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Abstract

We experimentally investigate the informational theory of legislative committees (Gilligan

and Krehbiel 1989). Two committee members provide policy-relevant information to a legis-

lature under alternative legislative rules. Under the open rule, the legislature is free to make

any decision; under the closed rule, the legislature chooses between a member’s proposal and

a status quo. We find that even in the presence of biases the committee members improve the

legislature’s decision by providing useful information. We obtain evidence for two additional

predictions: the outlier principle, according to which more extreme biases reduce the extent

of information transmission; and the distributional principle, according to which the open rule

is more distributionally efficient than the closed rule. When biases are less extreme, we find

that the distributional principle dominates the restrictive-rule principle, according to which

the closed rule is more informationally efficient. Overall, our findings provide experimental

support for Gilligan and Krehbiel’s informational theory.
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1 Introduction

Scholars of the U.S. Congress have long recognized the importance of its committees as

the center stage of the legislative process. A number of theories, both normative and

positive, have therefore been developed to rationalize them and assess their welfare impact.

These theories have emphasized the importance of legislative committees not only in the

legislative process but also in preserving the balance of power between the House and the

Senate and even in imposing party discipline.1

One of the most influential theories of legislative committees is the informational the-

ory, first proposed by Gilligan and Krehbiel (1987, 1989). At its core, there is the idea

that lawmakers are ignorant of the key variables affecting policy outcomes and that legisla-

tive committees may help by providing information on these variables. The informational

theory provides a formal framework to study why committees, though having conflicts of

interest, have incentives to perform this function. Most importantly, the theory provides

a framework to understand the impacts of legislative procedural rules on the effectiveness

of the legislative process: it explains why it may be optimal to have the same bill referred

by multiple committee members and why it may be optimal to adopt restrictive rules that

delegate power to the committees.

Despite the theoretical success of the informational theory, empirical research on legisla-

tive rules has been limited. Two approaches have been attempted. First, the informational

theory has been justified with historical arguments and case studies (Krehbiel 1990). Sec-

ond, there have been attempts to evaluate some indirect but testable implications of the

theory. In particular, researchers have studied the extent to which committees are formed

by preferences outliers since it is predicted that such committees may not be able to con-

vey information properly (e.g., Weingast and Marshall 1988; Krehbiel 1991; Londregan and

1A discussion of the alternative theories of legislative committees and how they relate to the informa-
tional theory is presented in Section 2.
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Snyder 1994; Poole and Rosenthal 1997). Other researchers have studied the relationship

between the presence of restrictive rules and the composition of committees since in some

versions of the theory more restrictive rules are predicted to be associated with commit-

tee specializations, heterogeneity of preferences within committees, and less extreme biases

(e.g., Sinclair 1994; Dion and Huber 1996; Krehbiel 1997a; 1997b). None of these attempts,

however, directly examine the behavioral implications of the informational theory. What

makes it difficult to directly test the theory is that behavior can be properly evaluated only

with knowledge of individuals’ private information: field data are typically not sufficiently

rich nor even available.

The lack of direct behavioral evidence is problematic. First, existing empirical find-

ings present conflicting evidence, and thus they are not fully conclusive on the validity

of the theoretical predictions. Second, the existing evidence is not sufficiently detailed to

contribute to a better understanding of some important open theoretical questions. Infor-

mational theories are typically associated with multiple equilibria: while some predictions

are common to all equilibria, other equally important predictions are not. A key question

in studying legislative committees is whether restrictive rules can facilitate the informa-

tional role of the committees. The answer to this question, however, depends on which

equilibrium is selected and is therefore unanswerable by theory alone.

In this paper, we make the first experimental attempt to gain insight into the informa-

tional role of legislative committees. Using a laboratory experiment, we test the predictions

of the seminal works by Gilligan and Krehbiel (1989), who first propose the informational

theory for heterogenous committees, and by Krishna and Morgan (2001), who further de-

velop on Gilligan and Krehbiel’s (1989) framework. In their models, policies are chosen by

the median voter of a legislature, who is uninformed about the state of the world. Two leg-

islative committee members with heterogeneous preferences observe the state and each send

a recommendation or a potentially binding proposal to the legislature. Committee mem-

2



bers have biases of the same magnitude but of opposite signs: relative to the legislature’s

ideal policy, one committee prefers a higher policy and the other a lower policy.

Our experiment implements two legislative rules first studied by Gilligan and Krehbiel

(1989) for heterogeneous committees. Under the open rule, the legislature listens to the

committee members’ recommendations and is free to choose any policy. Under the closed

rule, the legislature can only choose between the policy proposed by a committee member

and an exogenously given status quo policy. The other informed committee member sends

a speech that, however, has only an informational role. As a benchmark, we also consider

a baseline open rule with one committee member (the homogeneous committee), a case

previously studied by Crawford and Sobel (1982) and Gilligan and Krehbiel (1987). For

each of these rules, we consider two preference treatments: one in which there is a large

misalignment of preferences between the legislature and the committee members (high bias)

and one in which there is a small misalignment (low bias).2

Our experiment provides clear evidence that, even in the presence of conflicts of interest,

the informed committee members help improve the legislature’s decision by providing useful

information, as predicted by the informational theory. Perhaps more importantly, our

experiment provides a first close look at which features underlying the informational theory

are supported by laboratory evidence, and which features are more problematic, and thus

in need of further theoretical work.

The first prediction of the informational theory that our data speak to is the outlier

principle, which involves comparisons within each legislative rule: under both the open and

2Gilligan and Krehbiel study other rules that we do not include in our experiment. For heterogeneous
committees, Gilligan and Krehbiel (1989) also consider what they call the modified rule, under which both
committee members propose and the legislature chooses between the two proposals and a given status quo;
for homogeneous committees, Gilligan and Krehbiel (1987) consider a closed-rule model in which there is
only one committee member without a speech-making right by a second member. Given that to study
each rule we need several treatments (on alternative bias levels and subject-matching protocols), we have
chosen to focus only on the open and the closed rules for heterogeneous committees and on the open rule
for the homogeneous committee.
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the closed rules, more extreme preferences of the committee members reduce the extent of

information transmission. While this principle appears intuitive and has been highlighted

in the literature (Krehbiel 1991), it is controversial from a theoretical point of view. The

existence of equilibria featuring the outlier principle is first proved by Gilligan and Krehbiel

(1989). With different selections of equilibria, Krishna and Morgan (2001) show that more

informative equilibria exist: for the open rule, they construct a fully revealing equilibrium

under which the outlier principle does not hold. Our data support Gilligan and Krehbiel

(1989): under both legislative rules, we find that an increase in the committee members’

biases results in a statistically significant decrease in the legislature’s payoff.

The second set of predictions that our data speak to involves comparisons between

the legislative rules, what we may call the restrictive-rule principle and the distributional

principle. Gilligan and Krehbiel (1989) define two measures of inefficiency: informational

inefficiency, which is measured by the residual variance in the equilibrium outcome, and

the distributional inefficiency, which is measured by the divergence between the expected

outcome and the legislature’s ideal policy.3 A key finding in Gilligan and Krehbiel (1989)

is that, compared to the open rule, the closed rule is more informationally efficient (the

restrictive-rule principle) but less distributionally efficient (the distributional principle).

Krishna and Morgan (2001) have questioned this finding too, highlighting that these re-

sults are not a feature of all equilibria: there exists at least one equilibrium under the

open rule that is more informationally efficient than any equilibrium under the closed rule,

and there are equilibria under the closed rule that achieve the maximal possible distribu-

tional efficiency. Our experimental evidence clearly supports Gilligan and Krehbiel’s (1989)

distributional principle. Regarding the restrictive-rule principle, however, we do not find

evidence that the closed rule is more informationally efficient than the open rule. Overall,

3Gilligan and Krehbiel (1989) adopt a slightly different terminology for distributional (in)efficiency: a
rule that in our terminology is more distributionally efficient is a rule that in their terminology has a better
distributive consequence.
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we find that the distributional principle dominates the restrictive-rule principle and so the

legislature’s payoff is higher under the open rule than under the closed rule.

It is intuitive to expect that with multiple informed committee members sending rec-

ommendations to the legislature, we should obtain more informed decisions since increasing

the number of experts should not hurt even if they are biased: a conjecture that we call

the heterogeneity principle. This property is, however, not supported by our data: for both

levels of bias, we do not find any statistically significant difference in the legislature’s wel-

fare between the open rule with two members and that with one member. This surprising

result is due to an interesting behavioral phenomenon that has not been previously docu-

mented and that we call the confusion effect. In an open rule scenario with one committee

member, when the legislature receives the recommendation, the recommendation tends to

be followed. Since a committee member’s recommendation is typically correlated with the

true state, this leads the legislature to avoid “bad” mistakes, i.e., not to correct for large

shocks in the state variable. In an open rule scenario with two committee members, when

the legislature receives two conflicting recommendations, the legislature tends to “freeze”

and ignore both of them. This leads to situations in which the policy incorporates no

information about the environment. This phenomenon is indeed consistent with the way

Gilligan and Krehbiel (1987) construct out-of-equilibrium behavior, but it goes well beyond

explaining how beliefs are constructed out of equilibrium since it seems prevalent on the

equilibrium path.

Section 2 reviews the literature. In Section 3, we present the theoretical framework

and discuss the main predictions of the informational theory. In Section 4, we describe

the experimental design and procedures. We report findings from our main experimental

treatments in Section 5. Section 6 covers the robustness treatments. Section 7 concludes.
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2 Literature Review

In the literature on legislative committees, we can distinguish four leading theories: the

informational theory, the distributive theory, the majority-party cartel theory, and the bi-

cameral rivalry theory.4 The informational theory sees committees as institutional arrange-

ments through which information is aggregated either within committees in a unidimen-

sional policy environment (Gilligan and Krehbiel 1987; 1989; Krishna and Morgan 2001),

which is the environment we consider, or from different committees in a multidimensional

policy environment (Battaglini 2002; 2004). The distributive theory instead sees legisla-

tive committees as an institutional tool for the allocation of resources in congress (e.g.,

Weingast and Marshall 1988; Shepsle and Weingast 1995). Redistribution often requires

commitment in order to maintain “promises”; allocating powerful positions in a committee

is a way to assure such commitment power and make promises in bargaining credible. In

the majority-party theory, legislative committees are an institutional tool through which

party leadership imposes discipline: appointments of party loyalists to committees are not

only a way for parties to control the legislative agenda, but also a reward system to pro-

mote congressmen who are orthodox to the party line (e.g., Cox and McCubbins 1993).

Finally, in the bicameral rival theory, committees help to protect congress from outside

influences through generating “hurdles” that make it difficult for outsiders to maneuver a

bill through the legislature by buying off legislators’ consent with campaign contributions

or bribes (e.g., Diermeier and Myerson 1999).

A significant empirical literature has been devoted to comparing these theories. Our

work differs from previous work in two ways. First, previous research has focused on

comparing different theories of very different natures, such as the informational and the

distributive. In our work, we focus on the informational theory. We test the predictions of

4See Groseclose and King (2001), from whom we are taking this classification, for an in-depth recent
discussion of these theories.
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Gilligan and Krehbiel (1989) and compare its insights with subsequent work focusing on how

information aggregation occurs in the U.S. Congress. Second, as mentioned above, previous

works testing the informational theory do not aim at directly studying the behavioral

implications of the theory, rather, at testing indirect hypotheses. To our knowledge, our

paper is the first experimental test of Gilligan and Krehbiel (1989) and more generally of

models of communication comparing the open and the closed rules.

Our study also contributes to the experimental literature on cheap-talk games. The

focus of this literature has been on games with one sender and one receiver communicating

in a unidimensional environment. Examples include Dickhaut, McCabe, and Mukherji

(1995), Blume, Dejong, Kim, and Sprinkle (1998; 2001), Gneezy (2005), Cai and Wang

(2006), Sánchez-Pagés and Vorsatz (2007; 2009), and Wang, Spezio, and Camerer (2010).

Besides their focus on the one-sender environments, these experiments also differ from ours

in that they do not study how communication changes between the open and the closed

rules. A common finding of this literature is overcommunication, in which the observed

communication is more informative than is predicted by the most informative equilibria of

the underlying game. We also observe overcommunication in our one-sender benchmark

treatments, and the observation affects our evaluation of the heterogeneity principle.

A handful of recent studies depart from the one-sender-one-receiver environment. Mo-

tivated by Battaglini (2002), Lai, Lim, and Wang (2015) and Vespa and Wilson (2016)

experiment on two-sender games with multidimensional state spaces. In contrast to our

negative finding on the heterogeneity principle, Lai, Lim, and Wang (2015) find in a simple

multidimensional setting that receivers make more informed decisions with two senders

than with one. Vespa and Wilson (2016) find that senders exaggerate in the direction of

their biases, a feature that is also observed in our data. Since the logic of multidimensional

cheap-talk games is very different from the logic of their unidimensional counterparts, the

findings in these papers are otherwise not directly comparable to ours. Moreover, these
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studies do not study how communication is affected by the different legislative rules, which

is the main focus of our paper.

The two-sender game studied by Minozzi and Woon (2016), which also features a uni-

dimensional state space, is perhaps closest to our environment. They obtain evidence that

receivers average senders’ exaggerating messages, a finding that is also obtained by us.

Their setting differs from ours in that there is an additional dimension of private infor-

mation about the senders’ biases. Most importantly, as with the papers discussed above,

Minozzi and Woon (2016) also do not study how communication changes with different

legislative rules.5

3 The Model

3.1 The Set-Up

We sketch the model on which our experimental design is based. The model is a close

variant of Gilligan and Krehbiel’s (1989) model of heterogeneous committees, adapted for

laboratory implementation.

There are three players, two senders (informed committee members), Sender 1 (S1) and

Sender 2 (S2), and a receiver (the median voter of a legislature). The two senders each send

a message (a recommendation or a potentially binding proposal) to the receiver. Based on

the messages, the receiver (R) determines the action (the policy) to be adopted, a P A Ď R.

The senders privately observe the state of the world, θ, commonly known to be uniformly

5Battaglini and Makarov (2014) depart from the one-sender-one-receiver environment by experimenting
on games with one sender and two receivers.
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distributed on Θ “ r0, 1s. The receiver is uninformed. The players’ payoffs are

USi “ ´pa´ pθ ` biqq
2, i “ 1, 2, and

UR
“ ´pa´ θq2,

(1)

where b1 “ b “ ´b2 ą 0 are parameters measuring the misaligned interests between the

senders and the receiver.6 Sender i’s ideal action is a˚i pθq “ θ` bi, while the receiver’s ideal

action is a˚pθq “ θ; for every θ P r0, 1s, each sender prefers the receiver to take an action

that is bi higher than the receiver’s ideal action.

The timing of the game is as follows. First, nature draws and reveals θ to both senders.

Second, the two senders send messages to the receiver independently and simultaneously.

Third, the receiver chooses an action.

The set of available actions for the receiver varies under different legislative rules. Two

rules are considered: the open rule and the closed rule. Both rules allow Sender 1 and

Sender 2 to send messages, m1 P M1 and m2 P M2, respectively. Under the open rule,

the receiver is free to choose any action a P A after receiving the messages, which are

recommendations. Under the closed rule, the receiver is constrained to choose from the set

tm1, SQu, where SQ P r0, 1s is an exogenously given status quo action; the receiver’s choice

is therefore restricted by Sender 1’s message, a binding proposal in case the status quo is

not chosen, while Sender 2’s message remains a recommendation or a pure informational

speech. As a benchmark, we also consider the model of a homogeneous committee, a case

of the open rule with one sender. This is equivalent to the cheap-talk model of Crawford

and Sobel (1982) and, in the context of legislative rules, the model of Gilligan and Krehbiel

(1987).

