong’s test result, (6) subject’s lookup type based on the constrained 

Markov-switching model (as reported in the fifth column of Table 2). Any difference 

between (5) and (6) are underlined. Notice that in (5) we classify a subject as her Lk* 

type if according to Vuong’s test, Lk* is a better model than Lka. On the other hand, 

if Lk* and Lka are equally good models, since Lka has fewer parameters, to avoid 

overfitting, we classify a subject as her Lka type.  
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Supplementary Figure 1:  Aggregate Empirical Percentage of Time Spent on Each Location for 

Game 1 with 1-dimensional Targets (-2,0) (own) and (0,-4) (opponent) on a 9x9 map. The 

radius of the circle is proportional to the average percentage of time spent on each location, so 

bigger circles indicate longer time spent. O, L1, …, E are player i’s predicted choices of various 

level-k types. 

 

Supplementary Figure 2:  Aggregate Empirical Percentage of Time Spent on Each Location for 

Game 2 with 1-dimensional Targets (0,-4) (own) and (-2,0) (opponent) on a 9x9 map. The 

radius of the circle is proportional to the average percentage of time spent on each location, so 

bigger circles indicate longer time spent. O, L1, …, E are player i’s predicted choices of various 

level-k types. 
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Supplementary Figure 3:  Aggregate Empirical Percentage of Time Spent on Each Location for 

Game 3 with 1-dimensional Targets (2, 0) (own) and (0,-2) (opponent) on a 7x7 map. The 

radius of the circle is proportional to the average percentage of time spent on each location, so 

bigger circles indicate longer time spent. O, L1, …, E are player i’s predicted choices of various 

level-k types. 

 

 

 

 

Supplementary Figure 4:  Aggregate Empirical Percentage of Time Spent on Each Location for 

Game 4 with 1-dimensional Targets (0,-2) (own) and (2, 0) (opponent) on a 7x7 map. The 

radius of the circle is proportional to the average percentage of time spent on each location, so 

bigger circles indicate longer time spent. O, L1, …, E are player i’s predicted choices of various 

level-k types. 
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Supplementary Figure 5:  Aggregate Empirical Percentage of Time Spent on Each Location for 

Game 5 with 1-dimensional Targets (2, 0) (own) and (0, 2) (opponent) on an 11x5 map. The 

radius of the circle is proportional to the average percentage of time spent on each location, so 

bigger circles indicate longer time spent. O, L1, …, E are player i’s predicted choices of various 

level-k types. 

 

Supplementary Figure 6:  Aggregate Empirical Percentage of Time Spent on Each Location for 

Game 6 with 1-dimensional Targets (0,2) (own) and (2, 0) (opponent) on an 11x5 map. The 

radius of the circle is proportional to the average percentage of time spent on each location, so 

bigger circles indicate longer time spent. O, L1, …, E are player i’s predicted choices of various 

level-k types. 
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Supplementary Figure 7:  Aggregate Empirical Percentage of Time Spent on Each Location for 

Game 7 with 1-dimensional Targets (-2, 0) (own) and (0, -2) (opponent) on a 9x7 map. The 

radius of the circle is proportional to the average percentage of time spent on each location, so 

bigger circles indicate longer time spent. O, L1, …, E are player i’s predicted choices of various 

level-k types. 

 

 

 

  

Supplementary Figure 8:  Aggregate Empirical Percentage of Time Spent on Each Location for 

Game 8 with 1-dimensional Targets (0, -2) (own) and (-2, 0) (opponent) on a 9x7 map. The 

radius of the circle is proportional to the average percentage of time spent on each location, so 

bigger circles indicate longer time spent. O, L1, …, E are player i’s predicted choices of various 

level-k types. 
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Supplementary Figure 9:  Aggregate Empirical Percentage of Time Spent on Each Location for 

Game 9 with 1-dimensional Targets (-4, 0) (own) and (0, 2) (opponent) on a 7x9 map. The 

radius of the circle is proportional to the average percentage of time spent on each location, so 

bigger circles indicate longer time spent. O, L1, …, E are player i’s predicted choices of various 

level-k types. 

 

 

Supplementary Figure 10:  Aggregate Empirical Percentage of Time Spent on Each Location for 

Game 10 with 1-dimensional Targets (0, 2) (own) and (-4, 0) (opponent) on a 7x9 map. The 

radius of the circle is proportional to the average percentage of time spent on each location, so 

bigger circles indicate longer time spent. O, L1, …, E are player i’s predicted choices of various 

level-k types. 
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Supplementary Figure 11:  Aggregate Empirical Percentage of Time Spent on Each Location for 

Game 11 with 1-dimensional Targets (2, 0) (own) and (0, 2) (opponent) on a 7x9 map. The 

radius of the circle is proportional to the average percentage of time spent on each location, so 

bigger circles indicate longer time spent. O, L1, …, E are player i’s predicted choices of various 

level-k types. 

