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A B S T R A C T

Spatio-temporal parameters (STPs) are fundamental gait measures often used to compare children of
different ages or gait ability. In the first case, non-dimensional normalisation (ND) of STPs using either
leg-length or height is frequently conducted even though the process may not remove known inter-
subject variability. STPs of children with and without disability can be compared through matched
databases or using regression driven prediction. Unfortunately, database assignment is largely arbitrary
and previous regressions have employed too few parameters to be successful. Therefore, the aims of this
study were to test how well actual and ND STPs could be predicted from anthropometrics and speed and
to assess if self-selected speed could be predicted from anthropometrics using multivariate regression in
a cohort of eighty-nine typically developing children. Equations were validated on an extraneous dataset.
We found that equations for actual step length, stride length, and cadence explained more than 84% of the
variance compared to their ND counterparts. Moreover, only leg-length ND versions of these parameters
were linearly proportional to speed. Prediction of single and double limb support times was weaker
(R2 = 0.69 and 0.72, respectively) and we were unable to predict self-selected speed (R2< 0.16) suggesting
the use of anthropometrics is inappropriate for this purpose. Validation was successful for most STPs
except in children lying near or outside the normal ranges and for gait speed. Clinically, regression could
be used to quantify the difference between a patient’s actual and theoretical STPs, allowing for
monitoring of progress pre- and post intervention.
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1. Introduction

Spatial-temporal parameters (STPs), such as self-selected
speed, stride-length and cadence are basic measures of gait
relating to foot-strike and foot-off placement and timing. There are
differences in STPs between children with gait pathologies and
their typically developing peers [1,2], adults and children [3,4], and
amongst children of different ages. Amongst typically developing
children, increased stride-length and decreased cadence lead to
higher walking speeds with increasing age [5–8]. These differences
can be attributed not only to anthropometric variability, such as
leg-length or mass, but also to the neuromaturation effects of age
[5]. Maturation plays a larger role in the early years whilst growth
dominates the later stages of childhood [9–11].
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STPs are often used to compare gait characteristics between
children with varied anthropometrics or of different gait abilities,
often walking at different speeds. There is therefore a requirement
that comparisons account for the known variability between
subjects. In the former case, the nondimensional normalisation
(ND) approach of Hof [12] is often used and has been shown to
effectively reduce inter-subject variability [13,14] and is used to
compare subjects of different sizes, walking at similar ND speeds
[15]. Yet the ND approach assumes proportional scaling and might
not remove all age-related variability; in particular, variability
arising from developmental differences may persist [5]. For the
latter situation, STPs of children with and without gait pathology
can be compared using large datasets grouped by age [6,8] or gait
speed [16]; however, it remains unclear if grouping accounts for all
the predictable variability in the subject groups. Alternatively,
regression analysis may be used to predict expected gait
parameters given no gait pathology and then determine how
those with limited gait ability compare to their expected gait
parameters. In a study by Stansfield et al. [15], ND STPs were
regressed against ND speed only as maturation effects were
assumed to be minimal in the cohort aged 7–12 years being
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investigated; however, the authors discouraged using their
equations for predictive purposes. Possibly other factors, not
included in the analysis, may have helped explain additional
variability. An earlier study by the same lead author, investigating a
slightly younger cohort, suggested that age might also be an
important parameter [14]. It is conceivable that STPs could be best
predicted by simultaneously analysing multiple anthropometric
quantities such as height, leg-length, mass, and age as well as gait
speed. In the aforementioned studies, gait speed was found to be a
strong predictor of other STPs; yet, it remains unclear if self-
selected speed itself can be reliably predicted from subject
characteristics. In pathological populations this appears to be
the case [17,18]; however, predictions in typically developing
children are more rare. Vaughan et al. [5] reported that ND speed
followed an exponential relationship with age: increasing rapidly
in infants and reaching more stable values by age four. Perhaps
additional anthropometric terms might further improve this
relationship.

Therefore, the aims of this study were to test via multiple
regression analysis whether (1) leg-length ND effectively removes
the dependent relationship of speed, stride-length and cadence on
anthropometrics and if (2) additional anthropometric terms could
be used to generate better predictive equations for actual STPs. The
first aim will allow critical evaluation of the use of leg-length
normalised STPs for comparison of gait measures across different
populations. The development of regression equations with strong
predictive ability may improve the accuracy of comparison of gait
data between children of different sizes, ages, and gait abilities.