6Our set-up is slightly different from that in Gilligan and Krehbiel (1989) (e.g., the state of the world
θ enters into their payoff functions with a positive sign). Our set-up corresponds to the uniform-quadratic
framework of Crawford and Sobel (1982). We adopt this otherwise theoretically equivalent set-up as we
view it as providing a more intuitive experimental environment for subjects.
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3.2 Equilibrium Predictions

Two papers that have studied the perfect Bayesian equilibria (hereafter equilibria) of the

game specified above are Gilligan and Krehbiel (1989), who present the pioneering analysis,

and Krishna and Morgan (2001), who present an alternative analysis based on different se-

lections of equilibria. The informative equilibria characterized in the two papers commonly

bring out some interesting features of the legislative rules. At the same time, the equilibria

selected by Krishna and Morgan (2001) have different informational properties from those

of Gilligan and Krehbiel (1989). Their equilibria, therefore, not only serve as the theoreti-

cal benchmark of our experiment but also provide an important motivation for our study,

which is to assess the empirical validity of the different equilibrium characterizations.7

The equilibrium predictions can be divided into two groups. The first group covers

the basic insights of the informational theory, which are common to the equilibria in both

papers. The first result in this group is the outlier principle:

Result 1. In both Gilligan and Krehbiel (1989) and Krishna and Morgan (2001), the

receiver’s equilibrium expected payoff is non-increasing in the bias b:

(a) under the open rule, the receiver’s payoff is strictly decreasing in b P
`

0, 1
4

‰

in Gilligan

and Krehbiel (1989) and is constant for b P
`

0, 1
4

‰

in Krishna and Morgan (2001);

and

(b) under the closed rule, the receiver’s payoff is strictly decreasing in b P
`

0, 1
4

‰

in both

Gilligan and Krehbiel (1989) and Krishna and Morgan (2001).

Table 1 summarizes the equilibrium expected payoffs under the two legislative rules for

b P p0, 1
4
s. The central question of the informational theory is how much information can

7To our knowledge, no other equilibria have been characterized for this game since Gilligan and Krehbiel
(1989) and Krishna and Morgan (2001). Given this, studying the empirical validity of the equilibria in
these papers seems both natural and a necessary first step.
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Table 1: Equilibrium Expected Payoffs for b P p0, 1
4
s

Heterogeneous Committee Homogeneous Committee

Gilligan and Krehbiel (1989) Krishna and Morgan (2001) Crawford and Sobel (1982)/

Gilligan and Krehbiel (1987)

Open Rule Closed Rule Open Rule Closed Rule Open Rule

R ´16b3

3 ´16b3

3 ´ b2p1´ 8bq 0 ´4b3

3 ´ 1
12Npbq2

´
b2rNpbq2´1s

3

S1
´16b3

3 ´ b2
´16b3

3
´b2 ´4b3

3 ´ b2 ´ 1
12Npbq2

´
b2rNpbq2`2s

3
S2 ´16b3

3 ´ 4b2p1´ 4bq

Note: Npbq “
Q

´ 1
2
` 1

2

b

1` 2
b

U

, where rzs denotes the smallest integer greater than or equal to z.

be transmitted under different legislative rules. Given that information is transmitted from

the informed senders to the uninformed receiver, the receiver’s payoff provides the relevant

yardstick and welfare criterion to gauge information transmission outcomes.8 Krishna and

Morgan (2001) construct a fully revealing equilibrium under the open rule, in which the

receiver’s payoff is at the maximal possible level of zero and is therefore independent of

b. In all the other cases, information transmission is imperfect, and the receiver’s payoff

varies with b.

Another result common to the equilibria in both papers is the heterogeneity princi-

ple: the presence of multiple senders with heterogeneous preferences allows the receiver to

extract more information. In online Appendix A, we prove:

Result 2. For b P p0, 1
4
q, compared to the case where there is only one sender under the

open rule, the receiver is strictly better off when there are two senders with heterogeneous

preferences (under either the open rule or the closed rule), and this is true in both Gilligan

and Krehbiel (1989) and Krishna and Morgan (2001).

The second group of predictions reveals the divergence between Gilligan and Krehbiel

8We nevertheless note that the comparative statics in Result 1 (and in the upcoming Result 2) applies
to the senders as well. For reference and comparison, Table 1 also includes the senders’ expected payoffs
and the payoffs in the case of a homogeneous committee.
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(1989) and Krishna and Morgan (2001), which originate from different equilibrium selec-

tions, an issue that will be further discussed below. Here, we present the welfare implica-

tions of the different equilibria. Following Gilligan and Krehbiel (1989), we decompose the

receiver’s expected payoff into two components:

EUR
“ ´VarpXpθqq

loooomoooon

informational

´ pEXpθqq2
loooomoooon

distributional

, (2)

where Xpθq “ apθq ´ θ is said to be the equilibrium outcome function.

The decomposition elucidates the comparisons of welfare by disentangling any welfare

difference into differences in two measures of (in)efficiency. The first component, VarpXpθqq,

represents informational inefficiency, which is the residual volatility in the equilibrium

outcome. It measures information loss caused by the strategic revelation of information

and is a loss shared by all three players. The second component, pEXpθqq2, represents

distributional inefficiency, which measures the systematic deviation of the chosen action

from the receiver’s ideal. It is a zero-sum loss to the receiver that is distributed as gains to

the senders given their different ideal actions. Note that if the receiver observed the state,

both inefficiencies would be zero, which is the most efficient case; the negative variance

and squared expectation are interpreted accordingly as informational and distributional

efficiencies, where a less negative number represents a higher level of efficiency.

Gilligan and Krehbiel (1989) is the first to study the impacts of the legislative rules

on informational and distributional efficiencies for heterogenous committees.9 Their equi-

librium analysis leads to the restrictive-rule principle and the distributional principle. We

summarize these two principles together with a comparative statics on how the two effi-

ciencies change with respect to b P p0, 1
4
s:

Result 3. In Gilligan and Krehbiel (1989), informational efficiency is greater under the

9The corresponding analysis for homogenous committees is conducted by Gilligan and Krehbiel (1987).
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closed rule than under the open rule (the restrictive-rule principle). Furthermore, the effi-

ciency is decreasing in b P p0, 1
4
s under both rules. Distributional efficiency, on the contrary,

is greater under the open rule than under the closed rule (the distributional principle): un-

der the open rule pEXpθqq2 “ 0 for all b P p0, 1
4
s, while under the closed rule pEXpθqq2 is

positive and increasing in b P p0, 1
4
s

Based on a different equilibrium selection, in which the most informative outcome that

can be supported by equilibrium behavior is selected for the two legislative rules, Krishna

and Morgan (2001) obtain a different welfare conclusion:

Result 4. In Krishna and Morgan (2001), informational efficiency is greater under the

open rule than under the closed rule: under the open rule, full information revelation is

possible for all b P p0, 1
4
s, while even the most informative equilibrium under the closed rule

is informationally inefficient. Distributional efficiency is the same under the open and the

closed rules: in both cases pEXpθqq2 “ 0 for b P p0, 1
4
s.

Table 2 exemplifies Results 3 and 4 by reporting the predicted values of ´VarpXpθqq,

´pEX pθqq2, and the receiver’s expected payoff for b “ 0.1 and b “ 0.2, the two bias

levels we used in the experiment. It is useful to observe that, regardless of the equilibrium

characterization or bias level, there is no distributional inefficiency under the open rule, as

the receiver always chooses her optimal action given the information. Note also that with

a fully revealing equilibrium constructed for the open rule, Krishna and Morgan (2001)

predict that the receiver’s expected payoff is higher under the open rule for both levels of

bias. Gilligan and Krehbiel (1989), on the other hand, predict that the open rule yields

a higher receiver’s payoff only when the bias is low. These qualitative differences fuel the

comparative statics for evaluating our experimental findings.

We turn to review the key difference in the equilibrium constructions of the two papers,
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Table 2: Predicted Efficiencies and Receiver’s Expected Payoff

Theory
Informational

Efficiency
´VarpXpθqq

Distributional
Efficiency
´pEXpθqq2

Receiver’s
Expected

Payoff

Informational
Efficiency
´VarpXpθqq

Distributional
Efficiency
´pEXpθqq2

Receiver’s
Expected

Payoff

b “ 0.1

Open Rule Closed Rule

GK (1989) ´53.33ˆ 10´4 0 ´53.33ˆ 10´4 ´37.33ˆ 10´4 ´36.00ˆ 10´4 ´73.33ˆ 10´4

KM (2001) 0 0 0 ´13.33ˆ 10´4 0 ´13.33ˆ 10´4

b “ 0.2

Open Rule Closed Rule

GK (1989) ´426.67ˆ 10´4 0 ´426.67ˆ 10´4 ´170.67ˆ 10´4 ´16.00ˆ 10´4 ´186.67ˆ 10´4

KM (2001) 0 0 0 ´106.67ˆ 10´4 0 ´106.67ˆ 10´4

Note: GK (1989) and KM (2001) stand for, respectively, Gilligan and Krehbiel (1989) and Krishna and Morgan (2001).
Informational and distributional efficiencies are measured by, respectively, the negative numbers ´VarpXpθqq and ´pEXpθqq2.
The corresponding inefficiencies are thus measured by the absolute magnitudes of the variances and the squared expectations.

which leads to the contrasting welfare conclusions.10 Consider first the open rule. If

the senders’ messages agree, the receiver infers that both senders are telling the truth

and adopts her corresponding ideal action; when the messages disagree, beliefs cannot be

derived by Bayes’ rule, and an arbitrary out-of-equilibrium belief has to be assigned. This

is where the two papers differ.

Gilligan and Krehbiel (1989) choose a particularly simple out-of-equilibrium belief: they

essentially assume that the disagreeing messages convey no information. Consequently, the

receiver’s optimal action following message disagreements is her ex-ante optimal action

under the uniform prior, 1
2
, which is independent of the messages. The “threat” of this

action is sufficient to induce the senders to reveal the state when it is sufficiently low

(θ ď θ ´ 2b) or sufficiently high (θ ě θ ` 2b). When instead θ P
`

θ ´ 2b, θ ` 2b
˘

, no

information is revealed, and the action is constant at 1
2
. This equilibrium construction is

illustrated in Figure 1(a).

10See also Krehbiel (2001) for a discussion. Readers who are not interested in a theoretical discussion
of the differences between the two equilibrium constructions can skip the reminder of this section in the
first reading.
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Figure 1: Equilibrium Action under Open Rule

Krishna and Morgan (2001) exploit the freedom in choosing out-of-equilibrium beliefs,

designing a mechanism that optimally punishes deviations. The more complex specification,

in which out-of-equilibrium actions are now functions of the disagreeing messages, allows

them to construct a fully revealing equilibrium, which is illustrated in Figure 1(b).

Consider next the closed rule. If the senders’ messages agree with each other, the

receiver follows Sender 1’s message, the proposed bill. Otherwise, the bill is rejected in

favor of the status quo action. Accordingly, different specifications of out-of-equilibrium

beliefs have no impact on actions in the case of disagreements. The consequential difference

between Gilligan and Krehbiel (1989) and Krishna and Morgan (2001) lies in what they

consider to be agreements.

Gilligan and Krehbiel (1989) define an agreement to exist when Sender 1’s and Sender

2’s messages differ by b, i.e., when m1 ´m2 “ b. Based on this definition, they construct

an equilibrium in which Sender 1 manages to exploit his proposing power to impress a

bias on the equilibrium outcome so that pEXpθqq2 ą 0. While Sender 1 proposes his

ideal action for a large number of states, there also exists a range,
`

θ ` b, θ ` 3b
˘

, for

which Sender 1 proposes a “compromise bill.” From Sender 1’s perspective, the threat of
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Figure 2: Equilibrium Action under Closed Rule

disagreement from Sender 2 is particularly strong for θ P
`

θ ` b, θ ` 3b
˘

. For these states,

Sender 1 compromises, i.e., not proposing his ideal action, in order to make Sender 2

indifferent between his proposed bill and the status quo. Sender 2 supports the bill under

the indifference, and the receiver adopts the bill accordingly. This equilibrium construction

is illustrated in Figure 2(a).

Krishna and Morgan’s (2001) definition of agreement requires the two messages to com-

pletely coincide, i.e., m1´m2 “ 0. Based on this definition, they construct an equilibrium

where Sender 1 cannot impress a bias on the outcome so that pEXpθqq2 “ 0, which is also

the case under the fully revealing equilibrium they construct for the open rule. They also

show that no closed-rule equilibrium can achieve full revelation. Compromise bills are also

a feature of their equilibrium, but they are proposed by Sender 1 for two disconnected, sym-

metric ranges of states,
`

θ ´ 2b, θ ´ b
˘

and
`

θ ` b, θ ` 2b
˘

. This equilibrium construction

is illustrated in Figure 2(b).
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4 Experimental Design and Procedures

We designed a laboratory environment that is faithful to the theoretical environment,

subject to limitations imposed by the experimental software z-Tree (Fischbacher 2007).

We implemented the state, the message, and the action spaces with intervals r0.00, 100.00s

that contained numbers with two-decimal digits.11 Subjects’ preferences were induced to

capture the incentives of the quadratic payoffs in (1).

There were six main treatments, which are summarized in Table 3. We implemented

two bias levels, b “ 10 (b “ 0.1 in the model) and b “ 20 (b “ 0.2 in the model) for each

of the following legislative rules: the open rule with two senders, the closed rule with two

senders, and the open rule with one sender.12 The bias levels were chosen so that they

provided reasonable variation within the realm of the theoretical predictions. A random-

matching protocol was used in the main treatments. The senders in the main treatments

sent messages that were points in the message spaces. We also conducted robustness

treatments that used fixed matchings or interval messages.13 A between-subject design

was used in all treatments.

The experiment was conducted in English at The Hong Kong University of Science

and Technology. A total of 320 subjects participated in the main treatments and 233

in the robustness treatments. Subjects had no prior experience in our experiment and

were recruited from the undergraduate population of the university. Upon arriving at the

11One difference between our design and the model is that the action space in our design coincides with
the state space. The bounded action space slightly changes the theoretical predictions of Gilligan and
Krehbiel (1989). For example, in Figure 2(a), the equilibrium action under the closed-rule becomes flat
when it reaches the upper bound.

12Our focus is on the two-sender cases. The open-rule-one-sender treatments were included only as a
benchmark. The case of closed rule with one sender is first analyzed by Gilligan and Krehbiel (1987), who
allow for an information-acquisition decision by the sender not modeled in the current environment.

13The distinction between point messages and interval messages is for the closed-rule treatments. In the
original closed-rule setup of Gilligan and Krehbiel (1989), Sender 2 makes a speech in the form of “the state
is in ra, bs.” To maintain design consistency with the open-rule treatments, we adopted point messages for
the closed-rule main treatments and explored the interval messages as robustness treatments.
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Table 3: Main Treatments – Random Matching and Point Message

Two Senders Single Sender
(Heterogeneous Committees) (Homogeneous Committee)

O-2 O-1
2 Treatments: b “ 10, 20 2 Treatments: b “ 10, 20

Open Each Treatment: 4 Sessions Each Treatment: 2 Sessions

Rule Each Session: 5 Random Groups of 3 Each Session: 2 Matching Divisions

No. of Subjects: 2ˆ 4ˆ 5ˆ 3 “ 120 Each Matching Division: 5 Random Groups of 2

No. of Subjects: 2ˆ 2ˆ 2ˆ 5ˆ 2 “ 80

C-2
2 Treatments: b “ 10, 20

Closed Each Treatment: 4 Sessions

Rule Each Session: 5 Random Groups of 3

No. of Subjects: 2ˆ 4ˆ 5ˆ 3 “ 120

laboratory, subjects were instructed to sit at separate computer terminals. Each received

a copy of the experimental instructions. The instructions were read aloud using slide

illustrations as an aid. In each session, subjects first participated in one practice round

and then 30 official rounds.

We illustrate the instructions for treatment O-2 with b “ 20.14 At the beginning of

each session, one third of the subjects were randomly assigned as Member A (Sender 1),

one third as Member B (Sender 2), and one third as Member C (the receiver). These roles

remained fixed throughout the session. Subjects formed groups of three with one Member

A, one Member B, and one Member C.

