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ABSTRACT

Although randomization provides a gold-standard
method of assessing causal relationships, it is not
always possible to randomly allocate exposures. Where
exposures are not randomized, estimating exposure
effects is complicated by confounding. The traditional
approach to dealing with confounding is to adjust for
measured confounding variables within a regression
model for the outcome variable. An alternative
approach—propensity scoring—instead fits a regres-
sion model to the exposure variable. For a binary
exposure, the propensity score is the probability of
being exposed, given the measured confounders.
These scores can be estimated from the data, for
example by fitting a logistic regression model for the
exposure including the confounders as explanatory
variables and obtaining the estimated propensity
scores from the predicted exposure probabilities from
this model. These estimated propensity scores can
then be used in various ways—matching, stratifica-
tion, covariate-adjustment or inverse-probability
weighting—to obtain estimates of the exposure effect.

In this paper, we provide an introduction to propen-
sity score methodology and review its use within res-
piratory health research.We illustrate propensity score
methods by investigating the research question: ‘Does
personal smoking affect the risk of subsequent
asthma?’ using data taken from the Tasmanian Longi-
tudinal Health Study.

Keywords: causal inference, confounding, environmental and
occupational health and epidemiology, observational studies,
statistics.

Abbreviations: ATE, average treatment effect; ATT, average
treatment effect in the treated; CI, confidence interval; IPTW,
inverse probability of treatment weighting; OR, odds ratio; SD,
standard deviation; TAHS, Tasmanian Longitudinal Health Study.

INTRODUCTION

In respiratory health research, we often wish to esti-
mate the causal effect of a particular exposure on a
health outcome.1 When the exposure is not randomly
allocated, such analyses are inevitably affected by
confounding. We typically address this by adjusting
for measured confounding variables within a multi-
variable regression model for the outcome including
the exposure as an explanatory variable.2 Alterna-
tively, we could perform a propensity score analysis.3

Instead of fitting a regression model for the outcome,
the propensity score approach involves fitting a
model for the exposure; the predicted exposure prob-
abilities from this model are the estimated propensity
scores. Broadly speaking, by controlling for these pro-
pensity scores, we hope to ‘balance out’ the con-
founders among exposure groups, thus removing
observed confounding. This can be achieved in a
number of ways, for example, matching or stratifica-
tion on the propensity score, inverse probability-of-
treatment weighting and covariate adjustment using
the propensity score.3–5

In this paper, we provide an introduction to pro-
pensity score methodology and review its use within
respiratory health research. To illustrate these
methods, we use propensity scoring to investigate the
effect of personal smoking (a non-randomized expo-
sure) on asthma remission among adults who
reported asthma during childhood, using data taken
from the Tasmanian Longitudinal Health Study
(TAHS), a population-based longitudinal cohort
study in Tasmania, Australia.
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ESTIMATING CAUSAL EFFECTS

Intuitively, the causal effect of personal smoking on
subsequent asthma remission for an individual can
be conceptualized by contrasting their asthma remis-
sion status under two possible scenarios: the asthma
status that would have occurred if that person had
smoked, and the asthma status that would have
occurred if that person had not smoked. (For simplic-
ity, we assume that a binary classification of smoking
is reasonable). Suppose that this individual did, in
fact, smoke. Their asthma status under the non-
smoking scenario is a counterfactual outcome; it is
contrary to fact.6 Because we can only ever observe
the outcome under one possible exposure status, we
can never observe these causal effects. This has been
called the fundamental problem of causal inference.7

However, under certain assumptions, we can estimate
the average causal effect for a population of individ-
uals even though we cannot observe the causal effect
for them.

We can quantify the causal effect of smoking in a
population by the causal odds ratio, which is a hypo-
thetical construct: the odds of asthma remission that
we would have seen in the population if everyone in
the population had smoked, divided by the odds of
asthma remission that we would have seen in the
population if no one had smoked. We could alterna-
tively consider the causal risk ratio, or causal risk dif-
ference, defined analogously. For brevity, we consider
only the causal odds ratio.

In order for the causal odds ratio to be a well-
defined quantity, everyone in the TAHS data must
have had the possibility of being in both exposure
groups—in this case, of being either a smoker or a
non-smoker (the ‘positivity’ assumption8). We assume
that the effect of personal smoking for one individual
does not depend on other individuals’ smoking
behaviour (the ‘stable-unit-treatment-value’ assump-
tion6). The critical and usually most controversial
assumption, required to estimate the desired causal
effect, is that all confounders have been adequately
measured (the ‘exchangeability’ assumption6). We
note that the exchangeability assumption is also
required in conventional outcome regression models,
so it represents nothing new. Accessible discussions
of these issues are given elsewhere.6,9

PROPENSITY SCORES

The propensity score is defined as the probability of
being exposed given the values of measured con-
founding variables.3 This can be estimated for each
individual by fitting, for example, a logistic regression
model where the exposure takes the place of the
outcome variable, and the measured confounding
variables are included as explanatory variables. The
predicted exposure probabilities from this model are
the estimated propensity scores, which by definition
all lie between zero and one. Advanced computa-
tionally intensive methods, such as neural networks,
recursive partitioning and boosting, have also been
suggested as alternatives to the logistic regression

propensity score model.10–12 These provide superior
performance in some situations. Logistic regression,
however, remains the most popular model choice.

Balancing covariates using the

propensity score

In a simple randomized trial, we expect the distribu-
tion of all prognostic factors to be—on average—the
same in the control and intervention arms of the trial.
This expected balance of prognostic factors, or
‘exchangeability’, means that the control arm pro-
vides an estimate of the average outcome that would
have been observed in the intervention arm had this
group instead been assigned to the control condition,
and vice versa. This allows us to estimate the causal
effect of the intervention by simply contrasting the
average outcomes between the two arms.

Rosenbaum and Rubin3 showed that on average, we
expect the distribution of all the variables included in
the propensity score model to be the same in the
exposed and unexposed groups at each value of the
estimated propensity score. This expected balance
means that we can estimate the exposure effect
simply by contrasting the outcome between exposure
groups at each value of the estimated propensity score,
provided that all confounders are included in the pro-
pensity score model. Thus, matching or stratifying on
the propensity score, or adjusting for it in a regression
model for the health outcome, are valid ways to
proceed in estimating the causal effect of exposure.
We discuss these analyses in more detail below.
Figure 1 depicts the main steps involved in a propen-
sity score analysis. Details of the steps are given in the
remainder of this paper.