2. Methods

2.1. Subjects

Fifty girls and forty-four boys (3–16 years) performing barefoot
walking trials whilst fitted with the plug-in gait marker set [19]
were extracted from our laboratory database (Table 1). Criteria for
inclusion were: no known motor system pathology, walking
independently, and experiencing no pain whilst walking. Ethical
approval was granted by the local healthcare research ethics
committee.

2.2. Data collection and processing

Six walking trials at self-selected speed were collected of each
subject using 12 MX cameras and Nexus Software (Vicon, Oxford
Metrics, Oxford, UK). A single representative trial for each subject
was selected based on visual inspection of lower-limb joint
Table 1
Subject anthropometrics, self-selected speed, and STPs by age group.

Age
(yrs)

Mass
(kg)

Leg length
(m)

Speed
(m/s)

Stride length
(m)

3–4 16.81
(15.17, 18.45)

0.49
(0.46, 0.52)

1.28
(1.13, 1.44)

0.86
(0.77, 0.94)

5–6 19.62
(18.14, 21.09)

0.57
(0.55, 0.60)

1.31
(1.22, 1.40)

0.99
(0.94, 1.04)

7–8 24.87
(23.58, 26.16)

0.66
(0.65, 0.68)

1.36
(1.32, 1.40)

1.10
(1.07, 1.12)

9–10 32.81
(31.48, 34.14)

0.73
(0.71, 0.75)

1.37
(1.31, 1.42)

1.20
(1.17, 1.24)

11–12 39.23
(36.96, 41.44)

0.81
(0.80, 0.84)

1.35
(1.31, 1.40)

1.28
(1.24, 1.33)

13–14 54.41
(50.34, 58.48)

0.87
(0.86, 0.89)

1.49
(1.43, 1.54)

1.43
(1.37, 1.48)

15–16 62.68
(60.34, 65.03)

0.90
(0.88, 0.92)

1.40
(1.36, 1.44)

1.43
(1.39, 1.47)

Mean (confidence interval).
kinematic and kinetic traces. Gait events were determined from
the force plate data using a 10 N threshold, and verified visually
from toe, heel, and ankle marker trajectories. Stride-length (m) and
cadence (steps/min) were extracted using a Nexus plug-in
(Parameter Calculator, Vaquita, Zaragoza, Spain) and defined as
the ankle marker displacement in the direction of travel between
consecutive foot strikes of the same foot and the number of steps
per minute, respectively. The average of both legs was taken for
each parameter. Finally, the open-source Biomechanical Toolkit
[20] was used to import c3d files into Matlab (v2012b, The
Mathworks, Inc., Natick, USA) where gait speed was computed by
taking the average of the derivative of the sacral (SACR) marker
position over a number of consecutive steps.

2.3. Normalisation

The ND was applied to the STPs according to Hof [12] using leg-
length (anterior superior iliac spine to medial malleolus, via the
medial femoral condyle) for stride-length. Similarly, cadence and
speed were normalised to gravity and leg-length:

k SL k¼ SL
LL

(1)

k c k c �
ffiffiffiffiffi
LL
g

s
(2)

k v k vffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g � LL

p (3)

where SL: stride-length; c: cadence; v: speed; LL: leg-length; g:
gravity (9.81 m/s2).

2.4. Regression analysis

Multicollinearity between predictors (height, leg-length, body
mass, age, and self-selected speed) was tested using the variance
inflation factor (VIF) before performing stepwise multiple regres-
sion analysis [21]. Regression equations for stride-length and
cadence were derived using leg-length, body mass, age and self-
selected speed as predictor variables, whilst self-selected speed
was regressed against these anthropometric quantities only. Both
actual (raw) and ND forms for each STP were considered for the
regression analysis. All models were executed via the LinearModel
function running the stepwise option in the Matlab statistical
toolbox (v2012b, The Mathworks, Inc., Natick, USA). The model
only considered linear terms without interactions between
variables. R2 (for a single predictor) or adjusted R2 (otherwise)
Cadence
(steps/min)

ND speed ND stride length ND cadence

176.34
(16.621, 18.648)