At the beginning of each round, the computer randomly drew a two-decimal number

from r0.00, 100.00s. This state variable was revealed (only) to Members A and B. Both

members were presented with a line on their screen. The line extended from ´20 pi.e., 0´bq

14The full instructions for O-2 with b “ 20 can be found in online Appendix C, which also contains the
instructions for C-2 with b “ 20.
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to 120 pi.e., 100 ` bq. The state variable was displayed as a green ball on the line. Also

displayed was a blue ball, which indicated the member’s ideal action.15

Members A and B then each sent a message to the paired Member C. The decisions were

framed as asking them to report to Member C the state variable. Members A and B chose

their messages, each represented by a two-decimal number from the interval r0.00, 100.00s,

by clicking on the line. A red ball was displayed on the line, which indicated the chosen

message. The members could adjust their clicks, and the finalized messages were then

displayed simultaneously on a similar line on Member C’s screen as a green (Member A’s

message) and a white (Member B’s message) balls. Member C then chose an action in two

decimal places from the interval r0.00, 100.00s by clicking on the line, where a red ball was

displayed indicating the action. Member C could adjust the action until the desired choice

was made.

A round was concluded by Member C’s input of the action choice, after which a summary

for the round was provided to all members. The summary included the state variable, the

messages sent, the chosen action, the distance between a member’s ideal action and Member

C’s chosen action, and a member’s earnings from the round.

We randomly selected three rounds for payments. A subject was paid the average

amount of the experimental currency unit (ECU) he/she earned in the three selected rounds

at an exchange rate of 10 ECU = 1 HKD.16 A session lasted for about one and a half

hours. Subjects on average earned, counting both the main and the robustness treatments,

HKD$123.2 («US$15.8) including a show-up fee.

15The extension of the line beyond the state interval r0.00, 100.00s allowed for the display of ideal actions
when the realized state variable was above 80 or below 20.

16The number of ECU a subject earned in a round was determined by a reward formula that induced
quadratic preferences. Refer to the sample instructions in online Appendix C for details.
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5 Experimental Findings: Main Treatments

In Section 5.1, we report the observed information transmission outcomes separately for

the open-rule and the closed-rule main treatments with two senders (O-2 and C-2 ). The

outcomes are evaluated by the correlations between state and action, the receivers’ payoffs,

and the two measures of efficiencies. In Section 5.2, we compare the receivers’ payoffs

and the efficiencies under the two legislative rules. We also bring in the findings from the

one-sender treatments (O-1 ) for comparison. In Section 5.3, we analyze the behavior of

sender-subjects and receiver-subjects in treatments O-2 and C-2.

5.1 Information Transmission Outcomes: Open Rule and Closed

Rule with Two Senders

Treatments O-2. Figure 3 presents the relationships between realized states and chosen

actions in the open-rule treatments with two senders, O-2.17 Two features of the data are

apparent. First, there are positive correlations between state and action, which indicate

that information is transmitted as predicted by the equilibria in both papers. Second, there

is, especially for b “ 20, a range of intermediate states around 50 for which the pooling

action 50 is chosen, which is reminiscent of Gilligan and Krehbiel’s (1989) equilibrium.

Table 4 reports estimation results from random-effects GLS models, which provide for-

mal evaluations of these observations.18 Gilligan and Krehbiel’s (1989) equilibrium predicts

17Figures 3(a)–(b) present the data points for, respectively, the treatments of b “ 10 and b “ 20. For
ease of comparison with the theoretical predictions, Figures 3(c)–(d) include the equilibrium relationships
between state and action as predicted by Gilligan and Krehbiel (1989) (G&K) and Krishna and Morgan
(2001) (K&M). The upcoming Figure 4 follows a similar presentation format.

18We employ two major empirical strategies to analyze different variables. For the relationships between
state and action, we use subject-level data. For each of the treatments O-2 and C-2, a total of 20 decision
groups (20 subjects of each role) participated in 30 rounds of decisions, which translate into a panel data set
of 600 observations. Since the decisions made by a subject over the 30 rounds are likely to be correlated, we
use random-effects regressions to account for the repeated observations at the subject level (our between-
subject treatment design makes random effects more appropriate than fixed effects). “GLS” refers to
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Figure 3: Relationship between State and Action: Treatments O-2

that the correlation between state and action decreases from 3
?

65
25

“ 0.9674 for b “ 10 to
?

61
5
?

5
“ 0.6985 for b “ 20. The fully revealing equilibrium of Krishna and Morgan (2001)

predicts, on the other hand, that the correlation is invariant to changes in bias and equal to

one. While the observed positive correlations are broadly in line with both predictions, the

estimated coefficients reported in columns (1) and (3) of Table 4, in which we regress a on θ,

“feasible generalized least squares,” which employs estimated covariance matrix (using the OLS residuals)
to account for observations with unequal variance and/or correlation. For payoffs and efficiency measures,
in which our interest is in the comparative statics, we use session-level data and perform non-parametric
tests.
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Table 4: Random-Effects GLS Regression: Treatments O-2

b “ 10 b “ 20

(1) (2) (3) (4)

Constant 7.282*** 7.333*** 18.21*** 14.63***
(0.807) (0.904) (1.157) (2.054)

θ 0.851*** 0.851*** 0.598*** 0.655***
(0.0127) (0.0132) (0.0192) (0.0293)

pooling interval – ´0.501 – 5.783*
– (2.645) – (2.463)

θ ˆ pooling interval – 0.0091 – ´0.0988*
– (0.0504) – (0.0386)

No. of Observations 600 600 600 600

Note: The dependent variable is action a. pooling interval is a dummy
variable for θ P r50 ´ 2b, 50 ` 2bs. Standard errors are in parentheses.
*** indicates significance at 0.1% level, ** significance at 1% level, and *
significance at 5% level.

indicate that our data are more qualitatively consistent with Gilligan and Krehbiel (1989).

Echoing the comparative statics, the coefficients decrease from 0.851 for b “ 10 to 0.598

for b “ 20 with non-overlapping 95% confidence intervals r0.826, 0.876s and r0.560, 0.635s.

We further examine our data in light of a distinguishing feature of Gilligan and Kre-

hbiel’s (1989) equilibrium: the existence of a “pooling interval,” r50´2b, 50`2bs, for which

action 50 is chosen. Given the values of biases in our treatments, this generates the follow-

ing prediction: the range of θ for which a “ 50 is chosen extends from r30, 70s for b “ 10

to r10, 90s for b “ 20. In line with the comparative statics, Figures 3(a)–(b) reveal that

there is a stronger cluster of actions at 50 for b “ 20 than for b “ 10; quantitatively, the

frequencies of actions in r49.5, 50.5s are 4% for b “ 10 and 10.67% for b “ 20. Apart from

the comparative statics, these frequencies themselves provide supplementary evidence for

the pooling intervals. As a benchmark for comparison, the observed frequencies of states

in r49.5, 50.5s are 1.17% for b “ 10 and 0.5% for b “ 20. Comparing the two sets of fre-

quencies suggests that disproportionately many actions chosen in a close neighborhood of
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50 are chosen when the state is not close to 50.

Columns (2) and (4) of Table 4 report estimation results from an extended regression

model, in which we include a dummy variable for states in r50´2b, 50`2bs (pooling interval)

and an interaction term (θ ˆ pooling interval). For b “ 20, the statistically significant co-

efficient of pooling interval is 5.783 and that of θ ˆ pooling interval is ´0.0988. Taken

together, the positive and the negative signed coefficients indicate that the fitted line for

states in r50 ´ 2b, 50 ` 2bs has a greater intercept and a smaller slope compared to the

fitted line for all states. This provides further evidence that the behavior for states in

r50´ 2b, 50` 2bs is qualitatively different from the rest in the direction predicted by Gilli-

gan and Krehbiel (1989). No statistically significant coefficients are obtained for b “ 10.

We summarize these findings:

Finding 1. In treatments O-2, receivers’ actions are positively correlated with the state.

The correlation decreases as the bias level increases, as predicted by Gilligan and Krehbiel’s

(1989) equilibrium. Further in line with Gilligan and Krehbiel (1989), there is evidence of

pooling action chosen for a range of intermediate states around 50, especially for b “ 20.

Informational efficiency and receivers’ payoffs allow us to further differentiate the two

papers in terms of their different comparative statics regarding the outlier principle.19

Gilligan and Krehbiel (1989) predict that a higher bias translates into a higher variance

in the equilibrium outcome, i.e., a drop in informational efficiency, and, with no change

in distributional efficiency, a lower receiver’s payoff. On the other hand, Krishna and

Morgan’s (2001) fully revealing equilibrium predicts that informational efficiency does not

change with the bias.

19Both predict that distributional efficiency does not change for the levels of bias we consider.
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The first set of columns in Table 5 reports the observed efficiencies and receivers’ payoffs

in treatments O-2. The data support Gilligan and Krehbiel’s (1989) comparative statics.

An increase in the bias from b “ 10 to b “ 20 significantly lowers the informational effi-

ciency: the average VarpXpθqq, which measures inefficiency, increases from 93.37 to 300.77

(p “ 0.0143, Mann-Whitney test).20 It also results in a lower distributional efficiency, al-

though the difference is not significant: the average pEXpθqq2, which measures inefficiency,

increases from 1.05 when b “ 10 to 6.63 when b “ 20 (p “ 0.1, Mann-Whitney test).

Finally, the average receivers’ payoff, which is calculated as r´VarpXpθqq ´ pEXpθqq2s, is

significantly lower when the bias is higher: the average payoff decreases from ´94.92 when

b “ 10 to ´307.4 when b “ 20 (p “ 0.0143, Mann-Whitney test).21

We summarize these findings:

Finding 2. In treatments O-2, an increase in the bias from b “ 10 to b “ 20 leads to:

(a) a statistically significant decrease in receivers’ average payoff, a finding consistent

with Gilligan and Krehbiel (1989) but not with Krishna and Morgan (2001);

(b) a statistically significant decrease in informational efficiency, a finding consistent with

Gilligan and Krehbiel (1989) but not with Krishna and Morgan (2001); and

(c) no statistically significant change in distributional efficiency, a finding consistent with

both Gilligan and Krehbiel (1989) and Krishna and Morgan (2001).

Treatments C-2. Figure 4 presents the relationships between realized states and chosen

actions in the closed-rule treatments, C-2. We first note that the observations are less

noisy compared to those from O-2, which should not be surprising given that under the

20Unless otherwise indicated, the p-values reported for non-parametric tests are from one-sided tests.
21In reporting receivers’ payoffs, we follow the decomposition in (2) by using the observed r´VarpXpθqq´

pEXpθqq2s. In the experiment, in order to provide subjects with proper rewards with minimal chance of
zero payments, the actual payoffs are linear transformations of the reported payoffs. Refer to the sample
instructions in online Appendix C for details regarding subjects’ reward formula.
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closed rule receivers have less freedom in their action choices, which are now binary. Three

features of the data emerge from the figures. First, as predicted by both Gilligan and

Krehbiel (1989) and Krishna and Morgan (2001), the status quo action of 50 is chosen for

intermediate states. Second, Sender 1’s ideal action is chosen for more “extreme” states,

which is consistent with Gilligan and Krehbiel (1989). Third, and this is not predicted by

either equilibrium, there is evidence of mixing behavior for certain high states.
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Figure 4: Relationship between State and Action: Treatments C-2

Both Gilligan and Krehbiel (1989) and Krishna and Morgan (2001) predict that the
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status quo action is chosen for r50´ b, 50` bs. Out of this range, their predictions start to

differ. A distinguishing difference is that, for a sizable set of states outside r50´ b, 50` bs,

Gilligan and Krehbiel (1989) predict that Sender 1’s ideal action, a˚1pθq “ mintθ ` b, 100u,

is chosen, whereas Krishna and Morgan (2001) predict that the receiver’s ideal action,

a˚pθq “ θ, is instead chosen. For b “ 10, the frequencies with which the receivers take the

status quo 50, Sender 1’s ideal a˚1pθq ˘ 0.5, or their own ideal a˚pθq ˘ 0.5 are, respectively,

21.17%, 60.5%, and 3%; for b “ 20, the corresponding frequencies are 44.33%, 37%, and

2.33%. While the different frequencies of the status quo across the bias levels do not

differentiate the two equilibria, the drastic differences between the frequencies of Sender

1’s ideal action and of the receiver’s ideal action clearly support Gilligan and Krehbiel

(1989). Note also that the combined frequencies of the status quo and Sender 1’s ideal

action account for more than 80% of the observations.

Distributional efficiency provides another measure that differentiates the two equilib-

rium characterizations with respect to their predictions on whose ideal action is chosen.

Gilligan and Krehbiel (1989) predict that the receiver, who often takes Sender 1’s ideal

action, bears distributional inefficiency, i.e., pEXpθqq2 ą 0. Krishna and Morgan (2001),

on the other hand, predict that pEXpθqq2 “ 0 as the receiver is able to take her ideal action.

Table 5 indicates that the observed efficiencies support Gilligan and Krehbiel (1989): the

average pEXpθqq2 “ 43.95 for b “ 10 and pEXpθqq2 “ 42.49 for b “ 20, which are both

significantly greater than 0 (p “ 0.0625, the lowest possible p-value for four observations

from the Wilcoxon signed-rank tests).

Comparing Figures 4(a) with 4(c) and 4(b) with 4(d) further reveals that actions are

chosen for the “right” states as predicted by Gilligan and Krehbiel (1989). Deviations from

the prediction occur, however, for states in r60, 80s for b “ 10 and for states in r75, 100s for

b “ 20. In both cases, mixing behavior is observed. In the former, concentrations of actions

at 50 and Sender 1’s ideal actions are observed; in the latter, concentrations of actions at
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50 and 100 are observed.

Despite the unpredicted mixing behavior, our analysis so far points to Gilligan and

Krehbiel’s (1989) equilibrium as being able to better organize the closed-rule data. To

further evaluate the precise prediction of their equilibrium, we estimate piecewise random-

effects GLS models, with “breakpoints” dividing the state space r0, 100s according to the

state-action relationship predicted by their equilibrium. The bold lines in Figures 4(c)–(d)

illustrate the segments adopted in the regressions. Table 6 reports the estimation results.

Table 6: Random-Effects GLS Regression: Treatments C-2

b “ 10 b “ 20

(1) (2)

Constant 11.11*** 21.50***
(0.795) (2.148)

θ 0.967*** 0.969***
(0.0193) (0.123)

interval middle 19.63** 18.01***
(6.839) (4.654)

θ ˆ interval middle ´0.497*** ´0.664***
(0.135) (0.147)

interval high ´25.20** ´0.954
(9.296) (12.86)

θ ˆ interval high 0.281* ´0.249
(0.133) (0.196)

interval top 86.90* 210.4
(35.01) (162.9)

θ ˆ interval top ´0.974** ´2.464
(0.370) (1.674)

No. of Observations 600 600

Note: The dependent variable is action a. interval middle is a dummy variable
for θ P p50´b, 50`bs. interval high is a dummy variable for θ P p50`b,mint50`
3b, 95us. interval top is a dummy variable for θ P pmint50`4b, 95u, 100s. Standard
errors are in parentheses. *** indicates significance at 0.1% level, ** significance
at 1% level, and * significance at 5% level.

The coefficients of θ and the intercept terms show the estimated relationships between

state and action in the “baseline” segments, r0, 40q and p80, 90s for b “ 10 and r0, 30q for
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b “ 20. Gilligan and Krehbiel’s (1989) equilibrium predicts that Sender 1’s ideal action,

a˚1pθq “ mintθ ` b, 100u, is chosen for states in these intervals. The statistically significant

estimates support the prediction. First, the estimated intercepts for b “ 10 and b “ 20

are, respectively, 11.11 and 21.5, which are in the neighborhoods of the biases. Second, the

coefficients of θ for b “ 10 and b “ 20 are, respectively, 0.967 and 0.969, which are close

to one. Taken together, these indicate that the fitted lines for the baseline segments start

around the corresponding bias levels and have slopes close to one.