Propensity score matching

In propensity score matching, we create groups of
exposed and unexposed individuals who all have
similar estimated propensity scores. A popular way of
selecting these matched groups is 1:1 nearest neigh-
bour matching within a caliper. This involves select-
ing a single unexposed match for each exposed
individual, provided that a match can be found with a
sufficiently close propensity score (where ‘closeness’
is determined by the caliper); otherwise the exposed
individual is discarded. There are many variations on
the procedure used to select the matched sample.13,14

Matching can be either without replacement, where
an unexposed individual is used as a match for at
most one exposed individual, or with replacement. If
the latter is adopted, the multiple use of matches
must be accounted for in the statistical analysis. An
increase in precision of the estimated causal effect
can often be obtained by selecting more than one
untreated match for each exposed individual; typi-
cally such matching strategies need to be accounted
for in the analysis, for example through weighting, as
illustrated in our example below.13,14

Once a matched sample has been selected, health
outcomes are directly compared between the exposed
and unexposed individuals. How the matching should
be accounted for in the analysis remains controversial
(see Austin15 and discussion).
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Propensity score matching is often a good choice
when the number of exposed individuals is greatly
exceeded by the number of unexposed individuals.
When this is not the case (as in our later data analy-
sis), matching can result in many exposed individuals
being discarded due to lack of a suitable unexposed
match, or alternatively requires the use of matching
with replacement.

A rather subtle issue with propensity score match-
ing is that this procedure, as outlined earlier, esti-
mates the causal effect of the exposure among the
exposed individuals only, rather than in the whole
population. This is often called the average treatment
effect in the treated (ATT). Conceptually, this com-
pares the health outcome of all exposed individuals
with the outcome had they not been exposed. If the
exposure effect is stronger among some patient sub-
groups, this can lead to discrepancies between esti-
mates obtained from propensity score matching and
other analysis methods.16 Variations on the matching

procedure can be used to estimate the causal expo-
sure effect among the whole population (often called
the average treatment effect (ATE)), if desired.17

Propensity score stratification

A simple method—propensity score stratification or
subclassification—involves creating a number of
strata, often five, based on the percentiles of the esti-
mated propensity score. The within-strata exposure
effects are estimated by contrasting the outcome
between exposure groups within each stratum, and
the mean of these across the strata is taken to obtain
an overall estimate of the exposure’s causal effect.18 A
variation on this method fits a regression model for
the health outcome including both the propensity
score strata and the exposure as explanatory vari-
ables. Additionally, including an interaction term
between the strata and the exposure, and averaging
the resulting strata-specific exposure effects across
strata results in a similar estimate of the exposure’s
causal effect to the first stratified approach described.

Stratification is simple and intuitive. The main
drawback of this method concerns residual confound-
ing; small differences in the distribution of propensity
scores between exposed and unexposed individuals
may exist within the same propensity score stratum
and could mean that some confounding remains.
Increasing the number of strata—where sample size
permits—can reduce residual confounding.

Covariate adjustment using the

propensity score

The third, and probably most commonly used, pro-
pensity score method involves fitting a regression
model for the outcome including the exposure and
the estimated propensity score as explanatory vari-
ables, with the estimated propensity score treated as a
continuous variable and often additionally adjusting
for other measured confounders.19

This approach—which we will call covariate
adjustment—is simple and easy to apply. It is related
to the regression-based stratification approach
described above where the strata, rather than the con-
tinuous propensity score, are included as explanatory
variables. However, because the propensity score is
modelled as a continuous variable, the covariate-
adjustment method imposes a restrictive assumption
about the relationship between the health outcome
and the propensity score. The estimate of the exp-
osure’s effect will be valid only if this relationship is
correctly modelled. This contrasts strikingly with the
essence of the other propensity score methods where
emphasis is on the propensity score model alone.
Indeed, avoiding the need for correct specification of
an outcome model is a key advantage of the propen-
sity score approach, and therefore we, like others, do
not recommend the use of covariate adjustment pro-
pensity score method.3,20

Inverse probability of treatment weighting

The final propensity score method we consider is
called inverse probability of treatment weighting

Step 1: Clearly define the causal effect of the exposure
For example, the causal effect of smoking on asthma remission can be defined as the 
odds of asthma remission if the whole popula�on had smoked rela�ve to that if the 
whole popula�on had not smoked.

Step 2: Remove individuals who violate the posi�vity assump�on
Exclude any individual who could never be exposed or could never be unexposed.
The exposure effect is undefined for these individuals.

Step 3: Create a list of covariates to be included in the propensity score
The list must include all confounders. This step may involve the use of causal 
diagrams, knowledge of the clinical scenario and previous research to decide which 
variables are believed to be confounders.  Prognos�c variables, not thought to be 
confounders, may be addi�onally included in this list to increase sta�s�cal precision.

Step 4: Assess covariate balance between exposed and unexposed
Calculate the percentage standardised difference for each covariate – a measure of 
how unbalanced this variable is between exposure groups.
Other measures of imbalance could also be created at this stage.

Step 5: Es�mate the propensity score
Fit, for example, a logis�c regression model where the exposure is the dependent 
variable and the covariates (from step 3) are the independent variables. 
The fi�ed values from this model are the es�mated propensity scores. 

Step 6: Choose a propensity score method
For propensity score matching:  select a matched sample
For propensity score stra�fica�on: create propensity score strata
For IPTW: create inverse probability weights
For covariate-adjustment: no ac�on required here

Step 7: Assess covariate balance between exposed and unexposed a�er 
applying selected propensity score method
Calculate percentage standardised differences for each covariate within the matched 
sample, strata or weighted sample, or by using the covariate-adjustment standardized
differences.  
If balance is unacceptable (differences >10%), go back to step 5, adding interac�ons or 
nonlinear terms.

Step 8: Obtain es�mated exposure effect
...using the chosen propensity score method. 