0.59
(0.52, 0.65)

1.76
(1.57, 1.95)

0.66
(0.61, 0.70)

157.27
(148.52, 166.02)

0.55
(0.51, 0.60)

1.73
(1.65, 1.81)

0.63
(0.60, 0.66)

147.54
(144.80, 150.27)

0.53
(0.52, 0.55)

1.67
(1.62, 1.71)

0.64
(0.63, 0.65)

135.03
(133.01, 137.05)

0.51
(0.49, 0.52)

1.65
(1.62, 1.68)

0.61
(0.60, 0.63)

126.42
(123.41, 129.28)

0.48
(0.46, 0.50)

1.57
(1.53, 1.63)

0.60
(0.59, 0.62)

123.90
(121.05, 126.74)

0.51
(0.49, 0.52)

1.63
(1.59, 1.67)

0.62
(0.60, 0.63)

117.12
(114.40, 119.84)

0.47
(046, 049)

1.59
(1.56, 1.62)

0.59
(0.58, 0.60)



Table 2
Multiple regression results for actual and normalised STPs and self-selected speed.

STP Regression equation R2 SEE
Speed 0.412 � LL + 1.069 0.105 0.174
ND speed �0.008 � A + 0.600 0.182 0.068
Stride-length 0.829 � LL + 0.499 � v + 0.013 � A–0.224 0.904 0.070
ND stride-length 1.836 � vL + 0.705 0.645 0.102
Cadence �142.250 � LL + 47.271 � v + 177.51 0.817 9.180
ND cadence 0.500 � vL + 0.359 0.500 0.038

Predictor variables: leg-length (LL), age (A), speed (v), and leg-length non-
edimensionally normalised (ND) speed (vL). All regressions significant at p � 0.001.
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were reported to determine the percentage of variance explained
by the models. Standard estimate of the error (SEE) were also
computed. The predictive ability of the equations were validated
using a 10-fold cross-validation process [22]. Finally, the stand-
ardised gradient, i.e., the slope, normalised by the average abscissa
value, were computed for actual and ND STPs against leg-length to
further assess the success of the ND approach. All correlations
tested for significance at the a = 0.05 level. No correction was made
to significance level for multiple comparisons.

3. Results

3.1. Multiple regression analysis

Age, mass, leg-length, and speed were retained (height
excluded) for multiple regression analysis with VIFs of 10.7, 6.4,
9.3, and 1.13, respectively. Regression equations are presented for
all STPs (Table 2). For the prediction of actual self-selected speed,
leg-length accounted for only 10.5% of the variability. For ND speed,
the strongest, and single, predictor retained by the stepwise
procedure, was age (R2 = 0.182). For stride-length, a regression
equation with leg-length, speed, and age accounted for 90.4% of the
variance, whilst for cadence, the equation contained only leg-
length and speed, and accounted for 81.7% of the variability. ND
resulted in linear relationships with ND speed for stride-length and
cadence (64.5 and 50.0% variance explained) (Fig. 1). All models
were significant at p < 0.001. The average 10-fold cross-validation
R2 for speed, stride-length, and cadence were 0.095, 0.903, and
0.817, respectively, and 0.183, 0.645, 0.500 for their ND analogues,
respectively.

3.2. Standardised gradient analysis

Both actual and ND STPs were linearly regressed against leg-
length only and their standardised gradients and R2 were analysed
(Fig. 2 and Table 3). ND led to a greater dependence on leg-length
for self-selected speed (standardised gradient changed from 30.2
Fig. 1. Data points and stepwise multiple regression lines for nondimensionally norm
length vs. ND speed, and (c) ND cadence vs. ND speed. Pearson’s squared correlation c
to �42.4%). For stride-length and cadence, ND decreased the
dependence on leg-length (from 115.7 to �26.1% and from �88.0 to
�15.0%, respectively). All correlations significant at p � 0.01.

4. Discussion

4.1. Summary

This study presented regression equations for common STPs of
gait in both actual and ND form for typically developing children
between the ages of 3 and 16. The equations were derived using a
stepwise multiple linear regression approach and their predictive
ability were cross validated [22]. Furthermore, standardised
gradients and correlations between each STP and leg-length were
computed to determine the effectiveness of normalisation by leg
length. The results suggest that ND, although appropriate for
stride-length and cadence, does not successfully remove anthro-
pometric variability from self-selected speed. Comparison of ND
speed across non-homogeneous groups should therefore be
conducted with caution.