Interpretations for the segment dummies are similar to those for treatments O-2. For

each segment, the coefficients indicate how the fitted line for the segment “tilts” relative

to the baseline case: a positive (negative) coefficient of the dummy indicates that the

fitted line has a greater (smaller) intercept, and a positive (negative) coefficient of the

dummy’s interaction with the state indicates that the fitted line has a greater (smaller)

slope. For brevity, we note without discussing each case in detail that column (1) in Table

6 shows that, for b “ 10, the statistically significant coefficients are all signed in ways

that are qualitatively consistent with Gilligan and Krehbiel’s (1989) prediction about the

orientations of the different segments. For b “ 20, column (2) indicates, however, that

statistically significant coefficients are obtained only for the middle segment. This echoes

that the “anomalous” mixing behavior for higher states is more prevalent for b “ 20.22

We summarize the above findings:

Finding 3. In treatments C-2,

(a) Sender 1’s ideal action is chosen for more extreme states, θ P r0, 40q Y p60, 100s for

b “ 10 and θ P r0, 30q Y p75, 100s for b “ 20;

22Table B.1 in online Appendix B reports estimation results from including additional segment dummies
that capture the prediction in Krishna and Morgan (2001) as illustrated in Figures 2(a) and 4(c)–(d). The
additions yield only insignificant estimates, suggesting that Krishna and Morgan’s (2001) prediction does
not improve upon Gilligan and Krehbiel’s (1989) in organizing our data.

29



(b) the status quo action 50 is chosen for intermediates states, θ P r40, 60s for b “ 10 and

θ P r30, 75s for b “ 20; and

(c) there is evidence of mixing between Sender 1’s ideal action and the status quo for

some of the extreme states, θ P r60, 80s for b “ 10 and θ P r75, 95s for b “ 20

Overall, the observed relationships between state and action and distributional efficiencies

are more consistent with Gilligan and Krehbiel (1989) than with Krishna and Morgan

(2001), whose prediction about the receiver’s ideal action being chosen is rarely observed.

Gilligan and Krehbiel (1989) and Krishna and Morgan (2001) both predict that a higher

bias translates into a lower informational efficiency and a lower receiver’s payoff. Table 5

shows that these common predictions are supported: when the bias increases from b “ 10

to b “ 20, the average VarpXpθqq, which measures informational inefficiency, increases

from 87.23 to 326, and the average receivers’ payoff decreases from ´131.18 to ´368.49

(p “ 0.0143 in both cases, Mann-Whitney tests).

For distributional efficiency, Gilligan and Krehbiel (1989) predict that a higher bias

translates into a lower efficiency, whereas Krishna and Morgan (2001) predict invariance.

There is no significant difference between the average EpXpθqq2 at the two bias levels,

which are 43.95 for b “ 10 and 42.49 for b “ 20 (two-sided p “ 0.8857, Mann-Whitney

test). While the finding of no difference supports Krishna and Morgan’s (2001) comparative

statics considered in isolation, the positive numbers are, as analyzed above, in line with

Gilligan and Krehbiel (1989). Especially since the former’s comparative statics rests on

Sender 1’s inability to impress a bias on actions—the opposite of what we observe—the

absence of difference in observed distributional efficiencies does not appear to be a finding

that corroborates Krishna and Morgan’s (2001) equilibrium.

We summarize these findings:
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Finding 4. In treatments C-2, an increase in the bias from b “ 10 to b “ 20 leads to:

(a) a statistically significant decrease in receivers’ average payoff, a finding consistent

with both Gilligan and Krehbiel (1989) and Krishna and Morgan (2001);

(b) a statistically significant decrease in informational efficiency, a finding consistent with

both Gilligan and Krehbiel (1989) and Krishna and Morgan (2001); and

(c) no statistically significant change in distributional efficiency.

5.2 One-Sender Treatments and Welfare Comparisons

Treatments O-1. Figure 5 presents the relationships between realized states and chosen

actions in the open-rule treatments with one sender, O-1. For both levels of bias, there is

clear evidence of positive correlations between state and action. Some evidence of pooling

exists, however, for states near the upper ends, especially for b “ 20.

The open rule with one sender is equivalent to the one-sender cheap-talk model of

Crawford and Sobel (1982). They show that in the presence of misaligned interests all

equilibria are partitional: the sender partitions the state space and partially transmits

information by revealing only the element of the partition that contains the true state.

While we do not observe this equilibrium property, which would be a subtle property when

expected from subjects, we observe some evidence of pooling: for b “ 20, there is a cluster

of actions around 80 chosen for states in more or less r60, 100s.

As an attempt to formally pick up this data feature, we estimate a random-effects GLS

model that allows for a quadratic relationship. Columns (1) and (2) in Table 7 confirm

that, for both b “ 10 and b “ 20, the estimated relationships between state and action are

quadratic, which are also illustrated in Figure 5. To provide evidence that this is peculiar

to the one-sender case, qualitatively different from the observations with two senders, we
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Figure 5: Relationship between State and Action: Treatments O-1

Table 7: Random-Effects GLS Regression: Treatments O-1 (and O-2 for Comparison)

O-1 O-2

b “ 10 b “ 20 b “ 10 b “ 20

(1) (2) (3) (4)

Constant 5.401*** 6.931*** 7.375*** 19.07***
(1.330) (1.998) (1.207) (1.792)

θ 1.107*** 1.414*** 0.846*** 0.549***
(0.0587) (0.0809) (0.0523) (0.0805)

θ2 ´0.00247*** ´0.00808*** 5.26E-05 0.000471
(0.000571) (0.000772) (0.000500) (0.000774)

No. of Observations 600 600 600 600

Note: The dependent variable is action a. Standard errors are in parentheses. *** indicates
significance at 0.1% level, ** significance at 1% level, and * significance at 5% level.

estimate the same specification for treatments O-2. Columns (3) and (4) indicate that no

similar quadratic relationships are obtained in these cases.

A common finding in the experimental literature on one-sender communication games

is overcommunication: the observation of communication that is more informative than is

predicted by the most informative equilibria of the underlying game. Given that all equilib-

ria are partitional, our finding that state and action are, despite the quadratic relationships,
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positively correlated along the whole state space suggests that overcommunication is also

observed in our treatments O-1.

Welfare Comparison between O-2 and O-1. The heterogeneity principle, which

holds for both Gilligan and Krehbiel’s (1989) and Krishna and Morgan’s (2001) equilibria,

predicts that the open rule with two senders yields a higher receiver’s payoff than does

its one-sender counterpart. The payoff-dominance is derived from a higher informational

efficiency in the two-sender case, as there is no distributional inefficiency under any open-

rule equilibrium given that the receiver chooses her optimal action given the information.

The heterogeneity principle does not hold with statistical significance under either level

of bias. Table 5 shows that, for b “ 10, the average receivers’ payoff is ´94.42 in O-

2, which is higher than the ´134.12 in O-1 but without statistical significance, and, for

b “ 20, the payoff is ´307.4 in O-2, which is again higher than the ´383.08 in O-1 but

without statistical significance (p ě 0.1 in both cases, Mann-Whitney tests).

Comparing the two measures of efficiencies further dissects the absence of payoff dif-

ferences. For b “ 10, both informational and distributional efficiencies are higher in O-2

than in O-1. However, only the latter is statistically significant: informational inefficiencies

are 93.37 in O-2 and 124.6 in O-1 (p “ 0.2429, Mann-Whitney test); distributional inef-

ficiencies are 1.05 in O-2 and 9.52 in O-1 (p “ 0.0286, Mann-Whitney test). For b “ 20,

informational efficiency is higher in O-2 but distributional efficiency is higher in O-1. Both

differences are, however, insignificant: informational inefficiencies are 300.77 in O-2 and

377.36 in O-1, and distributional inefficiencies are 6.63 in O-2 and 5.84 in O-1 (p ě 0.1

in both cases, Mann-Whitney tests). Since the magnitudes of distributional efficiencies are

exceedingly smaller relative to those of informational efficiencies, the statistically insignifi-

cant comparisons of the latter drives the insignificant comparisons of receivers’ payoffs. We

summarize:
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Finding 5. Under the open rule, having an additional sender does not significantly increase

receivers’ payoffs relative to the case when there is only one sender.

An interesting phenomenon, which we call the confusion effect, may account for why

having two senders does not significantly improve informational efficiency. When the two

senders’ messages do not coincide, receivers may choose to ignore them due to confusion.

Making their decision without relying on any information, receivers then take their ex-ante

optimal action 50, as is prescribed by Gilligan and Krehbiel (1989) for out-of-equilibrium

behavior. On the other hand, with only one sender, receivers rarely ignore the messages,

which is evident in the observed overcommunication. The confusion effect under two senders

combined with the overcommunication under one sender results in no significant difference

in informational efficiencies across the two cases.

The observation that receivers choose 50 more often when facing two senders than when

facing one sender can be seen by comparing Figure 3 with Figure 5. To formally evaluate

the difference, we estimate a random-effects probit model, regressing a dummy variable

for a P r49.5, 50.5s on the state and a dummy variable for treatments O-1. Table 8 shows

that, for both b “ 10 and b “ 20, actions in a close neighborhood of 50 are less frequently

obtained with one sender, although only the case for high bias is statistically significant.

We summarize:

Finding 6. Under the open rule, the receiver’s ex-ante optimal action 50 is chosen more

often with two senders than with one sender, indicating a reduction in information trans-

mission with two senders.

Finding 6 suggests that there may be an implicit cost in increasing the number of senders

that has not been recognized in the theoretical literature: the occurrence of disagreeing

messages, recognized in the theory only as out of equilibrium, may be so prevalent in

practice that it reduces welfare by inducing the receiver to shut down updating.
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Table 8: Random-Effects Probit Regression: Open-Rule Treatments

b “ 10 b “ 20

(1) (2)

Constant ´2.229*** ´1.453***
(0.295) (0.174)

θ 0.00231 0.00156
(0.00336) (0.00219)

one sender ´0.619 ´0.528**
(0.347) (0.193)

No. of Observations 1200 1200

Note: The dependent variable is a dummy variable for a P r49.5, 50.5s.
one sender is a dummy variable for treatments O-1. Standard errors are in paren-
theses. *** indicates significance at 0.1% level, ** significance at 1% level, and *
significance at 5% level.

Welfare Comparison between C-2 and O-1. The heterogeneity principle also covers

the closed rule, where both Gilligan and Krehbiel (1989) and Krishna and Morgan (2001)

predict that the receiver’s payoff (and informational efficiency) is lower under the open rule

with one sender. They, however, differ in terms of distributional efficiency: since the Sender

1 in Gilligan and Krehbiel’s (1989) equilibrium impresses a bias on action, according to

them the closed rule would be less distributionally efficient than the open rule with one

sender; Krishna and Morgan (2001), on the other hand, predict that they are the same.

The heterogeneity principle again does not hold with statistical significance. Table 5

shows that, for b “ 10, the average receivers’ payoff is ´131.18 in C-2, which is slightly

higher than the ´134.12 in O-1, and, for b “ 20, the payoff is ´368.49 in C-2, which is

higher than the ´383.08 in O-1 but without statistical significance (p ě 0.6571 in both

cases, Mann-Whitney tests).

Distributional efficiencies are significantly higher in O-1 than in C-2, which is consistent

with Gilligan and Krehbiel (1989): the inefficiencies are, for b “ 10, 9.52 in O-1 and 43.95

in C-2, and, for b “ 20, 5.84 in O-1 and 42.49 in C-2 (p “ 0.0143 in both cases, Mann-
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Whitney tests). The prediction common to both papers on informational efficiency is

observed but without statistical significance: informational inefficiencies are, for b “ 10,

87.23 in C-2 and 124.6 in O-1, and, for b “ 20, 326 in C-2 and 377.36 in O-1 (p ě 0.2429 in

both cases, Mann-Whitney tests). The insignificant dominance of informational efficiency

under the closed rule is further offset by the dominance of distributional efficiency under

the open rule with one sender, resulting in even smaller payoff differences than are observed

in the comparison between O-2 and O-1. We summarize:

Finding 7. Receivers’ payoffs are higher under the closed rule with two senders than under

the open rule with one sender, but the differences are not statistically significant.

The confusion effect also appears to be at work under the closed rule. Given that

the status quo action coincides with the receiver’s ex-ante optimal action, receivers in

treatments C-2 may also choose to ignore disagreeing messages and take action under the

prior. Figures 4(c)–(d) indeed show that action 50 is chosen more often than is predicted.

The status quo action is chosen for some states for which equilibria prescribe full or partial

revelation, indicating that less information is transmitted than is predicted. This, together

with the overcommunication observed in treatments O-1, contributes to Finding 7.

Welfare Comparison between O-2 and C-2. We conclude this subsection by address-

ing the choice between the open rule and the closed rule with two senders, the fundamental

policy question behind the informational theory. Gilligan and Krehbiel (1989) predict that

the open rule is more distributionally but less informationally efficient than the closed rule.

Krishna and Morgan (2001) predict that the open rule is as distributionally efficient as the

closed rule but more informationally efficient. Their difference in terms of payoffs is more

delicate, in which Krishna and Morgan (2001) predict that receivers’ payoffs are always

higher under the open rule whereas Gilligan and Krehbiel (1989) predict that this is the

case only for b “ 10.

36



Gilligan and Krehbiel’s (1989) distributional principle is confirmed with clear evidence.

Table 5 shows that distributional inefficiency are, for b “ 10, 1.05 in O-2 and 43.95 in C-2,

and, for b “ 20, 6.63 in O-2 and 42.49 in C-2 (p “ 0.0143 in both cases, Mann-Whitney

tests). The comparisons of informational efficiencies are less clear cut and also insignificant.

The closed rule is more informationally efficient for b “ 10, but the opposite is observed

for b “ 20. Both comparisons are statistically insignificant: informational inefficiencies are,

for b “ 10, 93.37 in O-2 and 87.23 in C-2, and, for b “ 20, 300.37 in O-2 and 326 in C-2

(p ě 0.1714 in both cases, Mann-Whitney tests).

As in the other cases, informational efficiencies drive the payoff comparisons. However,

in the case of b “ 10, the dominance of the open rule over the closed rule in distributional

efficiency involves a 40-times difference, resulting in at least marginally significantly higher

receivers’ payoffs under the open rule. For b “ 10, the average receivers’ payoffs are ´94.42

in O-2 and ´131.18 in C-2 (p “ 0.0571, Mann-Whitney test). For b “ 20, the payoffs are

´307.4 in O-2 and ´368.49 in C-2 (p “ 0.1714, Mann-Whitney test). The fact that the

distributional-principle effect dominates the restrictive-rule-principle effect with statistical

significance for the low but not the high bias weakly favors Gilligan and Krehbiel (1989).

We summarize these findings:

Finding 8. Comparison of receivers’ welfare between treatments O-2 and C-2 gives the

following findings:

(a) for both b “ 10 and b “ 20, distributional efficiency is significantly higher under the

open rule than under the closed rule;

(b) for both b “ 10 and b “ 20, informational efficiency under the open rule is not

significantly different from that under the closed rule; and

(c) receivers’ payoffs are significantly higher under the open rule than under the closed
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rule only for b “ 10.

5.3 Senders’ and Receivers’ Behavior in Two-Sender Treatments

We turn to the observed behavior of senders and receivers in treatments O-2 and C-2. An

issue with O-2 is that the open-rule model is a cheap-talk game. Since cheap-talk messages

acquire meanings only in equilibrium, we may have equilibria where the same outcome is

achieved with very different messages. Nevertheless, the qualitative patterns of the observed

messages, combined with receivers’ responses, should provide an informative picture about

the nature of subjects’ interactions. For O-2, we therefore focus on highlighting some

interesting qualitative properties in the data. The issue is relatively minor for C-2. Because

the messages from Sender 1 have a binding property under the closed rule, their exogenous

meanings are used in equilibrium. In this case, we compare the observed proposals more

directly with the theoretical predictions.

Treatments O-2. Figure 6 presents the relationships between realized states and senders’

messages in O-2. For both levels of bias and for both senders, messages are positively

correlated with the state. The two senders send different messages, where m1 ą θ ą m2

in more than 95% of the observations. The distances between m1 and m2 widen when b

increases: the average distances are 47.66 for b “ 10 and 74.7 for b “ 20.

The positive correlations indicate that messages reveal information. The larger dis-

tances between m1 and m2 with a higher level of bias are qualitatively consistent with a

common property of the equilibrium strategies in the two papers. Senders’ behavior does

not otherwise quite resemble the strategies in either equilibrium. In our environment, a

fully revealing (monotone) strategy by a sender requires him to send truthful messages.