Figure 1 Overview of the key steps involved in a propensity
score analysis. IPTW, inverse probability of treatment weighting.
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(IPTW).21 Unlike the other methods, it does not
attempt to compare subgroups of individuals with the
same value of the propensity score. Instead, it uses the
estimated propensity scores to weight individuals in
such a way as to create a ‘pseudo-population’9 in
which the measured confounding variables are bal-
anced between exposure groups, thereby effectively
removing the confounding. This is achieved, with p
representing the individual’s estimated propensity
score, by allocating a probability weight of 1/p to
exposed individuals, and a weight of 1/(1-p) to unex-
posed individuals. For example, suppose 1/2 of the
200 males and 1/4 of the 100 females in a sample are
exposed. Upweighting exposed men by a factor of 2,
unexposed men also by a factor of 2, exposed women
by a factor of 4 and unexposed women by a factor of
4/3 yields balance in gender across exposure groups.

To estimate the exposure effect, a suitable regres-
sion model for the outcome (linear for continuous
outcomes, logistic for binary etc.) is fitted including
the exposure as the sole explanatory variable and
applying the probability weights described above. The
estimated coefficient for exposure provides an esti-
mate of the exposure’s causal effect.

This method works well when the estimated pro-
pensity scores do not lie close to zero or one. Propen-
sity scores near zero or one can result in extremely
large weights, leading to very imprecise estimates of
the exposure effect. Trimming the weights can allevi-
ate this problem, although potentially at the cost of a
small amount of bias in estimating the exposure’s
effect.22 However, in the absence of large weights this
method is easy to apply and mathematically elegant.
We find that it is often our method of choice, particu-
larly when the sizes of the exposed and unexposed
groups are similar, diminishing the attraction of pro-
pensity score matching. However, thus far, this
weighting approach is not as frequently used in prac-
tice as other propensity score methods.

Further considerations

We have focused on propensity score methods for
binary exposures. These methods have been extended
to categorical exposures23 and some work has been
done extending the methods to continuous expo-
sures,24 although theory is much less well developed
in this area.

Choosing variables to include in the propensity
score model can be important. The propensity score
model must include all confounders (assuming they
are measured), that is all variables that are believed to
be associated with exposure and prognostic of the
health outcome. Additionally including predictors of
exposure but not of outcome typically decreases the
precision of the exposure effect estimate, increasing
the P-value and the width of the confidence interval,
without decreasing the bias. Additionally including
variables prognostic of outcome but not associated
with exposure increases precision without increasing
the bias.25 Thus it may be helpful to include variables
thought to be prognostic of outcome, even if they may
not be confounders.

Recent work has combined traditional outcome
regression modelling with each of the propensity

score methods described in the previous section.21,26

Such combinations can increase the precision of the
estimated exposure effect and can offer some robust-
ness against the possibility of mis-modelling the pro-
pensity score. However these are not yet routinely
used, and are beyond the scope of this introductory
paper.

Missing data in confounding variables can be dealt
with by using multiple imputation27 or by applying the
simpler missing-data-category method, which,
although a biased approach in standard regression
analyses,28,29 may be less biased within the propensity
score context.14,18

Standard errors and P-values from propensity score
analyses often do not take the estimation of the pro-
pensity score into account. Counter-intuitively, this
produces conservative results; the confidence inter-
val for the exposure effect will be too wide, and the
P-value too large. We are presently aware of only one
software package (Stata, version 13.0)30 that makes
appropriate corrections. This issue is most problem-
atic with continuous outcomes; little precision is lost
when the outcome is binary.

PROPENSITY SCORES IN
RESPIRATORY HEALTH RESEARCH

We conducted a brief literature search using theWeb of
Knowledge database, of five respiratory health jour-
nals: the American Journal of Respiratory and Critical
Care Medicine (AJRCCM), Thorax, Chest, European
Respiratory Journal (ERJ), and Respirology. Articles
published between 2009 and 2013, including the
words ‘propensity score(s)’ or ‘propensity scoring’
were included. Abstracts and tutorial papers were
excluded.

We identified 28 articles using propensity score
methodology, 9 from AJRCCM,31–39 12 from Chest,40–51

5 from ERJ52–56 and 1 each from Thorax57 and
Respirology,58 with around 6 papers published in each
of the 5 years considered. A summary of these studies
can be found in the online supplement. In the major-
ity of studies (22 (79%)) the exposure was binary, with
one study considering a categorical exposure,40 three
studies assessing continuous exposures,41,45,57 one
with a mixture of binary and categorical exposures,32

and the final study considering the dose of
fluoroquinolone received33 both dichotomized and as
the original continuous measure.

Of the 24 studies including at least 1 binary expo-
sure, 18 (75%) used a logistic regression model to esti-
mate the propensity score, 1 used a generalized
boosting model58—an alternative to logistic regres-
sion, which may account better for interactions
between explanatory variables—and the remaining 5
studies did not give details of the model used.
Multinomial regression models were used to estimate
the propensity score in the two studies involving
a categorical exposure. The models used for the
continuous outcomes were unclear.

In 17 (61%) of the studies, the primary health out-
come was binary, often 30-day mortality in hospital-
based studies. Nine studies had a time-to-event
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outcome, and the remaining two studies had a con-
tinuous outcome relating to healthcare costs.

In nine of the studies (32%), an analysis based on
traditional outcome regression modelling was also
presented. In these cases, the propensity score and
outcome regression estimates were very similar. In a
further eight studies (29%), several propensity score
methods were applied to assess the robustness of
findings to the methods used. The remaining 11
studies used a single propensity score method.

Including the propensity score as a continuous
explanatory variable in a model for the health
outcome was the most widely used method, appear-
ing in 14 (50%) of the studies, closely followed by pro-
pensity score matching used in 12 (43%) of studies.
Eight studies used some form of propensity score
stratification. Inverse probability weighting was not
used in any of the studies. The most popular match-
ing method was 1:1 matching without replacement.
The number of exposed individuals who were able to
be matched, only reported, in 5 of the 12 relevant
studies, ranged from 50%36 to 100%.49 For stratifica-
tion, three, five and nine strata were used in different
studies. Combinations of methods were occasionally
used (e.g. Sadatsafavi et al. included the propensity
score as a covariate in an outcome regression model
fitted to a propensity-score matched sample48).

Generally, the studies using propensity score meth-
odology were carefully performed and reported.
However, several studies did not adequately, or at all,
assess whether balance of the confounding variables
between exposure groups had actually been
achieved—the key diagnostic measure for evaluating
the performance of a propensity score method. Our
next section, therefore, focuses on propensity score
diagnostics.