 

 

Supplementary Figure 12:  Aggregate Empirical Percentage of Time Spent on Each Location for 

Game 12 with 1-dimensional Targets (0, 2) (own) and (2, 0) (opponent) on a 7x9 map. The 

radius of the circle is proportional to the average percentage of time spent on each location, so 

bigger circles indicate longer time spent. O, L1, …, E are player i’s predicted choices of various 

level-k types. 
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Supplementary Figure 13:  Aggregate Empirical Percentage of Time Spent on Each Location for 

Game 13 with 2-dimensional Targets (-2, 6) (own) and (4, 4) (opponent) on a 9x9 map. The 

radius of the circle is proportional to the average percentage of time spent on each location, so 

bigger circles indicate longer time spent. O, L1, …, E are player i’s predicted choices of various 

level-k types. 

 

 

Supplementary Figure 14:  Aggregate Empirical Percentage of Time Spent on Each Location for 

Game 14 with 2-dimensional Targets (4, 4) (own) and (-2, 6) (opponent) on a 9x9 map. The 

radius of the circle is proportional to the average percentage of time spent on each location, so 

bigger circles indicate longer time spent. O, L1, …, E are player i’s predicted choices of various 

level-k types. 
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Supplementary Figure 15:  Aggregate Empirical Percentage of Time Spent on Each Location for 

Game 15 with 2-dimensional Targets (-2, 4) (own) and (4, -2) (opponent) on a 7x7 map. The 

radius of the circle is proportional to the average percentage of time spent on each location, so 

bigger circles indicate longer time spent. O, L1, …, E are player i’s predicted choices of various 

level-k types. 

 

 

 

 

Supplementary Figure 16:  Aggregate Empirical Percentage of Time Spent on Each Location for 

Game 16 with 2-dimensional Targets (4, -2) (own) and (-2, 4) (opponent) on a 7x7 map. The 

radius of the circle is proportional to the average percentage of time spent on each location, so 

bigger circles indicate longer time spent. O, L1, …, E are player i’s predicted choices of various 

level-k types. 
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Supplementary Figure 17:  Aggregate Empirical Percentage of Time Spent on Each Location for 

Game 17 with 2-dimensional Targets (6, 2) (own) and (-2, -4) (opponent) on an 11x5 map. The 

radius of the circle is proportional to the average percentage of time spent on each location, so 

bigger circles indicate longer time spent. O, L1,…, E are player i’s predicted choices of various 

level-k types. 

 

  

Supplementary Figure 18:  Aggregate Empirical Percentage of Time Spent on Each Location for 

Game 18 with 2-dimensional Targets (6, 2) (own) and (-2, -4) (opponent) on a 11x5 map. The 

radius of the circle is proportional to the average percentage of time spent on each location, so 

bigger circles indicate longer time spent. O, L1, …, E are player i’s predicted choices of various 

level-k types. 
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Supplementary Figure 19:  Aggregate Empirical Percentage of Time Spent on Each Location for 

Game 19 with 2-dimensional Targets (-6, -2) (own) and (4, 4) (opponent) on a 9x7 map. The 

radius of the circle is proportional to the average percentage of time spent on each location, so 

bigger circles indicate longer time spent. O, L1, …, E are player i’s predicted choices of various 

level-k types. 

 

 

  

Supplementary Figure 20:  Aggregate Empirical Percentage of Time Spent on Each Location for 

Game 20 with 2-dimensional Targets (4, 4) (own) and (-6, -2) (opponent) on a 9x7 map. The 

radius of the circle is proportional to the average percentage of time spent on each location, so 

bigger circles indicate longer time spent. O, L1, …, E are player i’s predicted choices of various 

level-k types. 
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Supplementary Figure 21:  Aggregate Empirical Percentage of Time Spent on Each Location for 

Game 21 with 2-dimensional Targets (-2, -4) (own) and (4, 2) (other) on a 7x9 map. The radius 

of the circle is proportional to the average percentage of time spent on each location, so bigger 

circles indicate longer time spent. O, L1, …, E are player i’s predicted choices of various level-k 

types. 

 

Supplementary Figure 22:  Aggregate Empirical Percentage of Time Spent on Each Location for 

Game 22 with 2-dimensional Targets (4, 2) (own) and (-2, -4) (other) on a 7x9 map. The radius 

of the circle is proportional to the average percentage of time spent on each location, so bigger 

circles indicate longer time spent. O, L1, …, E are player i’s predicted choices of various level-k 

types. 
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Supplementary Figure 23:  Aggregate Empirical Percentage of Time Spent on Each Location for 

Game 23 with 2-dimensional Targets (-2, 6) (own) and (4, -4) (other) on a 7x9 map. The radius 

of the circle is proportional to the average percentage of time spent on each location, so bigger 

circles indicate longer time spent. O, L1, …, E are player i’s predicted choices of various level-k 

types. 