While for b “ 10 there are observed cases of truthful messages by Senders 1, they disap-

pear for b “ 20, inconsistent with Krishna and Morgan’s (2001) full revelation by a sender
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Figure 6: Relationship between State and Message: Treatments O-2

irrespective of the bias level.23

The fact that m1 ą θ ą m2 in almost all observations indicate that senders “exaggerate”

in the directions of their biases. They, however, frequently exaggerate beyond their ideal

actions, a˚1pθq “ mintθ ` b, 100u for Sender 1 and a˚2pθq “ maxt0, θ ´ bu for Sender 2.

For b “ 10, the frequencies of m1 within a˚1pθq ˘ 0.5 and of m2 within a˚2pθq ˘ 0.5 are,

respectively, only 10.83% and 12.83%. The corresponding frequencies increase to 84.66%

and 91.17% when the ranges are extended for m1 to include up to 4b above a˚1pθq and for m2

to include up to 4b below a˚2pθq. For b “ 20, the corresponding increases are from 19.67%

for m1 and 17% for m2 to, respectively, 91.5% and 94.5% when the ranges are extended up

to 3b above or below the ideal actions.

Related to this tendency to “overexaggerate” is the frequent use of boundary messages 0

and 100. Consider the benchmark where the senders recommend their ideal actions. Under

our bounded spaces, we would then see message 0 sent by Senders 2 only for θ P r0, bs

23Observed truthful messages refer to those state-message pairs on (or very close to) the 45-degree line
in Figure 6, in which the messages reveal the true states or equivalently indicate the receiver’s ideal actions.
For b “ 10, 6% of Sender 1’s messages are within ˘0.5 of the true states. For Senders 2, the frequency is
only 0.5%. For b “ 20, the frequencies are at most 0.5% for both senders.
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and message 100 sent by Senders 1 only for θ P r100 ´ b, 100s. Figure 6 reveals, however,

that the boundary messages are sent more often than this. When b “ 10, message 0 is

sent by Senders 2 for states below 60, and message 100 is sent by Senders 1 for states

above 40. When b “ 20, the ranges extend to below 70 for message 0 and to above 20 for

message 100. The boundary messages are used as pooling messages, which suggests that

information is sometimes not transmitted for the intermediate states. This further points

to inconsistency with Krishna and Morgan’s (2001) equilibrium. The loss of information

for intermediates states is more consistent with Gilligan and Krehbiel’s (1989) equilibrium,

but the randomized messages for intermediate states in their equilibrium are replaced by

pooling boundary messages in the laboratory.

Turning to receivers’ behavior, our first observation is that the senders’ pooling behavior

for intermediate states identified above is consistent with the information transmission

outcome, reminiscent of Gilligan and Krehbiel’s (1989) equilibrium (Finding 1 and Figure

3(b)).24 The endogenous uses of messages are a particularly important issue for analyzing

receivers’ behavior.25 The aggregate behavior depicted in Figure 6 suggests that, when at

least one of the senders’ messages is not a boundary message, taking an action that equals

the average of Sender 1’s and Sender 2’s messages should provide a good prediction for

the optimal action. On the other hand, when both messages are boundary messages, the

average of the messages, i.e., 50, is consistent with a range of states.

Figure 7 presents receivers’ actions as functions of average messages. The qualitative

difference between the data patterns in Figures 7(a) and 7(b) provides evidence that re-

ceivers are responding to the fact that, in the case of b “ 20, a message-average of 50 is

24Section B.2 in online Appendix B provides additional analysis to demonstrate that the equilibrium
construction in Krishna and Morgan (2001) is not supported by receivers’ observed responses to messages.

25While the implied meaning of the message pair in a round for a group certainly differs from that
in another round for another group, given the limited space we focus on analyzing aggregate behavior.
Note that since random matching is used for these treatments, a subject is effectively playing against a
population, which makes average behavior of the other roles highly relevant for one’s decisions.
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Figure 7: Action as a Function of Average Message: Treatments O-2

consistent with a wider range of states given that senders send boundary messages more

frequently under the higher bias.

Treatments C-2. The key difference between the closed-rule equilibria in Gilligan and

Krehbiel (1989) and Krishna and Morgan (2001) is that, in a large number of states, the

Sender 1 in the former proposes his ideal action whereas that in the latter proposes the

receiver’s ideal action. They also differ with respect to compromise bills. In Gilligan and

Krehbiel (1989), they are proposed for relatively high states; in Krishna and Morgan (2001),

they are proposed for both relatively high and low states.

Figure 8 presents the relationships between realized states and senders’ messages in

C-2. The data clearly favor Gilligan and Krehbiel (1989). Senders 1 frequently propose

their ideal action a˚1pθq “ mintθ ` b, 100u. The frequencies of m1 within a˚1pθq ˘ 0.5 are

70.16% for b “ 10 and 53.33% for b “ 20. In contrast, the frequencies of m1 within θ˘ 0.5

are around 3% for both levels of bias. Deviations from proposing a˚1pθq are also observed

for higher but not lower states.
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Figure 8: Relationship between State and Message: Treatments C-2

Figure 9 presents receivers’ adoption rate of m1. For both levels of bias, receivers

adopt close to 100% of the time when m1 ă 50, reject more than 50% of the time when

m1 P r50, 50 ` 2bs, and adopt in the majority of the cases again when m1 ą 50 ` 2b. For

b “ 10, the adoption rate rises back to near 100% when m1 ą 90.

The close-to-100% adoption rate happens when, for both b “ 10 and b “ 20, m1 R

r50,mint50 ` 4b, 100us. We illustrate that this is a best response consistent with Gilligan

and Krehbiel’s (1989) equilibrium by examining the relevant incentive conditions. Given

that Sender 1 recommends his ideal action, i.e., m1pθq “ θ ` b ă 100, as is more or less

observed, Senders 2 prefer m1 over the status quo if and only if

´p2bq2
loomoon

from m1

ą ´r50´ pm1 ´ 2bqs2
looooooooooomooooooooooon

from the status quo

ô m1 R r50, 50` 4bs.

Thus, for m1 R r50,mint50 ` 4b, 100us, not only Senders 1 but Senders 2 also prefer m1

over the status quo 50. There is therefore no incentive for them to generate disagreements.

42



0 20 40 60 80 100
Acceptance Rate (%)

[0, 30]

(30, 40]

(40, 50]

(50, 60]

(60, 70]

(70, 80]

(80, 90]

(90, 100]

(a) b “ 10

0 20 40 60 80 100
Acceptance Rate (%)

[0, 30]

(30, 40]

(40, 50]

(50, 60]

(60, 70]

(70, 80]

(80, 90]

(90, 100]

(b) b “ 20

Figure 9: Receivers’ Adoption Rate of Proposals from Senders 1: Treatments C-2

Note further that receivers adopt m1 if and only if

´b2
loomoon

accepting m1

ą ´r50´ pm1 ´ bqs
2

loooooooooomoooooooooon

rejecting m1

ô m1 R r50, 50` 2bs.

Expecting that the two senders have no incentive to generate disagreements when m1 R

r50,mint50`4b, 100us, receivers adopting these proposals irrespective of the speeches from

Senders 2 therefore constitutes a best response.

By a similar argument, the low adoption rate for m1 P r50, 50 ` 2bs can also be shown

to be a best response consistent with Gilligan and Krehbiel’s (1989) equilibrium. For m1

in this range, it is impossible for the two senders to reach an agreement, because their

preferences are misaligned. Expecting this, receivers rejecting m1 P r50, 50`2bs and taking

the status quo irrespective of the speeches from Senders 2 is a best response. The high

adoption rate for m1 P p50 ` 2b,mint50 ` 4b, 100uq remains unaccounted for. As can be

seen in Figure 8, however, some of the m1 observed in this range are compromise bills closer

to the status quo, which may explain their high adoption rate.
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6 Robustness Treatments

We consider two treatment variations for robustness checks. The first replaces the ran-

dom matchings used in the main treatments with fixed matchings (F ). In our two-sender

treatments, equilibrium play requires the coordination of three parties, each faces a large

number of choices. A fixed-matching protocol, which provides repeated interactions with

the same partners, may facilitate better convergence to an equilibrium. The second vari-

ation concerns only the closed rule, in which we replace the point messages used in the

main treatments for Senders 2 with interval messages (while keeping the random match-

ings). The interval messages (I ) are explored according to the original setup in Gilligan

and Krehbiel (1989).26 The two variations result in four additional sets of treatments (each

with the same two bias levels): one for the open-rule with two senders (O-2-F ), one for the

open-rule with one sender (O-1-F ), and two for the closed-rule with two senders (C-2-F

and C-2-I ). A total of 233 subjects participated in these treatments.27

Figure 10 presents the relationships between realized states and chosen actions in the

six robustness treatments with two senders. The qualitative patterns of the data from the

main treatments are similarly observed. Table 9 further summarizes how well Findings

1–8 are preserved in the robustness treatments. There are no qualitative changes in any

of the findings; e.g., no statistically significant comparisons with opposite conclusions are

obtained. There are “quantitative changes,” where the statistical significance of a result

changes from significant to insignificant or vice versa.

Take Finding 7 for treatments C-2-I as an example. Table B.6 in online Appendix B

and Table 5 show that, for b “ 10, the average receivers’ payoff is ´75 in C-2-I, which

is significantly higher than the ´134.12 in O-1 (p “ 0.0143, Mann-Whitney test), and,

26The interval messages are implemented in the laboratory by allowing Member B to click on the message
line twice to pinpoint the interval they intend as a message.

27Table B.2 in online Appendix B provides details about these robustness treatments.
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Figure 10: Relationship between State and Action: Robustness Treatments with Two Senders

for b “ 20, the payoff is ´351.22 in C-2-I, which is higher than the ´383.08 in O-1 but

without statistical significance (p “ 0.1, Mann-Whitney test).28 Note that in Finding 7,

which compares the main treatments C-2 with O-1, the higher payoffs under the closed

rule are not statistically significant for both levels of bias. Since only a subset of the

comparisons supporting the finding changes in statistical significance for the robustness

treatment (when b “ 10), we characterize this as a “partial quantitative change.” We find

that all quantitative changes to our findings are partial in this sense. In addition, more

than half of the findings have no changes. Overall, our findings from the main treatments

28A way to interpret this finding is that information transmission may work well in a heterogeneous
committee with moderate bipartisanship, where the members’ biases, though opposite, are moderate in
magnitudes.
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Table 9: Comparisons of Findings between Main and Robustness Treatments

O-2-F O-1-F C-2-F C-2-I
Finding 2

Finding 4 Finding 4
No Change Finding 6 Finding 6

Finding 7 Finding 7
Finding 8

Finding 1
Partial Finding 3 Finding 3

Quantitative Finding 5 Finding 5
Change Finding 7

Finding 8

Note: “No Change” refers to the cases where all the qualitative and quantitative
(in the sense of statistical significance) aspects of the main-treatment findings are
preserved in the robustness treatments. “Partial Quantitative Change” refers to the
cases where a subset of the comparisons or estimates supporting a particular finding
changes in statistical significance in the robustness treatments.

survive well in the robustness treatments.29

7 Conclusion

In this paper, we have provided the first experimental investigation of the informational

theory of legislative committees with heterogeneous members. We have focused on two

legislative rules: the open rule, in which the legislature is free to choose any action, and the

closed rule, in which the legislature is restricted to choose between a committee member’s

proposal and an exogenous status quo.

We find that, even in the presence of conflicts, legislative committee members help im-

prove the legislature’s decisions by providing useful information. We obtain clear evidence

in support of two key predictions: the outlier and the distributional principles, which con-

cern how the legislature’s welfare varies with the committee members’ biases and with the

29The data analysis supporting the conclusion in Table 9 can be found in Section B.3 in online Appendix
B.
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legislative rules. While we obtain no statistically significant evidence for the restrictive-rule

principle, we find that the open rule, as predicted, leads to more favorable decisions by the

legislature when the members’ biases are less extreme. Overall, our findings support the

predictions of Gilligan and Krehbiel’s (1989) equilibria.
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Appendix A – Proof of Result 2

Since the receiver’s expected payoff in Krishna and Morgan’s (2001) equilibrium is higher

than that in Gilligan and Krehbiel’s (1989) under a given legislative rule, it suffices to show

that the receiver’s payoffs in Gilligan and Krehbiel’s (1989) open-rule (O) and close-rule

(C) equilibria are higher than that under the open rule with one sender (CS):

Open Rule. We have that EUR
O pbq “ ´

16b3

3
ą ´4b2

3
for b P p0, 1

4
q. There are three cases to

consider: i) if Npbq ą 2, then EUR
CSpbq “ ´

1
12Npbq2

´
b2rNpbq2´1s

3
ă ´

b2rNpbq2´1s
3

ă ´8b2

3
ă ´4b2

3

for b P p0, 1
4
q; ii) if Npbq “ 2, then EUR

CSpbq “ ´
1
48
´ b2 ă ´4b2

3
for b P p0, 1

4
q; and iii) if

Npbq “ 1, then EUR
CSpbq “ ´

1
12
ă ´4b2

3
for b P p0, 1

4
q.

Closed Rule. We have that EUR
C pbq “ ´

16b3

3
´ b2p1 ´ 8bq ą ´ 1

48
, where the inequality

follows from the fact that
dEUR

C pbq

db
ă 0 for b P p0, 1

4
q. There are two cases to consider: i) if

Npbq ď 2, then EUR
CSpbq ă ´

1
48

for b P p0, 1
4
q; and ii) if Npbq ą 2, then EUR

CSpbq ă ´
8b2

3
ă

´ 1
48

for b P p0, 1
4
q.
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Appendix B – Additional Data Analysis

B.1 Additional Regression Results for Treatments C-2

Table B.1: Random-Effects GLS Regression: Treatments C-2

(1) (2)
b “ 10 b “ 20

Constant 11.20*** 20.53***
(0.826) (3.250)

θ 0.967*** 1.179
(0.0194) (0.633)

interval low ´4.579 1.778
(11.49) (5.383)

θ ˆ interval low 0.121 ´0.249
(0.331) (0.668)

interval middle 19.65** 18.96***
(6.847) (5.227)

θ ˆ interval middle ´0.500*** ´0.874
(0.135) (0.638)

interval high 1 2.869 ´36.87*
(23.83) (17.73)

θ ˆ interval high 1 ´0.151 0.0204
(0.367) (0.669)

interval high 2 ´66.58 242.5
(36.80) (130.8)

θ ˆ interval high 2 0.943 ´2.751
(0.523) (1.423)

interval top 87.34* 209.4
(35.03) (161.9)

θ ˆ interval top ´0.980** ´2.653
(0.371) (1.778)

No. of Observations 600 600

Note: The dependent variable is action a. interval low is a dummy variable for
θ P p50´2b, 50´ bs. interval middle is a dummy variable for θ P p50´ b, 50` bs.
interval high 1 is a dummy variable for θ P p50` b, 50` 2bs. interval high 2 is
a dummy variable for θ P p50 ` 2b,mint50 ` 3b, 95us. interval top is a dummy
variable for θ P pmint50` 4b, 95u, 100s. Standard errors are in parentheses. ***
indicates significance at 0.1% level, ** significance at 1% level, and * significance
at 5% level.

Table B.1 reports the estimation results mentioned in footnote 22 in the main text,

in which we include additional segment dummies (interval low and interval high 2) and

their interactions with the state to capture Krishna and Morgan’s (2001) prediction. The

estimated coefficients of the four variables are all insignificant.
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B.2 Additional Analysis of Receivers’ Responses to Messages in

Treatments O-2

As mentioned in footnote 24 in the main text, we further evaluate whether receivers’ ob-

served responses to messages are consistent with Krishna and Morgan’s (2001) fully re-

vealing equilibrium. Specifically, we explore the extent to which the relevant incentive

conditions that guarantee full revelation are satisfied by our data.