PROPENSITY SCORE DIAGNOSTICS

When using propensity score methods, the key diag-
nostic criterion is whether balance of the confound-
ing variables between exposure groups (covariate
balance) has been achieved either within the
matched sample, within propensity score strata, after
adjustment for the propensity score or within the
weighted pseudo-population, for the four methods,
respectively. An excellent and comprehensive review
of various diagnostic measures to assess covariate
balance is given by Austin.59

Hypothesis testing is often used to assess covariate
balance. This is discouraged, particularly for propen-
sity score matching, due to its dependence on sample
size and its focus on statistical significance rather
than magnitude of differences.60 Standardized differ-
ences, described later, provide a useful way of assess-
ing balance that avoids these pitfalls.

Standardized differences

For a continuous confounder, let xexp and xun repre-
sent the mean in the exposed and unexposed groups,
respectively, and sexp and sun the standard deviations
(SD). The percentage standardized difference in this

confounder between exposed and unexposed indi-
viduals is defined as

100
2

2 2

×
−

=
+( )x x

SD
SD

s sexp un

pool
pool

exp unwhere (1)

For binary confounders, with pexp and pun represent-
ing the confounder’s observed prevalence in the
exposed and unexposed groups, the percentage
standardized difference is

100

1 1

2

×
−

=
− + −

p p

SD

SD
p p p p

exp un

pool

pool
exp exp un un

where

( ) ( )
(2)

Categorical variables can be converted into a set of
binary indicators, one for each non-reference level of
the variable, and then a set of standardized differ-
ences defined. Other authors present variations on
these definitions. Stuart,14 for example, replaces
our pooled SD with the SD from the exposed group
only.

A value of 10% or greater in magnitude in the per-
centage standardized difference is often taken as an
indication of meaningful imbalance for—and thus
potential confounding by—that variable. However,
the negative consequences of imbalance will depend
also on how prognostic of the health outcome the
imbalanced variable is; it is more important to
achieve close balance for strongly prognostic
variables.

The standardized difference for a covariate can be
calculated in the original sample and after applying
one of the propensity score methods described previ-
ously (see subsections below; Fig. 3 demonstrates this
graphically for our TAHS example). As has been sug-
gested elsewhere,14 we recommend using the same
pooled SD before and after applying the propensity
score method. This ensures that reductions in the
standardized difference reflect a real increase in
balance rather than simply a change in scale due to
varying SD.

Standardized differences after propensity

score matching

An advantage of propensity score matching is the ease
with which covariate balance can be assessed within
the matched sample. Standardized differences can be
calculated within the matched sample by replacing
the means in each exposure group in Equations 1 and
2 with the means within the matched sample but
leaving the value of SDpool unchanged. Where a varying
number of unexposed matches is used, these means
should be replaced by weighted means, weighting the
unexposed individuals in a matched group by the
inverse of the number of unexposed matches in
the group.61
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Standardized differences after propensity

score stratification

When using stratification, standardized differences
can be calculated by replacing the means in each
exposure group in Equations 1 and 2 with the differ-
ence in the within-stratum means averaged over the
strata according to the fraction of the sample in each
stratum, and leaving the value of SDpool unchanged.

Standardized differences after

covariate adjustment

It is much less clear how to assess post-adjustment
balance when using covariate adjustment, although
Austin19 has suggested an approach to calculating the
standardized differences in this scenario.

Standardized differences after IPTW

The post-weighting standardized differences are
obtained by applying the inverse probability weights
to obtain weighted means of the covariate in each
exposure group. These are substituted into Equations
1 and 2, dividing by the pooled SD from the original
(unweighted) sample.

Other model fit diagnostics

Although the area under the curve or C-statistic are
often reported in propensity score analyses, along
with measures of goodness of fit such as the Hosmer–
Lemeshow statistic, these are not relevant in the pro-
pensity score context because they do not measure
the degree of control of confounding achieved.62

ANALYSIS OF THE TASMANIAN
LONGITUDINAL HEALTH
STUDY (TAHS)

In this section, we apply propensity score methods to
estimate the effect of personal smoking on asthma
remission (no adult asthma) among TAHS partici-
pants who reported asthma during childhood.

The TAHS cohort

At study enrolment in 1968,63 parents provided infor-
mation on their child’s respiratory health including
asthma and bronchitis history, plus information on
their own respiratory health, smoking history and
occupation. In 2004, the participant’s adult asthma
status, smoking history and occupation (reflecting
socio-economic status) were documented.

The original data have been used in an extensive
investigation of risk factors for asthma remission;
clinical interpretations of these analyses have been
reported previously.64 This analysis is for illustrative
purposes only and uses a subsample of 194 partici-
pants from the TAHS who reported asthma during
childhood.

Confounding

Because smoking status is not randomly allocated,
confounding is likely to be present. In a companion

paper,1 we discuss the use of causal diagrams for con-
founder selection. Applying this approach to the
current research question, we concluded that the fol-
lowing confounders must be controlled for in the sta-
tistical analysis: poor childhood lung function,
chronic bronchitis, number of asthma attacks,
gender, number of parents reporting smoking, and
socioeconomic status. In our previous paper,1 we
adjusted for these characteristics via a multivariable
regression model for the outcome. Alternatively, we
can adopt a propensity score approach. We use both
approaches below for comparison.

The estimated propensity score

The propensity score is the probability of being a
smoker, conditional on the selected confounders. We
estimated the propensity score using a logistic regres-
sion model for smoking including the confounders as
explanatory variables including no interaction terms
or nonlinear terms. The propensity score was esti-
mated for each individual using the fitted values from
this model. An iterative procedure is often used,
where covariate balance is assessed after fitting the
initial propensity score model and is modified if
covariate imbalance remains.18 However, our initial
model achieved acceptable balance (standardized
differences at most around 10% in magnitude) so we
retained this simpler model.

Analysis methods

We first performed standard outcome regression
modelling, by fitting a logistic regression model for
asthma remission including smoking status and the
selected confounders as explanatory variables.

We then applied four propensity score methods.
Firstly, we applied propensity score matching.
Because the smoking group was the larger group, we
used matching with replacement. For each smoker,
we selected up to three non-smokers with the closest
estimated propensity scores, provided that these were
within a distance of 0.14 on the log odds scale (calcu-
lated as 0.2 standard deviations of the log odds of the
estimated propensity score). We estimated the odds
ratio for smoking using conditional logistic regression
which is a method to accommodate the smoker-non-
smoker groupings created by the matching, with
robust standard errors accounting for the re-use of
individual non-smokers in multiple groupings, after
giving the non-smoker matches in each grouping a
weight of 1/nm, where nm is the number of non-
smokers in that grouping, and a weight of 1 to the
single smoker in the matched grouping.