 

Supplementary Figure 24:  Aggregate Empirical Percentage of Time Spent on Each Location for 

Game 24 with 2-dimensional Targets (4, -4)  (own) and (-2, 6) (other) on a 7x9 map. The radius 

of the circle is proportional to the average percentage of time spent on each location, so bigger 

circles indicate longer time spent. O, L1, …, E are player i’s predicted choices of various level-k 

types. 
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Sample Instructions: 

EXPERIMENT INSTRUCTIONS 

 
The experiment you are participating in consists of 48 rounds.  At the end, you will be 
paid the amount you have earned from THREE randomly drawn rounds, plus a $20 

show-up fee.  Everybody will be paid in private, and you are under no obligation to tell 
others how much you earned.  During the experiment all the earnings are denominated 
in FRANCS.  Your dollar earnings are determined by the FRANC/$ exchange rate: 3 

FRANCS = $1.   
 
You will wear an eye-tracking device which will track your eye movements.  Please make 
sure you are not wearing contact lenses.  You will be seated in front of the computer 

screen, showing the earnings tables, and make your choice by looking at the boxes on the 
screen.  When looking at a box, it will light up, and will become your choice of action if you 
hit “space”.   

 
At the beginning of the session, the experimenter will adjust and calibrate the eye-tracker.  
To perform a calibration, look at the center of the screen (black dot) and hit space once.  
Then, the dot will disappear and move to a new location.  Follow the black dot with your 

eyes and fixate at the new location until it disappears again.  This procedure will be 
repeated until the dot returns to the center.  (The same procedure will be repeated to 
validate the calibration.)  At the start of each round, you will perform a self-correction by 
looking at the center of the screen (black dot) and hit the space bar.   

 

 
Roles 

 
You and the other participant are paired to form a group, in which one participant will be 
member A, and the other member B.  The roles of member A and B will be decided 
randomly by a die roll and you will maintain the same roles throughout the experiment.   

 
The Decision 

 

There are 3 practice rounds and 48 real rounds.  In each round, each of you 
simultaneously chooses a location (X, Y) on a given map, and your earnings are 
determined by your location and the other participant’s location.  In particular, each of you 
will have a “goal” which (together with the other participant’s location) determines your 

“target location” for each round.  Then, your earnings will be determined by how close you 
hit your target location.  
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For example, suppose the map consists of X=1~5 and Y=1~7, and your goals are: 

 

Member A  Member B 

LEFT 2    BELOW 4 

 

(This means that member A’s target location is to choose two blocks to the LEFT of 

member B’s location, while member B’s target location is to choose four blocks below 

member A’s location.) 

 

Suppose member A’s location is (Xa, Ya), and member B’s location is (Xb, Yb).  The target 

location for member A is (Xb – 2, Yb), and the target location of member B is (Xa, Ya + 4).  

The earnings for member A is (in FRANCS): 

 

20 – | Xa – (Xb - 2) | – | Ya – (Yb+ 0) | 

 

While the earnings for member B is (in FRANCS): 

 

20 – | Xb – (Xa + 0) | – | Yb – (Ya + 4) | 

 

Note that the target location may be outside the map so you might not achieve 20.  Also, 

note that the X’s increase from left to right, and the Y’s increase from top to bottom. 

 

 
In each round, you will make a similar decision with different goals on a different map, 

which is shown to both sides.  However, no feedback will be provided after each 

round. 

In each round, the goals of member A and B will be shown on the top-left and top-right 

corner.  When you look at a location (X, Y), it will light up with a red frame. 
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When looking at the box you want to choose, press “space” to make your choice.  Then, 

the box will become red, and you will be asked “Are you sure?”  Look at the bottom-left 

(YES) to confirm, or the bottom-right (NO) to start over again.   
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QUIZ 

 

In order to make sure you understand how your earnings are determined, we will now 

preform a quiz.  Suppose you are member B, and the range of locations are X=1~5 and 

Y=1~7. Please write down your location choice. Then, the experimenter will tell you the 

(hypothetical) other’s location choice, so you may calculate earnings for each member. 

 

Member A  Member B 

LEFT 2    BELOW 4 

 

Member B’s location choice:  X=_________ __________,  Y=__________________ 

 

Member A’s location choice:  X=___________________,  Y=__________________ 

 

Member B’s target location: X=___________________,  Y=__________________ 

 

Member A’s target location: X=___________________,  Y=__________________ 

 

Member B’s earning: 20 – _________- _________=_________ 

 

Member A’s earning: 20 – _________ - _________=_________ 

 

Please tell the experimenter if you have any concerns.  Your payments will be rounded 

up to the next dollar.  Thank you for your participation! 