In equilibrium, action apm1pθq,m2pθqq “ θ is induced by message pair pm1pθq,m2pθqq

for all θ P Θ. Denote the actions induced pursuant to Sender 1’s and Sender 2’s deviations

in an arbitrary state θ by, respectively, apm̃1,m2pθqq and apm1pθq, m̃2q, where m̃1 ‰ m1pθq

and m̃2 ‰ m2pθq. Note that m̃i, i “ 1, 2, can itself be a message used in equilibrium in

θ̃ ‰ θ, but pm̃1,m2pθqq and pm1pθq, m̃2q are out-of-equilibrium message pairs unexpected

in equilibrium.

There is no incentive to deviate from the fully revealing equilibrium if the following two

inequalities are satisfied:

Sender 1: ´ b2
ě ´rapm̃1,m2pθqq ´ pθ ` bqs

2, and (B.1)

Sender 2: ´ b2
ě ´rapm1pθq, m̃2q ´ pθ ´ bqs

2. (B.2)

for all θ P Θ and all m̃1, m̃2 P M . Condition (B.1) guarantees that Sender 1 has no

incentive to deviate when Sender 2 reveals θ. Condition (B.2) guarantees the same for

Sender 2. Rearranging (B.1) and (B.2) gives the following that can be readily applied:

Sender 1: apm̃1,m2pθqq ´m2pθq R p0, 2bq, and (B.3)

Sender 2: m1pθq ´ apm1pθq, m̃2q R p0, 2bq. (B.4)

Applying Conditions (B.3) and (B.4) to our data says that, if in a state the observed

distances a´m2 and m1´a are in p0, 2bq, then receivers’ responses are inviting deviations in

that state. Krishna and Morgan’s (2001) equilibrium construction requires (B.3) and (B.4)

to be satisfied in all states in order to achieve a message-contingent optimal punishment of

deviations. Figure B.1 shows that the conditions are respected for about half of the states

only and for states that are closer to 50. Receivers’ observed responses to messages fall

short of punishing deviations as stipulated by Krishna and Morgan’s (2001) construction.
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Figure B.1: Distance between Action and Message: Treatments O-2
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B.3 Robustness Treatments

Table B.2: Robustness Treatments

Two Senders Single Sender
(Heterogeneous Committees) (Homogeneous Committee)

O-2-F O-1-F
Fixed Matching Fixed Matching
Point Message Point Message

Open Rule 2 Treatments: b “ 10, 20 2 Treatments: b “ 10, 20

Each Treatment: 1 Session Each Treatment: 1 Session

Each Session: 6 Fixed Groups of 3 Each Session: 9/10 Fixed Groups of 2

No. of Subjects: 2ˆ 1ˆ 6ˆ 3 “ 36 No. of Subjects: p9` 10q ˆ 2 “ 38

C-2-F
Fixed Matching
Point Message

2 Treatments: b “ 10, 20

Each Treatment: 1 Session

Each Session: 6/7 Fixed Groups of 3

No. of Subjects: p6` 7q ˆ 3 “ 39

Closed Rule
C-2-I

Random Matching
Interval Message

2 Treatments: b “ 10, 20

Each Treatment: 4 Sessions

Each Session: 5 Random Groups of 3

No. of Subjects: 2ˆ 4ˆ 5ˆ 3 “ 120

Table B.2 provides details about the eight robustness treatments. In the following, we pro-

vide data analysis to support the conclusion from the comparisons of the findings between

the main and the robustness treatments summarized in Table 9 in the main text.

Finding 1. Columns (1), (2), (4), and (5) in Table B.3 show that the correlation between

state and action in treatments O-2-F decreases in the bias as is observed in main treatments

O-2. However, the estimated coefficients of the dummy variable pooling interval and its

interaction with the state are not statistically significant. Although Figure 10(b) in the

main text shows that, similar to O-2 with b “ 20, there is a cluster of actions around

50 that is more concentrated than the clusters at the other actions, the regression does

not pick up the effect quantitatively, perhaps because of the comparably few number of

observations. These account for the “partial quantitative change” of Finding 1.
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Table B.3: Random-Effects GLS Regression: Treatments O-2-F and O-1-F

O-2-F O-1-F

b “ 10 b “ 20 b “ 10 b “ 20

(1) (2) (3) (4) (5) (6) (7) (8)
Constant 6.471*** 6.853*** 5.460*** 16.52*** 17.40*** 18.62*** 6.389** 9.204**

(0.882) (0.975) (1.289) (2.008) (3.543) (3.182) (2.08) (3.202)
θ 0.886*** 0.881*** 0.948*** 0.653*** 0.643*** 0.532*** 1.064*** 1.437***

(0.015) (0.0155) (0.06) (0.0358) (0.0358) (0.147) (0.0716) (0.141)
θ2 – – ´0.0063 – – 0.00119 ´0.00220** ´0.00821***

– – (0.000586) – – (0.0014) (0.000687) (0.00134)
pooling interval – ´4.616 – – ´1.389 – – –

– (3.388) – – (4.439) – – –
θ ˆ pooling interval – 0.0861 – – 0.0192 – – –

– (0.0656) – – (0.0723) – – –

No. of Observations 180 180 180 180 180 180 270 300

Note: The dependent variable is action a. pooling interval is a dummy variable for θ P r50´ 2b, 50` 2bs. Standard errors are
in parentheses. *** indicates significance at 0.1% level, ** significance at 1% level, and * significance at 5% level.

Finding 2. Table B.6 reports the observed efficiencies and receivers’ payoffs in the robust-

ness treatments. In treatments O-2-F, an increase in the bias from b “ 10 to b “ 20 leads

to: i) a significant increase in the average VarpXpθqq from 44.49 to 283.48 (p “ 0.0076,

Mann-Whitney test), ii) an insignificant increase in the average pEXpθqq2 from 1.17 to 1.47

(p “ 0.197, Mann-Whitney test), and iii) an significant decrease in the average receivers’

payoff from ´45.66 to ´284.94 (p “ 0.0076, Mann-Whitney test). These account for the

“no change” of Finding 2.

Finding 3. The data patterns in Figures 10(c)–(f) in the main text for treatments C-2-F

and C-2-I are highly similar to those in Figures 4(a)–(b) for main treatments C-2. Table

B.6 show that, for C-2-F, the average pEXpθqq2 “ 50.77 for b “ 10 and pEXpθqq2 “ 60.60

for b “ 20 and, for C-2-I, pEXpθqq2 “ 27.80 for b “ 10 and pEXpθqq2 “ 55.11, which

are all significantly greater than 0 (p ď 0.0625 in all four cases, Wilcoxon signed-rank

tests).1 Table B.4 reports estimation results from piecewise random-effects GLS models,

which corresponds to Table 6 in the main text for C-2. For C-2-F, there are a few changes

in the significance of the estimates. There is also one change for C-2-I. These account for

the “partial quantitative change” of Finding 3 for the two robustness treatments.

Finding 4. Table B.6 shows that an increase in the bias from b “ 10 to b “ 20 leads to:

i) significant increases in the average VarpXpθqq from 50.29 to 235.03 in C-2-F and from

47.20 to 296.11 in C-2-I (p ď 0.0143 in both cases, Mann-Whitney tests), ii) no significant

1The p-value of 0.0625 is the lowest possible value for four observations (treatments C-2-I ) from the
Wilcoxon signed-rank test.
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Table B.4: Random-Effects GLS Regression: Treatments C-2-F and C-2-I

C-2-F C-2-I

b “ 10 b “ 20 b “ 10 b “ 20

(1) (2) (3) (4)
Constant 9.778*** 15.77*** 8.925*** 22.23***

(1.091) (3.094) (0.558) (2.268)
θ 0.991*** 1.097*** 0.973*** 0.913***

(0.0236) (0.193) (0.0122) (0.117)
interval middle 24.15** 9.494 26.56*** 10.68***

(8.867) (7.434) (4.624) (4.088)
θ ˆ interval middle ´0.636*** ´0.490* ´0.656*** ´0.456***

(0.135) (0.147) (0.0933) 0.135
interval high ´42.76** 18.60 ´47.84*** ´35.45**

(13.27) (22.07) (5.918) (13.05)
θ ˆ interval high 0.592* ´0.525 0.622*** 0.181

(0.191) (0.327) (0.0847) (0.195)
interval top 52.19 ´201.8 80.03** ´101.3

(43.89) (294.4) (25.55) (161.8)
θ ˆ interval top ´0.629 1.703 ´0.867** 0.82

(0.464) (3.03) (0.27) (1.661)

No. of Observations 180 210 600 600

Note: The dependent variable is action a. interval middle is a dummy variable for θ P p50 ´ b, 50 ` bs.
interval high is a dummy variable for θ P p50 ` b,mint50 ` 3b, 95us. interval top is a dummy variable for
θ P pmint50 ` 4b, 95u, 100s. Standard errors are in parentheses. *** indicates significance at 0.1% level, **
significance at 1% level, and * significance at 5% level.

changes in the average EpXpθqq2 from 50.77 to 60.6 in C-2-F and from 27.8 to 55.11

in C-2-I (two-sided p ě 0.3429 in both cases, Mann-Whitney tests), and iii) significant

decreases in the average receivers’ payoff from ´101.06 to ´295.63 in C-2-F and from ´75

to ´351.22 in C-2-I (p ď 0.0143 in both cases, Mann-Whitney tests). These account for

the “no change” of Finding 4 for the two robustness treatments.

Finding 5. Table B.6 shows that, for b “ 10, the average receivers’ payoff is ´45.66 in

O-2-F, which is significantly higher than the ´111.33 in O-1-F (p “ 0.044, Mann-Whitney

test), and, for b “ 20, the payoff is ´284.94 in O-2-F, which is higher than the ´500.76 in O-

1-F but without statistical significance (p “ 0.1838, Mann-Whitney test). The statistically

significant comparison for b “ 10 accounts for the “partial quantitative change” of Finding

5.

Finding 6. Figure B.2 presents the relationships between realized states and chosen

actions in treatments O-1-F. The estimation results reported in columns (7) and (8) in

Table B.3 confirm that the similar quadratic relationships seen in treatments O-1 are also

7
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Figure B.2: Relationship between State and Action: Treatments O-1-F

Table B.5: Random-Effects Probit Regression:
Open-Rule Robustness Treatments

b “ 10 b “ 20

(1) (2)
Constant ´1.728*** ´1.192***

(0.283) (0.284)
θ ´0.00391 ´0.0033

(0.00456) (0.00412)
one sender ´0.0276 ´1.014**

(0.251) (0.332)

No. of Observations 450 480

Note: The dependent variable is a dummy variable for a P r49.5, 50.5s.
one sender is dummy variable for treatments O-1-F. Standard errors are
in parentheses. *** indicates significance at 0.1% level, ** significance at
1% level, and * significance at 5% level.

observed in O-1-F. Table B.5 shows that the same kind of results as those reported in

Table 8 in the main text are also obtained from the probit regressions: actions in a close

neighborhood of 50 are less frequently obtained with one sender, but only the case with

b “ 20 is statistically significant. This accounts for the “no change” of Finding 6.

Finding 7. Table B.6 shows that, for b “ 10, the average receivers’ payoff is ´101.06 in

C-2-F, which is higher than the ´111.33 in O-1-F but without statistical significance, and,

for b “ 20, the payoff is ´295.63 in C-2-F, which is again higher than the ´500.76 in O-1-F

but without statistical significance (p ě 0.2681 in both cases, Mann-Whitney tests). These
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account for the “no change” of Finding 7 for C-2-F and O-1-F. The “partial quantitative

change” for C-2-I is reported in the main text as an example.

Finding 8. For distributional inefficiencies, Table B.6 shows that, for b “ 10, the average

pEXpθqq2 is 1.17 in O-2-F, which is significantly lower than the 50.77 in C-2-F, and, for b “

20, the average pEXpθqq2 is 1.47 in O-2-F, which is again significantly lower than the 60.6

in C-2-F (p ď 0.0023 in both cases, Mann-Whitney tests). For informational inefficiencies,

for b “ 10, the average VarpXpθqq is 44.49 in O-2-F, which is lower than the 50.29 in C-2-F

but without statistical significance, and, for b “ 20, the average VarpXpθqq is 283.48 in O-2-

F, which is higher than the 235.03 in C-2-F but without statistical significance (p ě 0.2226

in both cases, Mann-Whitney tests). For receivers’ payoffs, for b “ 10, the average payoff

is ´45.66 in O-2-F, which is significantly higher than the ´101.06 in C-2-F (p “ 0.0325,

Mann-Whitney test), and, for b “ 20, the payoff is ´284.94 in O-2-F, which is higher than

the ´295.63 in C-2-F but without statistical significance (p “ 0.5822, Mann-Whitney test).

For treatments C-2-I, since random matchings are used, the comparison should be made

to main treatments O-2. For distributional inefficiencies, Table 5 in the main text and Table

B.6 show that, for b “ 10, the average pEXpθqq2 is 1.05 in O-2, which is significantly lower

than the 27.8 in C-2-I, and, for b “ 20, the average pEXpθqq2 is 6.63 in O-2, which is

again significantly lower than the 55.11 in C-2-I (p “ 0.0143 in both cases, Mann-Whitney

tests). For informational inefficiencies, for b “ 10, the average VarpXpθqq is 93.37 in O-2,

which is significantly higher than the 47.2 in C-2-I (p “ 0.0143, Mann-Whitney test), and,

for b “ 20, the average VarpXpθqq is 300.77 in O-2, which is higher than the 296.11 in

C-2-I but without statistical significance (p “ 0.5571, Mann-Whitney test). For receivers’

payoffs, for b “ 10, the average payoff is ´94.42 in O-2, which is lower than the ´75 in C-

2-I but without statistical significance, and, for b “ 20, the payoff is ´307.4 in O-2, which

is higher than the ´351.22 in C-2-I but again without statistical significance (p “ 0.1 in

both cases, Mann-Whitney tests).

The two sets of comparisons with changes in statistical significance in the latter account

for the “no change” of Finding 8 for O-2-F and C-2-F and the “partial quantitative change”

for C-2-I.

Finally, Figures B.3–B.5 present senders’ and receivers’ behavior in the robustness treat-

ments analogous to Figures 6–9 in the main text.
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Figure B.3: Relationship between State and Message and Action
as a Function of Average Message: Treatments O-2-F
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Figure B.4: Relationship between State and Message: Treatments C-2-F and C-2-I
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Appendix C – Experimental Instructions

Instructions for Treatment O-2 with b “ 20

Welcome to the experiment. This experiment studies decision making between three

individuals. In the following two hours or less, you will participate in 30 rounds of decision

making. Please read the instructions below carefully; the cash payment you will receive at

the end of the experiment depends on how well you make your decisions according to these

instructions.

Your Role and Decision Group

There are 15 participants in today’s session. One third of the participants will be

randomly assigned the role of Member A, another one third the role of Member B, and the

remaining the role of Member C. Your role will remain fixed throughout the experiment.

In each round, three participants, one Member A, one Member B and one Member C, will

be matched to form a group of three. The three members in a group make decisions that

will affect their rewards in the round. Participants will be randomly rematched after each

round to form new groups.

Your Decision in Each Round

In each round and for each group, the computer will randomly select a number with two

decimal places from the range r0.00, 100.00s. Each possible number has equal chance to be

selected. The selected number will be revealed to Member A and Member B. Member C,

without seeing the number, will have to choose an action. In the rest of the instruction,

we will call the randomly selected number X and Member C’s chosen action Y .

Member A’s and B’s Decisions

You will be presented with a line on your screen. The left end of the line represents

´20.00 and the right end 120.00. You will see a green ball on the line, which represents

the randomly selected number X. There is another ball, a blue one, that represents your

“ideal action,” which is equal to X ` 20 (Member A) or X ´ 20 (Member B). This ideal

action is related to your reward in the round, which will be explained below.
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With all this information on your screen, you will be asked to report to Member C

what X is. You do so by clicking on the line. A red ball, which represents your reported

X, will move to the point you click on. You can adjust your click until you arrive at the

point/number you wish to report, after which you click the submit button. You are free to

choose any point in the range r0.00, 100.00s for your report; it is not part of the instructions

that you have to tell the truth.