Secondly, we created five equally-sized strata,
based on the quintiles of the estimated propensity
score distribution. A greater number of strata was
impractical due to the small sample size. We fitted a
logistic regression model of asthma remission on
smoking status and these strata, including interac-
tions between the strata and smoking status. The five
within-strata effects (log-odds ratios) of smoking were
combined in an arithmetic mean, weighting each
estimate by the fraction of the sample in that propen-
sity score stratum.
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Thirdly, we performed covariate adjustment using
the propensity score by fitting a logistic regression
model for asthma remission on smoking status and
including the estimated propensity score as an
explanatory variable with a linear effect. We also fitted
a similar model additionally adjusting for the con-
founders listed above.

Finally, we created inverse probability weights
using the estimated propensity score. A logistic
regression model of asthma remission on smoking
status only, applying these probability weights, was
fitted; the odds ratio for smoking status from this
model is the IPTW estimate of the exposure effect.

Covariate balance

Standardized differences were used—within the
strata, the matched sample and in the weighted
pseudo-population—to assess covariate balance. We
did not attempt to assess balance for the covariate-
adjusted propensity score method.

Results

In 194 participants, 119 (61%) were classed as ever-
smokers. Fifty-one (68%) of the never-smokers
achieved asthma remission, a slightly lower propor-
tion than 86 (72%) of the ever-smokers.

Table 1 shows a summary of the selected confound-
ing variables by smoking status. Women, participants
in the lower socioeconomic groups, participants
without childhood lung problems and with less severe
(or no) childhood asthma were more heavily repre-
sented in the smoking group. A larger proportion of
children whose parents smoked were themselves
smokers.

In this case, the propensity score is the probability
of smoking, given the variables shown in Table 1. The
median (minimum, maximum) of the estimated pro-
pensity scores was 0.58 (0.17, 0.82) in the non-
smoking group, and 0.69 (0.20, 0.95) in the smoking
group. The distribution of the estimated propensity
scores is shown in the histograms of Figure 2 by
smoking status. Generally, individuals in the smoking
group tend to have higher propensities of smoking (as
expected). However, the range of propensity scores in
the two groups is broadly similar. Were this not the
case, it would be a crude indication of a violation of
the positivity assumption—some individuals in the
sample have no one comparable with them in the
other exposure group—in which case it may be nec-
essary to restrict the analysis to a more select group.8

For the propensity score matching, suitable
matches were found for all but 2 (2%) of the 119
smokers. Figure 3 shows the propensity score distri-
bution within the propensity score matched sample.
As expected, the distribution in the smokers and non-
smokers has become virtually identical.

For the IPTW approach, the median (minimum,
maximum) probability weights were 2.39 (1.21, 5.59)
for the non-smokers and 1.45 (1.18, 5.06) for the
smokers.

Table 1 Baseline characteristics of subsample of 194
participants from the Tasmanian Longitudinal Health
Study

Characteristic
Never smoker Smoker

(n = 75) (n = 119)

Demographics
Age (year) at 2004 survey;

mean (standard
deviation)

42.6 (0.5) 42.6 (0.4)

Male 49 (65%) 66 (56%)
Socioeconomic status:

1 (Highest) 33 (44%) 30 (25%)
2 6 (8%) 11 (9%)
3 12 (16%) 25 (21%)
4 10 (13%) 24 (20%)
5 (Lowest) 14 (19%) 29 (24%)

1968 survey
Bronchitis 30 (40%) 40 (34%)
Poor lung function 4 (5%) 5 (4%)
Number of asthma attacks

in the last 12 months
1 8 (11%) 12 (10%)
2–5 27 (36%) 46 (39%)
6–10 15 (20%) 32 (27%)
11–20 14 (19%) 17 (14%)
>20 11 (15%) 12 (10%)

Parental smoking
Neither 26 (35%) 17 (14%)
One 29 (39%) 64 (54%)
Both 20 (27%) 38 (32%)
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Figure 2 Histograms of the estimated propensity score by smoking status, with smoothed density estimates overlaid. Smoothed
density: , non-smokers; , smokers.

Propensity scores 631

© 2014 Asian Pacific Society of Respirology Respirology (2014) 19, 625–635

 14401843, 2014, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/resp.12312 by N

ational T
aiw

an U
niversity, W

iley O
nline L

ibrary on [13/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Figure 4 shows the percentage standardized differ-
ences of confounders between smoking groups, both
in the original sample and in the matched sample,
within the strata and in the weighted pseudo-
population. We did not attempt to assess balance for
the covariate-adjusted propensity score method. The
initial sample had several differences of greater mag-
nitude than 10% indicating moderate confounding.
These standardized differences were all reduced to
<10% by the IPTW approach. Matching greatly
reduced the standardized differences, although a
couple remained near 10%. Stratification, as
expected, reduced the standardized differences the
least, although confounder balance was still substan-
tially reduced.

Table 2 shows estimates of the effect of smoking on
subsequent asthma remission. All methods resulted

in an estimated odds ratio less than the unadjusted
odds ratio of 1.23 (95% confidence interval (CI): 0.65–
2.30), P = 0.53, with the biggest reduction coming
from stratification (OR = 0.99, 95% CI: 0.47–2.09) and
the smallest reduction from covariate adjustment
with additional adjustment for confounders
(OR = 1.17, 95% CI: 0.57–2.37).

DISCUSSION

It is important to separate limitations of propensity
score methods from limitations of the data sources.
The latter are often of greater concern because analy-
ses of non-randomized data frequently use existing
data for which measurement of potential confound-
ers is not within the control of the investigators. In

0
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Figure 3 Estimated propensity scores within matched sample constructed to estimate the average treatment effect of personal
smoking on subsequent asthma remission. Smoothed density: , non-smokers; , smokers.

More than 20
11-20
6-10
2-5

1
Asthma attacks

Both
One

Neither
Parents smoking

Bronchitis
Poor lung function

1968 interview
Low - 5
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3
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High - 1
SES
Male

Age (years)
Demographics

-50
Smokers:
Lower %

0 50
Smokers:
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-50
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-50
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0 50
Smokers:
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Percentage standardized difference

                          IPTW                      Matching                Stratification

Figure 4 Percentage standardized differences before and after IPTW, matching and stratification on the estimated propensity score.
The dashed vertical lines indicate the cut-off of 10%; values larger in magnitude are considered to represent substantial confounding.