4.2. STP normalisation

Self-selected speed was found to increase with leg-length, in
agreement with previous work [8,23]; however, predictive ability
using anthropometric quantities was poor. The process of ND of
self-selected speed does not remove anthropometric dependence.
This was revealed not only via the multiple linear regression
analysis (ND speed decreasing with increasing age), but also
through the strong standardised gradient (ND speed decreasing
with increasing leg-length).

Stride-length and cadence were seen to increase and decrease,
respectively, throughout childhood as seen in previous studies [8].
Stride-length was well predicted by leg-length and speed, with age
also appearing as an additional factor, whilst cadence was only
predicted by leg-length and speed. The dependence of these STPs
on speed and leg-length is well known; however, the appearance of
age suggests that neuromaturation effects are also important. After
ND, both stride-length and cadence were found to be related to ND
speed only, in agreement with previous work [14]. Although
anthropometric quantities such as leg-length were rejected by the
stepwise regression, our further analysis of standardised gradients
shows that trends of decreasing ND stride-length and ND cadence
with increasing leg-length remains.

There is a known relationship between speed, stride-length,
and cadence: if two of the variables are known, the other can be
computed. Therefore, at first glance it appears incongruent that ND
speed could depend on leg-length (or age), whilst both ND stride-
alized (ND) spatio-temporal parameters: (a) ND speed vs. age (years), (b) ND stride
oefficients (R2) and regression equation (ŷ) also shown.



Fig. 2. Data points and linear regression lines for nondimensionally normalized (ND) and actual (raw) spatio-temporal parameters: (a) speed, (b) stride length, and (c)
cadence vs. leg length (m). Pearson’s squared correlation coefficients (R2) and standardized gradients (||m||) shown for each regression.
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length and ND cadence do not. Closer inspection of the stand-
ardised gradients might help answer this seemingly contradictory
finding. Starting with the actual measures, the oppositely directed
trends of increasing (115.7%) and decreasing (�88.0%) stride-
length and cadence with increasing leg-length, respectively, result
in a slowly increasing speed (30.2%) with leg-length. After ND, both
stride-length and cadence reveal a tendency to decrease with leg-
length (�26.1 and �15.0%, respectively). These trends were too
small (not-significant) to appear in the regression equations,
leading these STPs to appear invariant (at least statistically) with
respect to anthropometrics. For ND speed, however, these two
small trends reinforce each other. The regression analysis revealed
that ND speed decreases with age, whilst the standardised
gradients show a decrease of ND speed with leg-length. In fact
the standardised gradients show that ND speed has a greater
dependence on leg-length than raw speed (�42.4 vs. 30.2%).
Although, no formal statistical test was conducted to determine if
this change was significant, the trend should still be taken into
account. Although the ND process is designed to remove the
dimension of length, the underlying influence of leg-length
remains. For ND stride-length and cadence, the effect is small
enough to consider these parameters invariant with anthropo-
metrics, but the same cannot be said for ND speed. Further studies
might investigate other normalisation schemes that do not assume
proportional scaling in the hopes of completely removing this
dependence.

The fact that actual (raw) self-selected speed is poorly predicted
by anthropometrics (only leg-length) is also of great interest.
Perhaps other, non-anthropometric, factors are driving self-
selected speed choice. Past research has shown that children with
neuromuscular disease tend to walk more quickly in a laboratory
environment (10 m walk) than in a community setting (10 min
walk) [24]. Although this may be more related to fatigue effects
occurring over a longer time interval, nervousness may also have
contributed to quicker speeds within the gait lab. A study
measuring STPs in children consecutively for a number of years
reported an increase in ND speed after the laboratory set-up had
changed to include a longer walkway [25], suggesting that
walkway length might influence STPs. However, in older patients
recovering from stroke, walkway length did not seem to play a role
Table 3
Summary of correlation between STPs and leg-length.