Once you click the submit button, your decision in the round is completed and your

report will be transmitted to your paired Member C, who will then be asked to choose an

action.

 

(a) Member A’s Screen (b) Member B’s Screen

Figure C.1: Screen Shots

Member C’s Decision

You will be presented with a similar line on your screen. After seeing Member A’s

report represented by a green ball and Member B’s report represented by a white ball on

the line, you will be asked to make your action choice by clicking on the line. A red ball,

which represents your action, will move to the point you click on. You can adjust your

click until you arrive at the point/number you wish to choose, after which you click the

submit button. The final position of the red ball will represent your action choice Y . You

are free to choose any point in the range r0.00, 100.00s for your action. Once you click the

submit button, your decision in the round is completed.

Similar to Member A or Member B, you will have your “ideal action,” which is equal

to the X unknown to you. More details will be explained below.

13



 

Figure C.2: Member C’s Screen

Your Reward in Each Round

Your reward in the experiment will be expressed in terms of experimental currency unit

(ECU). The following describes how your reward in each round is determined.

Member A’s Reward

The amount of ECU you earn in a round depends on the distance between your ideal

action pX ` 20q and Member C’s action choice Y . In particular,

Your reward in each round “ 100´ rpX`20q´Y s2

50
.

In case that this value is negative, you will get 0.

Here are some examples:

1. The computer selected the random number X “ 25. (Thus, your idea action is X`20 “ 45.)

Your reported X is 70. Member B reported X is 40. After the reports, Member C chooses

action Y “ 55. The distance between your ideal action X+20 and Y is 10. Your earning

in the round will be 100´ r10s2

50 “ 98 ECU.

2. The computer selected the random number X “ 25. (Thus, your idea action is X`20 “ 45.)

Your reported X is 70. Member B reported X is 40. After the reports, Member C chooses

action Y “ 65. The distance between your ideal action X+20 and Y is 20. Your earning

in the round will be 100´ r20s2

50 “ 92 ECU.

3. The computer selected the random number X “ 25. (Thus, your idea action is X`20 “ 45.)

Your reported X is 70. Member B reported X is 40. After the reports, Member C chooses
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action Y “ 75. The distance between your ideal action X+20 and Y is 30. Your earning

in the round will be 100´ r30s2

50 “ 82 ECU.

These examples demonstrate that the loss of earning from the first 10 distance is only 2 ECU

whereas the loss of earning from the second and the third 10 distances are 6 ECU and 10 ECU

respectively. In other words, the father away the action is from your ideal action, the higher the

rate of loss. Table C.1 provides an elaborate example regarding your earning and the distance

between your ideal action and the action taken by Member C.

Member B’s Reward

The amount of ECU you earn in a round depends on the distance between your ideal

action pX ´ 20q and Member C’s action choice Y . In particular,

Your reward in each round “ 100´ rpX´20q´Y s2

50
.

In case that this value is negative, you will get 0.

Member C’s Reward

The amount of ECU you earn in a round depends on the distance between your ideal

action X and the action choice Y . More precisely,

Your reward in each round “ 100´ rX´Y s2

50
.

In case that this value is negative, you will get 0.

Here are some examples:

1. You choose action Y “ 30. It turns out that the computer selected the random number

X “ 20. The distance between your ideal action X and your action choice Y is 10. Then

your earning in the round will be 100´ r10s2

50 “ 98 ECU.

2. You choose action Y “ 40. It turns out that the computer selected the random number

X “ 20. The distance between your ideal action X and your action choice Y is 20. Then

your earning in the round will be 100´ r20s2

50 “ 92 ECU.
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Distance between (Your Ideal Action) and Y 0 10 20 30 40 50 60 70 ą70
Your earning 100 98 92 82 68 50 28 2 0

Table C.1: Your earnings

3. You choose action Y “ 50. It turns out that the computer selected the random number

X “ 20. The distance between your ideal action X and your action choice Y is 30. Then

your earning in the round will be 100´ r30s2

50 “ 82 ECU.

These examples demonstrate that the loss of earning from the first 10 distance is only 2 ECU

whereas the loss of earning from the second and the third 10 distances are 6 ECU and 10 ECU

respectively. In other words, the father away the action is from your ideal action, the higher the

rate of loss. Table C.1 provides an elaborate example regarding your earning and the distance

between your ideal action and the action taken by Member C.

Information Feedback

At the end of each round, the computer will provide a summary for the round: which

number was selected and revealed to Member A and Member B, Member A’s report, Mem-

ber B’s report, Member C’s action choice, distance between your ideal action and Member

C’s action choice and your earning in ECU.

Your Cash Payment

The experimenter randomly selects 3 rounds out of 30 to calculate your cash payment.

(So it is in your best interest to take each round seriously.) Your total cash payment at

the end of the experiment will be the average amount of ECU you earned in the 3 selected

rounds plus a HK$40 show-up fee.

Quiz and Practice

To ensure your understanding of the instructions, we will provide you with a quiz and

practice round. We will go through the quiz after you answer it on your own.

You will then participate in 1 practice round. The practice round is part of the in-

structions which is not relevant to your cash payment; its objective is to get you familiar

with the computer interface and the flow of the decisions in each round. Once the practice

round is over, the computer will tell you “The official rounds begin now!”
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Adminstration

Your decisions as well as your monetary payment will be kept confidential. Remember

that you have to make your decisions entirely on your own; please do not discuss your

decisions with any other participants.

Upon finishing the experiment, you will receive your cash payment. You will be asked

to sign your name to acknowledge your receipt of the payment. You are then free to leave.

If you have any question, please raise your hand now. We will answer your question

individually. If there is no question, we will proceed to the quiz.

1. Which of the following is true?

(a) Member A and Member B must pay more to report to Member C a higher value of X.

(b) Member A and Member B must pay less to report to Member C a lower value of X.

(c) Member A and Member B are free to report to Member C any value of X in the range of

r0.00, 100.00s. There is no direct cost of report.

2. Suppose you are assigned to be a Member A. Which of the following is true? What is your answer

if you are assigned to be a Member B or Member C ?

(a) Your reward is higher if the distance between X ` 20 and Y is bigger.

(b) Your reward is higher if the distance between X and Y is bigger.

(c) Your reward is higher if the distance between X ` 20 and Y is smaller.

(d) Your reward is higher if the distance between X and Y is smaller.

(e) Your reward is higher if the distance between X ´ 20 and Y is bigger.

(f) Your reward is higher if the distance between X ´ 20 and Y is smaller.

3. Suppose you are assigned to be a Member A. The computer chooses the random number X “ 25.

Which of the following is true?

(a) Both you and Member B know the chosen number X but Member C does not know the chosen

number X.

(b) Neither you nor Member B knows the chosen number X.

(c) You are the only person in your group who knows the chosen number X.
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Instructions for Treatment C-2 with b “ 20

INSTRUCTION

Welcome to the experiment. This experiment studies decision making among three

individuals. In the following two hours or less, you will participate in 30 rounds of decision

making. Please read the instructions below carefully; the cash payment you will receive at

the end of the experiment depends on how well you make your decisions according to these

instructions.

Your Role and Decision Group

There are 15 participants in today’s session. One third of the participants will be

randomly assigned the role of Member A, another one third the role of Member B, and the

remaining the role of Member C. Your role will remain fixed throughout the experiment.

In each round, three participants, one Member A, one Member B and one Member C, will

be matched to form a group of three. The three members in a group make decisions that

will affect their rewards in the round. Participants will be randomly rematched after each

round to form new groups.

Your Decision in Each Round

In each round and for each group, the computer will randomly select a number with two

decimal places from the range r0.00, 100.00s. Each possible number has equal chance to be

selected. The selected number will be revealed to Member A and Member B. Member C,

without seeing the number, will have to choose an action. In the rest of the instruction,

we will call the randomly selected number X and Member C’s chosen action Y .

Member A’s Decisions

You will be presented with a horizontal line on your screen. The left end of the line

represents 0.00 and the right end 120.00. You will see a green ball on the line, which

represents the randomly selected number X. There is another blue ball that represents

your “ideal action,” which is equal to X ` 20. This ideal action is related to your reward

in the round, which will be explained below.
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With all this information on your screen, you will be asked to make a proposal to

Member C on what action to take. You do so by clicking on the line. A red ball, which

represents your proposal, will move to the point you click on. You can adjust your click

until you arrive at the point/number you desire, after which you click the submit button.

You are free to choose any point in the range r0.00, 100.00s for your proposal.

Once you click the submit button, your decision in the round is completed and your

proposal will be transmitted to your paired Member C. With the additional information

provided by Member B, Member C will then decide whether to accept your proposal or

take a status quo action SQ=50.00.

(a) Member A’s Screen

(b) Member B’s Screen

Figure C.3: Screen Shots

Member B’s Decisions

You will be presented with a horizontal line on your screen. The left end of the line

represents ´20.00 and the right end 100.00. You will see a green ball on the line, which

represents the randomly selected number X. There is another blue ball that represents
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your “ideal action,” which is equal to X ´ 20. This ideal action is related to your reward

in the round, which will be explained below.

With all this information on your screen, you will be asked to make a speech to Member

C regarding where X is. You do so by clicking on the line. A red ball, which represents

your speech, will move to the point you click on. You can adjust your click until you arrive

at the point/number you desire, after which you click the submit button. You are free to

choose any point in the range r0.00, 100.00s for your speech.

Once you click the submit button, your decision in the round is completed and your

speech will be transmitted to your paired Member C, who will then decide whether to

accept Member A’s proposal or take a status quo action SQ=50.00.

Member C’s Decision

You will be presented with a similar horizontal line on your screen. After seeing Member

A’s proposal represented by a green ball and Member B’s speech represented by a red ball,

you will be prompted to enter your choice of action. You must choose one of the two

options: either to “TAKE the PROPOSAL” from Member A or to “TAKE the STATUS

QUO” which is represented by a light blue ball (50.00) on the line. Once you click one of

the buttons, your decision in the round is completed.

Similar to Member A or Member B, you will have your “ideal action,” which is equal

to the X unknown to you. More details will be explained below.

Figure C.4: Member C’s Screen
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Your Reward in Each Round

Your reward in the experiment will be expressed in terms of experimental currency unit

(ECU). The following describes how your reward in each round is determined.

Member A’s Reward

The amount of ECU you earn in a round depends on the distance between your ideal

action pX ` 20q and Member C’s action choice Y . In particular,

Your reward in each round “ 100´ rpX`20q´Y s2

50
.

In case that this value is negative, you will get 0.

Here are some examples:

1. The computer selected the random number X “ 25. (Thus, your idea action is X`20 “ 45.)

You make a proposal “55”. Member B made a speech “X is 10.” After the proposal and

the speech, Member C chooses to take the proposal Y “ 55. The distance between your

ideal action X+20 and Y is 10. Your earning in the round will be 100´ r10s2

50 “ 98 ECU.

2. The computer selected the random number X “ 25. (Thus, your idea action is X`20 “ 45.)

You make a proposal “65”. Member B made a speech “X is 10.” After the proposal and

the speech, Member C chooses to take the proposal Y “ 65. The distance between your

ideal action X+20 and Y is 20. Your earning in the round will be 100´ r20s2

50 “ 92 ECU.

3. The computer selected the random number X “ 25. (Thus, your idea action is X`20 “ 45.)

You make a proposal “75”. Member B made a speech “‘X is 10.” After the proposal and

the speech, Member C chooses to take the proposal Y “ 75. The distance between your

ideal action X+20 and Y is 30. Your earning in the round will be 100´ r30s2

50 “ 82 ECU.

These examples demonstrate that the loss of earning from the first 10 distance is only 2 ECU

whereas the loss of earning from the second and the third 10 distances are 6 ECU and 10 ECU

respectively. In other words, the farther away the action is from your ideal action, the higher the

rate of loss. Table C.2 provides an elaborate example regarding your earning and the distance

between your ideal action and the action taken by Member C.

Member B’s Reward
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The amount of ECU you earn in a round depends on the distance between your ideal

action pX ´ 20q and Member C’s action choice Y . In particular,

Your reward in each round “ 100´ rpX´20q´Y s2

50
.

In case that this value is negative, you will get 0.

Member C’s Reward

The amount of ECU you earn in a round depends on the distance between your ideal

action X and the action choice Y . More precisely,

Your reward in each round “ 100´ rX´Y s2

50
.

In case that this value is negative, you will get 0.

Here are some examples:

1. Member A makes a proposal “30” and Member B makes a speech “‘X is 10.” You choose

to take the proposal Y “ 30. It turns out that the computer selected the random number

X “ 20. The distance between your ideal action X and your action choice Y is 10. Then

your earning in the round will be 100´ r10s2

50 “ 98 ECU.

2. Member A makes a proposal “40” and Member B makes a speech “‘X is 10.” You choose

to take the proposal Y “ 40. It turns out that the computer selected the random number

X “ 20. The distance between your ideal action X and your action choice Y is 20. Then

your earning in the round will be 100´ r20s2

50 “ 92 ECU.

3. Member A makes a proposal “50” and Member B makes a speech “‘X is 10.” You choose

to take the proposal Y “ 50. It turns out that the computer selected the random number

X “ 20. The distance between your ideal action X and your action choice Y is 30. Then

your earning in the round will be 100´ r30s2

50 “ 82 ECU.

These examples demonstrate that the loss of earning from the first 10 distance is only 2 ECU

whereas the loss of earning from the second and the third 10 distances are 6 ECU and 10 ECU

respectively. In other words, the father away the action is from your ideal action, the higher the

rate of loss. Table C.2 provides an elaborate example regarding your earning and the distance

between your ideal action and the action taken by Member C.
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Distance between (Your Ideal Action) and Y 0 10 20 30 40 50 60 70 ą70
Your earning 100 98 92 82 68 50 28 2 0

Table C.2: Your earnings

Information Feedback

At the end of each round, the computer will provide a summary for the round: which

number was selected and revealed to Member A and Member B, Member A’s proposal,

Member B’s speech, Member C’s action choice, distance between your ideal action and

Member C’s action choice and your earning in ECU.

Your Cash Payment

The experimenter randomly selects 3 rounds out of 30 to calculate your cash payment.

(So it is in your best interest to take each round seriously.) Your total cash payment at

the end of the experiment will be the average amount of ECU you earned in the 3 selected

rounds plus a HK$40 show-up fee.

Quiz and Practice

To ensure your understanding of the instructions, we will provide you with a quiz and

practice round. We will go through the quiz after you answer it on your own.

You will then participate in 1 practice round. The practice round is part of the in-

structions which is not relevant to your cash payment; its objective is to get you familiar

with the computer interface and the flow of the decisions in each round. Once the practice

round is over, the computer will tell you “The official rounds begin now!”

Administration

Your decisions as well as your monetary payment will be kept confidential. Remember

that you have to make your decisions entirely on your own; please do not discuss your

decisions with any other participants.

Upon finishing the experiment, you will receive your cash payment. You will be asked

to sign your name to acknowledge your receipt of the payment. You are then free to leave.
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If you have any question, please raise your hand now. We will answer your question

individually. If there is no question, we will proceed to the quiz.

1. Which of the following is true?

(a) Member A must pay more to propose to Member C a higher value of X.

(b) Member A must pay less to propose to Member C a lower value of X.

(c) Member A is free to propose to Member C any value of X in the range of r0.00, 100.00s. There

is no direct cost of proposal.

2. Suppose you are assigned to be a Member A. Which of the following is true? What is your answer

if you are assigned to be a Member B or a Member C ?

(a) Your reward is higher if the distance between X ` 20 and Y is bigger.

(b) Your reward is higher if the distance between X and Y is bigger.

(c) Your reward is higher if the distance between X ` 20 and Y is smaller.

(d) Your reward is higher if the distance between X and Y is smaller.

(e) Your reward is higher if the distance between X ´ 20 and Y is bigger.

(f) Your reward is higher if the distance between X ´ 20 and Y is smaller.

3. Suppose you are assigned to be a Member A. The computer chooses the random number X “ 25.

Which of the following is true?

(a) Both you and Member B know the chosen number X.

(b) Neither you nor Member B knows the chosen number X.