, initial sample; , weighted sample; , matched sample; , within strata.
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consequence, critical measures may be collected
poorly or not at all, thereby violating the key assump-
tion that all confounders have been adequately meas-
ured. We note that this inhibits all forms of analysis of
exposure–outcome relationships, whether using
outcome regression, propensity scoring or otherwise.

Propensity scores allow the analysis to be con-
ducted almost entirely without reference to the
outcome variable, to a large extent avoiding the pos-
sibility of the chosen analysis approach being influ-
enced by the results of the analysis. They are a
particularly attractive analysis option where model-
ling the exposure is easier than modelling the
outcome, for instance, where the outcome is rare but
the exposure is common. Where many outcomes and
few exposures are of interest, propensity scores can be
useful because the one set of propensity scores can be
applied (assuming common confounders across out-
comes). However, where many exposures are of inter-
est, it can be inefficient to model the propensity score
for each exposure. Where outcome regression model-
ling and propensity score methods are both possible,
they often give comparable estimates of exposure
effect.65

Summary

In this paper, we have defined propensity scores, illus-
trated their use in a respiratory health context, pre-
sented diagnostic measures to validate balance after
propensity score adjustment and discussed the broad
advantages depending on the exposure and outcome
data available. Propensity score methods form a
useful addition to the medical researcher’s toolkit.
Even where propensity scoring is not the primary
method of analysis, estimating and graphing the pro-
pensity score can be an invaluable tool in assessing
the comparability of exposed and unexposed individ-
uals. We encourage the further use of propensity
scores in respiratory health research.

Acknowledgement
We thank the Tasmanian Longitudinal Health Study (TAHS) Steer-
ing Committee for providing us with a random subset of the data

from the TAHS cohort which was funded by the National Health
and Medical Research Council, Australia, ID#299901. This work
was supported under a National Health and Medical Research
Council Centre of Research Excellence grant, ID#1035261, to the
Victorian Centre for Biostatistics (ViCBiostat).

REFERENCES

1 Williamson E, Aitken Z, Lawrie J, Dharmage S, Burgess J, Forbes
A. An introduction to Causal Diagrams for confounder selection.
Respirology 2014; 19: 303–11.

2 Kasza J, Wolfe R. Statistical regression models: interpretation of
commonly-used models. Respirology 2014; 19: 14–21.

3 Rosenbaum P, Rubin D. The central role of the propensity score
in observational studies for causal effects. Biometrika 1983; 70:
41–55.

4 D’Agostino RB Jr. Propensity score methods for bias reduction in
the comparison of a treatment to a non-randomized control
group. Stat. Med. 1998; 17: 2265–81.

5 Williamson E, Morley R, Lucas A, Carpenter J. Propensity scores:
from naive enthusiasm to intuitive understanding. Stat. Methods
Med. Res. 2012; 21: 273–93.

6 Hofler M. Causal inference based on counterfactuals. BMC Med.
Res. Methodol. 2005; 5: 28.

7 Holland PW. Statistics and causal inference. J. Am. Stat. Assoc.
1986; 81: 945–60.

8 Westreich D, Cole SR. Invited commentary: positivity in practice.
Am. J. Epidemiol. 2010; 171: 674–7.

9 Hernan MA, Robins JM. Estimating causal effects from epide-
miological data. J. Epidemiol. Community Health 2006; 60: 578–
86.

10 Lee BK, Lessler J, Stuart EA. Improving propensity score weight-
ing using machine learning. Stat. Med. 2010; 29: 337–46.

11 McCaffrey DF, Ridgeway G, Morral AR. Propensity score estima-
tion with boosted regression for evaluating causal effects in
observational studies. Psychol. Methods 2004; 9: 403–25.

12 Setoguchi S, Schneeweiss S, Brookhart MA, Glynn RJ, Cook EF.
Evaluating uses of data mining techniques in propensity score
estimation: a simulation study. Pharmacoepidemiol. Drug Saf.
2008; 17: 546–55.

13 Rassen JA, Shelat AA, Myers J, Glynn RJ, Rothman KJ,
Schneeweiss S. One-to-many propensity score matching in
cohort studies. Pharmacoepidemiol. Drug Saf. 2012; 21: 69–80.

14 Stuart EA. Matching methods for causal inference: a review and a
look forward. Stat. Sci. 2010; 25: 1–21.

15 Austin PC. A critical appraisal of propensity-score matching in
the medical literature between 1996 and 2003. Stat. Med. 2008;
27: 2037–49.

16 Kurth T, Walker AM, Glynn RJ, Chan KA, Gaziano JM, Berger K,
Robins JM. Results of multivariable logistic regression, propen-
sity matching, propensity adjustment, and propensity-based
weighting under conditions of nonuniform effect. Am. J.
Epidemiol. 2006; 163: 262–70.

17 Abadie A, Imbens GW. Large sample properties of matching esti-
mators for average treatment effects. Econometrica 2006; 74:
235–67.

18 Rosenbaum PR, Rubin DB. Reducing bias in observational
studies using subclassification on the propensity score. J. Am.
Stat. Assoc. 1984; 79: 516–24.

19 Austin PC. Goodness-of-fit diagnostics for the propensity score
model when estimating treatment effects using covariate adjust-
ment with the propensity score. Pharmacoepidemiol. Drug Saf.
2008; 17: 1202–17.

20 Rubin DB. On principles for modelling propensity scores in
medical research. Pharmacoepidemiol. Drug Saf. 2008; 17: 1202–
17.

21 Lunceford JK, Davidian M. Stratification and weighting via the
propensity score in estimation of causal treatment effects: a
comparative study. Stat. Med. 2004; 23: 2937–60.

Table 2 Estimates of the effect of personal smoking on
subsequent asthma remission using various statistical
analysis methods

Analysis method Odds ratio 95% CI P-value

Unadjusted 1.23 (0.65, 2.30) 0.53
Adjusted using logistic

regression
1.12 (0.56, 2.27) 0.75

Propensity score
methods
IPTW 1.13 (0.58, 2.21) 0.73
Stratification 0.99 (0.47, 2.09) 0.99
Matching (ATT) 1.06 (0.60, 1.86) 0.85
Covariate adjustment 1.10 (0.56, 2.14) 0.79
+ Adjustment via
logistic regression

1.17 (0.57, 2.37) 0.67

ATT, average treatment effect in the treated; CI, confidence
interval; IPTW, inverse probability of treatment weighting.