STP R2 Standardised gradient (%)
Speed 0.105 30.167
ND speed 0.180 �42.433
Stride-length 0.762 115.743
ND stride-length 0.133 �26.107
Cadence 0.676 �87.959
ND cadence 0.063 �15.026
in determining self-selected speed [26]. Further investigation of
possible psychosocial and environmental factors and their effects
on self-selected speed may need to be conducted to achieve better
prediction. Meantime, it cannot be assumed that normalising
speed by leg length accounts for inter-subject variation in the non-
pathological population. It appears that the determination of self-
selected speed is far more complex than initially believed.

4.3. Recommendations

The researcher or clinician whose aim is to compare stride-
length and/or cadence of typically developing children across
different ages and sizes may rely on leg-length ND analogues of
these parameters, whilst keeping in mind that some underlying
dependency on leg-length might remain. For speed, use of ND
appears inadequate for this purpose. It may be that a statistical
approach using actual speed with age and/or leg-length as a
covariate might be superior to using ND speed directly. For
populations with gait pathologies, a similar approach, possibly
using measures of pathology as additional covariates, could also be
useful.

In order to compare a patient’s STPs to typically developing
peers, there are two options: the first is to construct regression
equations based on known patient characteristics such as leg
length and age. The second is to use a carefully matched dataset.
The first approach has the potential to provide adequate estimation
of stride-length and cadence, but is still difficult to implement for
speed, given its poor predictability. Using regression, the difference
between a patient’s actual and predicted STP values could be
calculated and serve as an indicator of severity of pathology.
Improvement pre-post intervention could also be monitored. The
second method requires a large database that must be appropri-
ately split into well-defined groups. At present, group assignment
is fairly arbitrary and considers only a few factors [6,8,16]. More
complete databases where children are matched to a wide range of
quantities might actually be needed.

4.4. Limitations

The present regression equations have not been tested in other
laboratories. It is possible that differences in data collection
protocols, marker sets, computation methods, walkway lengths,
and populations may influence the parameters of the equations.
Individual laboratories should query their own databases in order
to build bespoke regression equations using the techniques
described herein. We also suggest that the present regression
equations not be used for prediction of STPs for children outside or
at the extreme ranges of age or gait speeds used in this study.

The anthropometric parameters included in the regression
equations were correlated with each other. It is therefore possible
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that the appearance of a specific predictor in the equations might
obscure other existing relationships. For example, stepwise
multiple regression found that age was the single most important
predictor of speed (R2 = 0.182 in Table 2), but when speed was
regressed with leg-length only, the prediction was only slightly
weaker (R2 = 0.180, Fig. 2a). We assessed multi-collinearity
between predictors and used the recommendation of a VIF < 10
to guide our choice of which variables to retain [21]. Although age
had a slightly higher VIF (10.7) it was kept as it alone best describes
maturation of motor control.

The children in our sample trended towards greater self-selected
speed, stride-length, and cadence compared to age-matched peers
from previous studies [6,8,27]; however, comparison of confidence
intervals for the current results and those of Lythgo et al. [8] shows
overlap across some age groups. It is important to note that in the
studies of Dusing and Thorpe [6] and by Lythgo et al. [8] data were
collected on the GAITRite1 instrumented walkway (CIR Systems Inc.
Haverton, USA) within the familiar school environment, whilst the
study of Müller et al. [27] used a mobile walkway (location and type
not reported). Our cohort was instructed to walk at habitual speed in
the gait laboratory. We did not pace the children nor did we provide
specific feedback about their speed choice. As it remains unclear
which factors most strongly influence the selection of comfortable
speed, it may be that some other environmental factor was
responsible.

Conclusions

From these results, it appears that stride length and cadence are
determined primarily by walking speed in combination with leg-
length. However, the determination of self-selected speed is more
complex, and is not merely determined by the length of the
subject's legs. Even including other anthropometric variables did
not improve this prediction.

In summary, we were able to show that leg-length ND is
appropriate for stride-length and cadence: anthropometric pre-
dictors were not strong enough to appear in the regression
equations and further analysis showed that their dependence on
leg-length was effectively reduced. For ND of self-selected speed,
age appeared to be the driving factor. Moreover, speed showed an
increased dependence on leg-length after normalisation, rather
than the other way round. Therefore, caution should be exercised
when attempting to compare normalised speeds across groups
with different anthropometric characteristics.
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