(c) You are the only person in your group who knows the chosen number X.
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Appendix D – Level-k Models

As a supplementary, non-equilibrium analysis of our experimental environment, we con-

struct two level-k models, one for the open rule with two senders and one for the closed

rule with two senders. As the anchoring point of the model, we assume, following the

convention in the level-k literature on communication games, that level-0 senders tell the

truth so that m1pθq “ m2pθq “ θ and that level-0 receiver credulously adopts the senders’

recommendations or proposals.2 For the open rule, this means that level-0 receiver takes an

action that is equal to the average of the two messages so that apm1,m2q “ m “ m1`m2

2
.3

For the closed rule, we assume that level-0 receiver adopts Sender 1’s proposal so that

apm1,m2q “ m1, since the receiver can only choose between adopting Sender 1’s proposal

and taking the status quo action.

We further assume that level-k Sender i, i “ 1, 2 and k “ 1, . . . , K, best responds

to level-k Sender j ‰ i and level-pk ´ 1q receiver, while level-k receiver best responds to

level-k senders.4 Since the games in question are communication games, in addition to the

standard assumptions for level-k models such as the specification of level-0 behavior, we

need to make further assumptions regarding how the receiver responds to unexpected (off-

path) messages. For both level-k models, we assume that level-k receiver, k “ 1, . . . , K,

takes a “ 50, the optimal action under the prior, when messages not expected from level-k

senders are received. For the close rule, this is to say that the receiver will take the status

quo action under these scenarios. Note that this assumption parallels that in Gilligan and

Krehbiel [1989] regarding how the receiver responds to out-of-equilibrium messages. We

adopt the assumption out of simplicity concern, a guiding principle for our modeling choice.

Open Rule. Under our specification, level-1 senders’ strategies are m1pθq “ mint2pθ `

bq, 100u and m2pθq “ maxt2pθ ´ bq ´ 100, 0u. To illustrate that these are best responses

to level-0 receiver and level-1 other sender, suppose that the realized θ “ 20 and the bias

is b “ 10. Sender 1 sends m1 “ 60, and Sender 2 sends m2 “ 0. The level-0 receiver

2The use of truthful senders and credulous receivers as the anchoring level-0 types can be traced back
to Crawford (2003). Such a specification is adopted by the experimental literature (e.g, Cai and Wang
2006; Wang, Spezio, and Camerer 2010; Crawford and Irreberri 2007a; 2007b) and the theoretical work on
lying aversion (e.g., Kartik 2006; Kartik, Ottaviani, and Squintani 2007).

3For expositional convenience, we now use m1p¨q, m2p¨q and ap¨, ¨q to denote pure strategies.
4Unlike most level-k models have at most two player roles choosing simultaneously and have level-k

players best respond to level-pk ´ 1q, we have three player roles with the receiver choosing after seeing
senders’ messages. Hence, we follow Wang, Spezio and Camerer’s (2010) asymmetric sender-receiver level-
k model to have the level-k receiver best respond to level-k senders, but have level-k senders best respond
to each other, as well as the level-pk ´ 1q receiver.
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takes action a “ m “ 30. Since this is the ideal action of Sender 1, he has no incentive to

deviate. Given that Sender 2’s ideal action is 10, he would want to send a lower message.

But since zero is the lowest possible message, m2 “ 0 is the best response.5

Best responding to the beliefs derived from the level-1 senders’ strategies, level-1 re-

ceiver’s on-path response rule is

apm1,m2q “

$

’

’

’

&

’

’

’

%

maxtm´ b, 0u, m ă 50,

m, m “ 50,

mintm` b, 100u, m ą 50.

Suppose that the bias is b “ 10 and the receiver receives on-path messages m1 “ 60 and

m2 “ 0. This is the case where m “ 30 ă 50, and the receiver takes a “ 30 ´ 10 “ 20.

Level-1 Sender 2 sends m2 “ 0 only for θ ď 60. The message thus contains only coarse

information. On the other hand, level-1 Sender 1 sends m1 “ 60 only when θ “ 20, and

the precise information in m1 makes Sender 2’s message effectively useless. The receiver

updates beliefs accordingly and takes a “ 20, her ideal action for θ “ 20. Similarly, if

the two on-path messages are such that m ą 50, the receiver follows Sender 2’s message

given that Sender 1 will then be providing coarse information. If m1 “ 100 and m2 “ 0

so that m “ 50, combining the two messages the receiver believes that θ P r40, 60s (note

that Sender 1 sends m1 “ 100 only for θ ě 40). Given the uniform prior, the receiver takes

a “ 50, which equals the conditional expected value of θ P r40, 60s.

Level-2 players’ strategies follow a similar logic. Knowing that (in most cases) level-1

receiver discounts or adds on the average message by b, level-2 senders further bias their

message and adopt strategies m1pθq “ mint2pθ ` 2bq, 100u and m2pθq “ maxt2pθ ´ 2bq ´

100, 0u.6 Given these level-2 senders’ strategies, the best-responding level-2 receiver then

5For the bias parameters we adopt in the experiment, the detailed cases of level-1 senders’ strategies
are:

for b “ 10, m1pθq “

#

100, θ ą 40,

2pθ ` 10q, θ ď 40,
and m2pθq “

#

0, θ ă 60,

2pθ ´ 10q ´ 100, θ ě 60;

for b “ 20, m1pθq “

#

100, θ ą 30,

2pθ ` 20q, θ ď 30,
and m2pθq “

#

0, θ ă 70,

2pθ ´ 20q ´ 100, θ ě 70.

Under these strategies and the level-0 receiver’s action rule, Sender 1 obtains his ideal action for θ ď 50´b,
and Sender 2 obtains his for θ ě 50 ` b. For θ P p50 ´ b, 50 ` bq, in which the level-0 receiver’s action is
a “ 50, Sender 1 (Sender 2) obtains an action that is closer to his ideal action than it is to Sender 2’s
(Sender 1’s) when θ ă 50 (θ ą 50); when θ “ 50, they obtain an action that is of equal distance to their
respective ideal actions.

6For our adopted bias parameters, the detailed cases of the strategies are:
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discounts or adds on the average messages by 2b:

apm1,m2q “

$

’

’

’

&

’

’

’

%

maxtm´ 2b, 0u, m ă 50,

m, m “ 50,

mintm` 2b, 100u, m ą 50.

Higher level players’ strategies are similarly derived by iterating on these best-responding

processes.7

Closed Rule. Best responding to level-0 receiver, level-1 senders’ strategies are m1pθq “

mintθ`b, 100u and m2pθq “ maxtθ´b, 0u, i.e., they are recommending their ideal actions.8

for b “ 10, m1pθq “

#

100, θ ą 30,

2pθ ` 20q, θ ď 30,
and m2pθq “

#

0, θ ă 70,

2pθ ´ 20q ´ 100, θ ě 70;

for b “ 20, m1pθq “

#

100, θ ą 10,

2pθ ` 40q, θ ď 10,
and m2pθq “

#

0, θ ă 90,

2pθ ´ 40q ´ 100, θ ě 90.

Under these strategies and the level-1 receiver’s action rule, Sender 1 obtains his ideal action for θ ď 50´2b,
and Sender 2 obtains his for θ ě 50` 2b. Note that even though for θ ď 50´ 2b, Sender 2 does not obtain
a very desirable action, the action taken (i.e., Sender 1’s ideal action) is closer to Sender 2’s ideal action
than is 50, the assumed response for off-path messages. Thus, Sender 2 has no incentive to create off-path
messages by deviating from m2pθq “ maxt2pθ´2bq´100, 0u. A similar argument applies for the symmetric
case of Sender 1’s absence of incentive to deviate when θ ě 50` 2b. For θ P p50´ 2b, 50` 2bq, in which the
level-1 receiver’s action is a “ 50, Sender 1 (Sender 2) obtains an action that is closer to his ideal action
than it is to Sender 2’s (Sender 1’s) when θ ă 50 (θ ą 50); when θ “ 50, they obtain an action that is
of equal distance to their respective ideal actions. Note that since the on-path action is the same as the
assumed response for off-path messages, the senders also have no incentive to deviate in this case.

7In particular, level-k senders’ strategies, k “ 3, . . . ,K, are m1pθq “ mint2pθ ` kbq, 100u and
m2pθq “ maxt2pθ ´ kbq ´ 100, 0u. Note that for k ě 50

b , the strategies coincide with the strategies in a
babbling equilibrium in which m1pθq “ 100 and m2pθq “ 0. For level-k receiver, k “ 3, . . . ,K, the on-path
response rule is

apm1,m2q “

$

’

&

’

%

maxtm´ kb, 0u, m ă 50,

m, m “ 50,

mintm` kb, 100u, m ą 50.

Similarly, for k ě 50
b , the receiver’s best response coincides with the babbling action apm1,m2q “ 50.

8Given that level-0 receiver follows Sender 1’s proposal, any message by Sender 2 is a best response.
We adopt a natural choice so that Sender 1’s and Sender 2’s strategies are symmetric in the sense that
they both recommend their ideal actions. For the bias parameters we adopt in the experiment, the detailed
cases of the strategies are:

for b “ 10, m1pθq “

#

100, θ ą 90,

θ ` 10, θ ď 90,
and m2pθq “

#

0, θ ă 10,

θ ´ 10, θ ě 10;

for b “ 20, m1pθq “

#

100, θ ą 80,

θ ` 20, θ ď 80,
and m2pθq “

#

0, θ ă 20,

θ ´ 20, θ ě 20.
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Given these strategies, the on-path response rule of level-1 receiver is

apm1,m2q “

$

’

’

’

&

’

’

’

%

m1, m1 P rb, 50s Y r50` 2b, 100q,m2 “ maxtm1 ´ 2b, 0u,

m1, m1 “ 100,m2 P r100´ 2b, 100´ bs,

50, m1 P p50, 50` 2bq,m2 “ m1 ´ 2b.

Best responding to level-1 receiver, level-2 Sender 1’s strategy coincides with that of

level-1, i.e., m1pθq “ mintθ` b, 100u. For level-2 Sender 2, note that he strictly prefers the

status quo a “ 50 over a “ mintθ ` b, 100u if pθ ´ bq P r50,mint50` 2b, 75uq. Accordingly,

level-2 Sender 2 will have an incentive to induce the off-path response if θ P r50`b,mint50`

3b, 75 ` buq. In this, Sender 2 will be indifferent between any messages that result in an

unexpected message pair. We prescribe a message rule so that the resulting specification is

as parsimonious as possible. We assume that level-2 Sender 2 sends the same message for

all θ P r50`b,mint50`3b, 75`buq to induce unexpected message pairs, where such message

will not create incentive for level-2 Sender 1 to deviate from m1pθq “ mintθ` b, 100u.9 Any

m2 P r0, 50q Y p100´ b, 100s will satisfy these requirements.10 To pin down a message that

will be used, we assume that level-2 Sender 2 will choose a message in r0, 50q. In particular,

the strategy of level-2 Sender 2 is specified to be:

m2pθq “

$

&

%

maxtθ ´ b, 0u, θ P r0, 50` bq Y rmint50` 3b, 75` bu, 100s,

50´ b, θ P r50` b,mint50` 3b, 75` buq.

Best responding to the beliefs derived from level-2 senders’ strategies, the on-path

response rule of level-2 receiver (stated as a function of m1 only) coincides with that of

level-1.11 The difference lies in their off-path responses. Note first that when level-2 receiver

receives m1 P r50` 2b,mint50` 4b, 75` 2b, 100uq, she expects to receive m2 “ 50´ b from

Sender 2. When b ą 12.5, she also expects to see m2 “ 50´ b when m1 “ 100. Any other

9Recall that level-2 Sender 1 best responds to level-2 Sender 2 and level-1 receiver.
10Note first that the message cannot be in r50,mint50` 2b, 75uq, otherwise there will exist a θ P r50`

b,mint50`3b, 75` buq at which Sender 2 cannot induce the off-path response. For m2 P r100´2b, 100´ bs,
there exist some θ P r50`b,mint50`3b, 75`buq (e.g., θ “ 75`ε´b) for which level-2 Sender 1 strictly prefers
to send m1 “ 100 instead of m1 “ θ` b in order to induce a “ 100. For b ě 12.5, 50` 2b ě 75 ě 100´ 2b,
and thus all m2 P r50, 100 ´ bs are ruled out as candidates for Sender 2’s off-path message. For b ă 12.5,
50 ` 2b ă 75 ă 100 ´ 2b; when b is sufficiently small, there are messages close to 100 ´ 2b that will not
create incentive for Sender 1 to deviate from m1pθq “ mintθ ` b, 100u. The range r0, 50q Y p100 ´ b, 100s
stated above, however, guarantees that there is no incentive for Sender 1 to deviate for any b.

11Specifically, for b ě 12.5, level-2 receivers choose (for θ P r0, 50´ bs, p50´ b, 50` bq, r50` b,mint50`
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m2 will induce an off-path response in these cases. Furthermore, level-2 receiver does not

expect to receive m2 P r50,mint50`2b, 75uq; if she does, she will take the status quo action

as off-path response regardless of what m1 is.

The above implies that the strategies of higher-level Sender 1s remain the same as that

of level-1.12 For higher-level Sender 2s, the strategies are essentially the same as that of

level-2, except that they need to use a different message to induce the off-path response.

We specify, e.g., that level-3 Sender 2 adopts

m2pθq “

$

&

%

maxtθ ´ b, 0u, θ P r0, 50` bq Y rmint50` 3b, 75` bu, 100s,

50´ b´ ε, θ P r50` b,mint50` 3b, 75` buq.

for some ε ą 0. The strategies of higher-level receivers will also coincide with that of

level-1, except for what message combinations they consider to be off path.

3b, 75` buq, and rmint50` 3b, 75` bu, 100s, respectively)

apm1,m2q “

$

’

’

’

&

’

’

’

%

m1, m1 P rb, 50s,m2 “ maxtm1 ´ 2b, 0u,

50, m1 P p50, 50` 2bq,m2 “ m1 ´ 2b,

m1, m1 P r50` 2b,mint50` 4b, 75` 2b, 100uq,m2 “ 50´ b,

m1, m1 “ 100,m2 “ 50´ b or m2 P rmax
 

mint50` 2b, 75u, 100´ 2b
(

, 100´ bs.

For b ă 12.5, level-2 receivers choose (for θ P r0, 50 ´ bs, p50 ´ b, 50 ` bq, r50 ` b,mint50 ` 3b, 75 ` buq,
rmint50` 3b, 75` bu, 100´ bq, and r100´ b, 100s, respectively)

apm1,m2q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

m1, m1 P rb, 50s,m2 “ maxtm1 ´ 2b, 0u,

50, m1 P p50, 50` 2bq,m2 “ m1 ´ 2b,

m1, m1 P r50` 2b,mint50` 4b, 75` 2b, 100uq,m2 “ 50´ b,

m1, m1 P rmint50` 4b, 75` 2b, 100u, 100q,m2 “ maxtm1 ´ 2b, 0u,

m1, m1 “ 100,m2 P r100´ 2b, 100´ bs.

12Note that m2 “ 50´ b is sent by level-2 Sender 2 for both θ “ 50 and θ “ 50` b. Thus, m2 “ 50´ b
paired with m1 “ 50`b and m2 “ 50´b paired with m1 “ 50`2b are both expected by level-2 receiver. The
former message pair induces a “ 50 while the latter induces a “ 50` 2b. Accordingly, level-3 Sender 1 has
no strict incentive to deviate from m1pθq “ mintθ`b, 100u when his ideal action is 50`b, i.e., when θ “ 50.
Had for θ P r50` b,mint50`3b, 75` buq level-2 receiver expected level-2 Sender 2 to send m2 P p50´ b, 50q,
say, m2 “ 50´ b` δ, level-3 Sender 1 would have preferred to send m1 P r50` 2b,mint50` 3b, 75` b, 100uq
instead of 50 ` b ` δ when θ “ 50 ` δ. Our choice of m2 “ 50 ´ b for level-2 Sender 2’s strategy when
θ P r50 ` b,mint50 ` 3b, 75 ` buq is to maintain a simple specification where the strategies of higher-level
Sender 1s remain the same as that of level-1.
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