Propensity scores 633

© 2014 Asian Pacific Society of Respirology Respirology (2014) 19, 625–635

 14401843, 2014, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/resp.12312 by N

ational T
aiw

an U
niversity, W

iley O
nline L

ibrary on [13/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



22 Lee BK, Lessler J, Stuart EA. Weight trimming and propensity
score weighting. PLoS ONE 2011; 6: e18174.

23 Imbens G. The role of the propensity score in estimating dose-
response functions. Biometrika 2000; 87: 706–10.

24 Imbens G, Hirano K. The propensity score with continuous treat-
ments. In: Gelman A and Meng X (eds) Applied Bayesian Model-
ing and Causal Inference from Incomplete-Data Perspectives.
John Wiley and Sons, West Sussex, 2004; 73–84.

25 Brookhart MA, Schneeweiss S, Rothman KJ, Glynn RJ, Avorn J,
Sturmer T. Variable selection for propensity score models. Am. J.
Epidemiol. 2006; 163: 1149–56.

26 Rubin DB, Thomas N. Combining propensity score matching
with additional adjustments for prognostic covariates. J. Am.
Stat. Assoc. 2000; 95: 573–85.

27 Qu Y, Lipkovich I. Propensity score estimation with missing
values using a multiple imputation missingness pattern (MIMP)
approach. Stat. Med. 2009; 28: 1402–14.

28 Greenland S, Finkle WD. A critical look at methods for handling
missing covariates in epidemiologic regression analyses. Am. J.
Epidemiol. 1995; 142: 1255–64.

29 Knol MJ, Janssen KJ, Donders AR, Egberts AC, Heerdink ER,
Grobbee DE, Moons KG, Geerlings MI. Unpredictable bias when
using the missing indicator method or complete case analysis for
missing confounder values: an empirical example. J. Clin.
Epidemiol. 2010; 63: 728–36.

30 StataCorp. 2013. Stata Statistical Software: Release 13. College
Station, TX: StataCorp LP.

31 Brun-Buisson C, Richard JC, Mercat A, Thiebaut AC, Brochard L.
Early corticosteroids in severe influenza A/H1N1 pneumonia
and acute respiratory distress syndrome. Am. J. Respir. Crit. Care
Med. 2011; 183: 1200–6.

32 Castleberry AW, Worni M, Osho AA, Snyder LD, Palmer SM,
Pietrobon R, Davis RD, Hartwig MG. Use of lung allografts from
brain-dead donors after cardiopulmonary arrest and resuscita-
tion. Am. J. Respir. Crit. Care Med. 2013; 188: 466–73.

33 Devasia RA, Blackman A, Gebretsadik T, Griffin M, Shintani A,
May C, Smith T, Hooper N, Maruri F, Warkentin J, et al.
Fluoroquinolone resistance in Mycobacterium tuberculosis: the
effect of duration and timing of fluoroquinolone exposure. Am. J.
Respir. Crit. Care Med. 2009; 180: 365–70.

34 Ferrer R, Artigas A, Suarez D, Palencia E, Levy MM, Arenzana A,
Perez XL, Sirvent JM. Effectiveness of treatments for severe
sepsis: a prospective, multicenter, observational study. Am. J.
Respir. Crit. Care Med. 2009; 180: 861–6.

35 Kim SH, Hong SB, Yun SC, Choi WI, Ahn JJ, Lee YJ, Lee HB, Lim
CM et al. Corticosteroid treatment in critically ill patients with
pandemic influenza A/H1N1 2009 infection: analytic strategy
using propensity scores. Am. J. Respir. Crit. Care Med. 2011; 183:
1207–14.

36 Pham T, Combes A, Roze H, Chevret S, Mercat A, Roch A,
Mourvillier B, Ara-Somohano C et al. Extracorporeal membrane
oxygenation for pandemic influenza A(H1N1)-induced acute
respiratory distress syndrome: a cohort study and propensity-
matched analysis. Am. J. Respir. Crit. Care Med. 2013; 187: 276–85.

37 Sellares J, Lopez-Giraldo A, Lucena C, Cilloniz C, Amaro R,
Polverino E, Ferrer M, Menendez R et al. Influence of previous
use of inhaled corticoids on the development of pleural effusion
in community-acquired pneumonia. Am. J. Respir. Crit. Care
Med. 2013; 187: 1241–8.

38 Tegethoff M, Greene N, Olsen J, Schaffner E, Meinlschmidt G.
Inhaled glucocorticoids during pregnancy and offspring
pediatric diseases: a national cohort study. Am. J. Respir. Crit.
Care Med. 2012; 185: 557–63.

39 Wisnivesky JP, Halm E, Bonomi M, Powell C, Bagiella E. Effec-
tiveness of radiation therapy for elderly patients with unresected
stage I and II non-small cell lung cancer. Am. J. Respir. Crit. Care
Med. 2010; 181: 264–9.

40 Arabi YM, Khedr M, Dara SI, Dhar GS, Bhat SA, Tamim HM, Afesh
LY. Use of intermittent pneumatic compression and not gradu-
ated compression stockings is associated with lower incident

VTE in critically ill patients: a multiple propensity scores
adjusted analysis. Chest 2013; 144: 152–9.

41 Haque NZ, Zuniga LC, Peyrani P, Reyes K, Lamerato L, Moore CL,
Patel S, Allen M et al. Relationship of vancomycin minimum
inhibitory concentration to mortality in patients with
methicillin-resistant Staphylococcus aureus hospital-acquired,
ventilator-associated, or health-care-associated pneumonia.
Chest 2010; 138: 1356–62.

42 Kates M, Swanson S, Wisnivesky JP. Survival following lobectomy
and limited resection for the treatment of stage I non-small cell
lung cancer ≤1cm in size: a review of SEER data. Chest 2011; 139:
491–6.

43 Kaw R, Pasupuleti V, Walker E, Ramaswamy A, Foldvary-Schafer
N. Postoperative complications in patients with obstructive
sleep apnea. Chest 2012; 141: 436–41.

44 Miano TA, Reichert MG, Houle TT, MacGregor DA, Kincaid EH,
Bowton DL. Nosocomial pneumonia risk and stress ulcer
prophylaxis: a comparison of pantoprazole vs ranitidine in
cardiothoracic surgery patients. Chest 2009; 136: 440–7.

45 Mirsaeidi M, Peyrani P, Aliberti S, Filardo G, Bordon J, Blasi F,
Ramirez JA. Thrombocytopenia and thrombocytosis at time of
hospitalization predict mortality in patients with community-
acquired pneumonia. Chest 2010; 137: 416–20.

46 Ortiz G, Frutos-Vivar F, Ferguson ND, Esteban A, Raymondos K,
Apezteguia C, Hurtado J, Gonzalez M et al. Outcomes of patients
ventilated with synchronized intermittent mandatory ventila-
tion with pressure support: a comparative propensity score
study. Chest 2010; 137: 1265–77.

47 Rineer J, Schreiber D, Katsoulakis E, Nabhani T, Han P, Lange C,
Choi K, Rotman M. Survival following sublobar resection for
early-stage non-small cell lung cancer with or without adjuvant
external beam radiation therapy: a population-based study.
Chest 2010; 137: 362–8.

48 Sadatsafavi M, Fitzgerald M, Marra C, Lynd L. Costs and health
outcomes associated with primary vs secondary care after an
asthma-related hospitalization: a population-based study. Chest
2013; 144: 428–35.

49 Thomas CP, Ryan M, Chapman JD, Stason WB, Tompkins CP,
Suaya JA, Polsky D, Mannino DM et al. Incidence and
cost of pneumonia in medicare beneficiaries. Chest 2012; 142:
973–81.

50 Valles J, Peredo R, Burgueno MJ, Rodrigues de Freitas AP, Millan
S, Espasa M, Martin-Loeches I, Ferrer R et al. Efficacy of single-
dose antibiotic against early-onset pneumonia in comatose
patients who are ventilated. Chest 2013; 143: 1219–25.

51 Zilberberg MD, Nathanson BH, Sadigov S, Higgins TL, Kollef MH,
Shorr AF. Epidemiology and outcomes of clostridium difficile-
associated disease among patients on prolonged acute mechani-
cal ventilation. Chest 2009; 136: 752–8.

52 Attridge RT, Frei CR, Restrepo MI, Lawson KA, Ryan L, Pugh MJ,
Anzueto A, Mortensen EM. Guideline-concordant therapy and
outcomes in healthcare-associated pneumonia. Eur. Respir. J.
2011; 38: 878–87.

53 Groenwold RH, Hoes AW, Hak E. Impact of influenza vaccination
on mortality risk among the elderly. Eur. Respir. J. 2009; 34:
56–62.

54 Malo de Molina R, Mortensen EM, Restrepo MI, Copeland LA,
Pugh MJ, Anzueto A. Inhaled corticosteroid use is associated
with lower mortality for subjects with COPD and hospitalised
with pneumonia. Eur. Respir. J. 2010; 36: 751–7.

55 Mounier R, Adrie C, Francais A, Garrouste-Orgeas M, Cheval C,
Allaouchiche B, Jamali S, Dinh-Xuan AT et al. Study of prone
positioning to reduce ventilator-associated pneumonia in
hypoxaemic patients. Eur. Respir. J. 2010; 35: 795–804.

56 Wisnivesky JP, Bonomi M, Lurslurchachai L, Mhango G,
Halm EA. Radiotherapy and chemotherapy for elderly patients
with stage I-II unresected lung cancer. Eur. Respir. J. 2012; 40:
957–64.

57 Shaheen SO, Northstone K, Newson RB, Emmett PM,
Sherriff A, Henderson AJ. Dietary patterns in pregnancy and

EJ Williamson and A Forbes634

© 2014 Asian Pacific Society of RespirologyRespirology (2014) 19, 625–635

 14401843, 2014, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/resp.12312 by N

ational T
aiw

an U
niversity, W

iley O
nline L

ibrary on [13/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



respiratory and atopic outcomes in childhood. Thorax 2009; 64:
411–17.

58 Havstad SL, Johnson CC, Zoratti EM, Ezell JM, Woodcroft K,
Ownby DR, Wegienka G. Tobacco smoke exposure and allergic
sensitization in children: a propensity score analysis. Respirology
2012; 17: 1068–72.

59 Austin PC. Balance diagnostics for comparing the distribution of
baseline covariates between treatment groups in propensity-
score matched samples. Stat. Med. 2009; 28: 3083–107.

60 Imai K, King G, Stuart E. Misunderstandings among experimen-
talists and observationalists about causal inference. J. R. Stat.
Soc. [Ser. A] 2008; 171(Pt 2): 481–502.

61 Austin PC. Assessing balance in measured baseline covariates
when using many-to-one matching on the propensity-score.
Pharmacoepidemiol. Drug Saf. 2008; 17: 1218–25.

62 Westreich D, Cole SR, Funk MJ, Brookhart MA, Sturmer T. The
role of the c-statistic in variable selection for propensity score
models. Pharmacoepidemiol. Drug Saf. 2011; 20: 317–20.

63 Gibson HB, Silverstone H, Gandevia B, Hall GJ. Respiratory dis-
orders in seven-year-old children in Tasmania: aims, methods
and administration of the survey. Med. J. Aust. 1969; 2: 201–5.

64 Burgess JA, Matheson MC, Gurrin LC, Byrnes GB, Adams KS,
Wharton CL, Giles GG, Jenkins MA et al. Factors influencing
asthma remission: a longitudinal study from childhood to
middle age. Thorax 2011; 66: 508–13.

65 Shah BR, Laupacis A, Hux JE, Austin PC. Propensity score
methods gave similar results to traditional regression modeling
in observational studies: a systematic review. J. Clin. Epidemiol.
2005; 58: 550–9.

Supporting Information
Additional Supporting Information may be found in the online
version of this article at the publisher’s web-site:

Table S1 Papers identified that were published in 2013.

Table S2 Papers identified that were published in 2012.

Table S3 Papers identified that were published in 2011.

Table S4 Papers identified that were published in 2010.

Table S5 Papers identified that were published in 2009.

Propensity scores 635

© 2014 Asian Pacific Society of Respirology Respirology (2014) 19, 625–635

 14401843, 2014, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/resp.12312 by N

ational T
aiw

an U
niversity, W

iley O
nline L

ibrary on [13/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense


