1. A Tale of Two Rapidly-Intensifying Super-typhoons: Hagibis (2019) and Haiyan (2013)

I-I Lin* (NTUAS), Robert F. Rogers* (NOAA/HRD), Hsiao-Ching Huang, Yi-Chun Liao, Derrick Herndon (CIMSS/Wisconsin), Jin-Yi Yu (UC Irvine), Ya-Ting Chang, Jun A. Zhang (NOAA/HRD), Christina M. Patricola (Univ. of Iowa/Lawrence Berkeley Lab), Iam-Fei Pun (NCU), & Chun-Chi Lien

In Press 2021, Bulletin of the American Meteorological Society

2. The Association of Typhoon Intensity Increase with Translation Speed Increase in the South China Sea

Ya-ting Chang, I-I Lin*, Hsiao-Ching Huang, Yi-Chun Liao and Chun-Chi Lien (NTUAS) Sustainability, 2020

3. ENSO, Tropical Cyclone, and Global Warming – A Review

I-I Lin (NTUAS), Suzana J. Camargo (Columbia Uni.), Christina M. Patricola (Lawrence Berkeley Lab/Uni. of Iowa), Johnny C L Chan (City Univ. of Hong Kong), Julien Boucharel (LEGOS, Uni. of Toulouse, France), Savin Chand (Federation University, Australia), Phil Klotzbach (CSU), Bin Wang (Uni. of Hawaii), Ping Chang (Texas A&M Uni.), Tim Li (Uni. of Hawaii), Fei Fei Jin (Uni. of Hawaii) *Chap. 17, AGU 100th Celebration Monograph, 2020*

Typhoon Hagibis: Japan postpones Emperor Naruhito's enthronement parade BBC

() 18 October 2019

Typhoon Hagibis

World politics Business & finance Economics Science & technology Culture Blogs Debate Multimedia

Typhoon Haiyan Print edition Worse than hell

The Economist

Lin et al. 2014; Lagmay et al. 2015

One of the strongest storms ever recorded has devastated parts of the Philippines, and relief is slow to arrive

Nov 16th 2013 | CEBU, HANOI AND MANILA | From the print edition

Death: 6300; Injured: 28689; Damage : US \$ 2,051,710,653 (2 billion) http://en.wikipedia.org/wiki/Typhoon_Haiyan

Cat. '6', Haiyan: 170kts!

Lin et al. GRL 2014

Data and Method

Co-Existing Multiple Factors:

Ocean: Surface and Subsurface, Pre-TC SST/OHC, and During-TC Air-Sea Interaction (e.g., during-TC SST, Fluxes)

Atmosphere: Wind Shear, Rh

TC Structure and Attributes: Size, Uh, Convective feature, Eyewall Replacement Cycle

3DPWP: TC wind, size, Uh, ocean T/S profiles, Transit Time

Data and Method

- 1. Large-Scale Atmospheric Environment (e.g., DeMaria et al. 2005; Knaff et al. 2018): Vertical Wind Shear (VWS) & RH (Relative Humidity); 200-800km Ring/400-1000km Ring
- 2. Large-Scale, Pre-TC Ocean (SST, Ocean Heat Content (OHC)) and During-TC, Local-Scale Air-Sea Interaction (During-TC Cooling and Air-Sea Sensible and Latent Heat Fluxes (Lin et al. 2005; 2009; 2013; Wu et al. 2007; Goni et al. 2009; Lin et al. 2009; 2013; Chih and Wu 2020).
- 3. Vortex-Scale TC Properties & Convective-Scale Features (Chavas and Emanuel 2010; Rogers et al. 2013; 2017; Pun et al. 2018; Molinari et al. 2019; Peng and Wu 2020; Shen et al. 2021): Uh (Translation Speed), Size (RMW, R64, R50, R34], Eyewall Replacement Cycle (ERC, Kuo et al. 2009; Wimmers and Velden 2016; Huang et al. 2018), Convective-Scale Features (Radial Location of Deep Convection)

Observational Data:

NCEP-CFSR/6hrly, JTWC Best Track (including track, RMW, size, intensity, Uh), ASCAT wind, Satellite Altimetry SSHA (Sea Surface Height Anomaly), Microwave Sea Surface Temperature (SST), Argo in situ floats (pre, and during-TC), NRL microwave imagery, ARCHER ((Automated Rotational Center Hurricane Eye Retrieval)/MPERC (Microwave-based Probability of Eyewall Replacement Cycle)/MIMIC (Morphed Integrated Microwave Imagery at CIMSS), IR Tb imagery (NRL), NCEP near surface Ta and q: converting from Sigma 995 level (~40m) to 10m

Data & Method-2 : Numerical Simulations & Air-Sea Flux Estimation

3-D PWP (Price-Weller-Pinkel, Price et al. 1986; 1994) Ocean Model Drag Coefficient: high wind Cd, Powell et al. 2013 TC's Transit Time (Size in D50/Uh) at each 6hrly point. Input: pre-TC Argo T/S profiles and JTWC max. intensity and wind profile shape

6 Experiments: 2 Observational + 4 Sensitivity Experiments (for Uh, Size, Uh+Size, Salinity)

a. P1 (Obs. run)	Input TC Size in D50 (km)	Input TC Uh (m s ⁻¹)	SST _{preTC} (°C) [from Argo]	SST _{duringTC} (°C) [3DPWP output]	Cooling (°C)
Hagibis obs. run	266.8 ±91.2	7.7 ±0.6	30.33 ±0.20 [4 Argo]	29.76 ±0.30	0.57 ±0.30
Haiyan obs. run	157.4 ±53.2	7.8 ±0.5	29.05 ±0.59 [3 Argo]	28.94 ±0.05	0.11 ±0.05

a. P1	SST _{during} TC	Ta (°C)	q s (g kg ⁻¹)	qa (g kg ⁻¹)	∆ T	∆ q	SHF	LHF	Total Flux
(Obs. run)	(°C) [3DPWP]	[CFS]	[SST _{duringTC}]	[CFS]	(°C)	(g kg ⁻¹)	(W m ⁻²)	(W m ⁻²)	(W m ⁻²)
Hagibis	29.76	28.42	25.74	19.33	1.34	6.42	82	1169	1250
obs. run	±0.30	±0.35	±0.31	±0.28	±0.60	±0.25	±23	±433	±433
Haiyan	28.94	27.78	24.61	19.37	1.15	5.24	69	853	923
obs. run	±0.05	±1.11	±0.16	±0.23	±1.10	±0.09	±65	±212	±240

Concentrated area of deep convection strategically located at center, with a tiny eye

Rapid eyewall contraction 30km to 10km in 6h

Deep convection at TC center: linking with intensification due to peak diabatic heating being preferentially located within a region of high inertial stability (Pendergrass and Willoughby 2009; Vigh and Schubert 2009; Rogers et al. 2013)

&

More likely to cause inward transport of angular momentum and rapid eyewall contraction (Smith and Montgomery 2016; Chen et al. 2018) Small RWM, favorable radial location of deep convection and rapid eyewall contraction

Haiyan: Ring of convection

Eyewall contraction (30km to 10km in 18h)

a. P2 (Obs. run)	Input TC Size in D50 (km)	Input TC Uh (m s ⁻¹)	SST _{preTC} (°C) [from Argo]	SST _{during} TC (°C) [3DPWP output]	Cooling (°C)
Hagibis obs. run	447.2 ±45.4	4.5 ±1.1	29.62 ±0.10 [10 Argo]	28.34 ±0.26	1.29 ±0.26
Haiyan obs. run	231.6 ±25.6	9.5 ±0.9	29.24 ±0.23 [20 Argo]	29.06 ±0.01	0.18 ±0.01

a. P2	SST _{during} TC	Ta (°C)	q s (g kg ⁻¹)	qa (g kg ⁻¹)	∆ T	∆ q	SHF	LHF	Total Flux
(Obs. run)	(°C) [3DPWP]	[CFS]	[SST _{duringTC}]	[CFS]	(°C)	(g kg ⁻¹)	(W m ⁻²)	(W m ⁻²)	(W m ⁻²)
Hagibis	28.34	29.29	25.62	21.25	-0.95	4.37	-81	957	876
obs. run	±0.26	±0.33	±0.52	±0.45	±0.58	±0.96	±51	±163	±213
Haiyan	29.06	27.65	25.73	19.15	1.41	6.57	138	1689	1827
obs. run	±0.01	±0.77	±0.40	±0.87	±0.78	±1.07	±78	±364	±416

Slower ERCs for larger-sized TCs

Haiyan remain compact R34 ~ 250km

Proposed Negative Impact of Large-Sized TCs:

- 1. Stronger Ocean Cooling/Lower During-TC SST/Smaller delta T & delta q/Less Air-Sea Fluxes
- 2. Slower ERC- possibly prolonging ERC's negative impact
- 3. Possible reduction in radial inflow through enhanced inertial stability in the outer core (Rogers et al. 2013; Martinez et al. 2017)

Conclusions

- 1. Ocean plays important roles for both P1 and P2, but the key is not just ocean but its interaction with TC attributes (e.g. Size and Uh). Indeed P1 Hagibis has more flux than Haiyan and vice versa for P2
- 2. P1: Spectacular RI for Hagibis: During-TC SST ~ 30°C (Pre-TC 30.5° 0.5° Cooling) 36%/ more flux for Hagibis than Haiyan, strategic convection location and rapid eyewall contraction
- 3. P2: Size enlargement (nearly double) causes <u>3 negative factors</u>
 a. Stronger ocean cooling (less flux), Uh reduction also reduces flux, ~ equal contribution
 b. Slower/Longer Eyewall Replacement Cycle (ERC)
 c. Possible reduction in radial inflow via enhanced inertial stability at outer core
- 4. TC Size: Opens-Up an Interesting New Dimension for Research in TC-Ocean Interaction (from Pun et al. 2018 to this work Lin et al. 2021), Hargibis also is the largest TC in the typhoon record!
- 5. Salinity and Vertical Wind Shear are not the differentiating factors for these 2 STYs

2.

The Association of Typhoon Intensity Increase with Translation Speed Increase in the South China Sea

Ya-ting Chang, I-I Lin*, Hsiao-Ching Huang, Yi-Chun Liao and Chun-Chi Lien (NTUAS)

Sustainability, 2020

nature

Letter | Published: 06 June 2018

A global slowdown of tropical-cyclone translation speed

James P. Kossin 🖂

Nature 558, 104-107(2018) Cite this article

Chang et al. Sustainability 2020

TC Translation Speed & Intensity over the SCS

3.

ENSO, Tropical Cyclone, and Global Warming – A Review

I-I Lin (NTUAS), Suzana J. Camargo (Columbia Uni.), Christina M. Patricola (Lawrence Berkeley Lab/Uni. of Iowa), Johnny C L Chan (City Univ. of Hong Kong), Julien Boucharel (LEGOS, Uni. of Toulouse, France), Savin Chand (Federation University, Australia), Phil Klotzbach (CSU), Bin Wang (Uni. of Hawaii), Ping Chang (Texas A&M Uni.), Tim Li (Uni. of Hawaii), Fei Fei Jin (Uni. of Hawaii)

Chap. 17, AGU 100th Celebration Monograph, 2020

OPINIONS - SPECIAL TOPICS NEWS FROM AGU JOURNALS -

EDITORS' VOX

Perspectives on Earth and space science: A blog from AGU's journal editors

Editors' Vox

0-0

NEWS -

_____(f)_(4)

Advancing Knowledge of ENSO in a Changing Climate

A new book highlights research progress on El Niño Southern Oscillation dynamics and impacts and how they may change in a warmer world.

Chapter 17

ENSO and Tropical Cyclones

I-I Lin, Suzana J. Camargo, Christina M. Patricola, Julien Boucharel, Savin Chand, Phil Klotzbach, Johnny C. L. Chan, Bin Wang, Ping Chang, Tim Li, Fei-Fei Jin

Book Editor(s): Michael J. McPhaden, Agus Santoso, Wenju Cai

First published: 23 October 2020 | https://doi.org/10.1002/9781119548164.ch17

GEOPHYSICAL MONOGRAPH SERIES

El Niño Southern Oscillation in a Changing Climate

Editors

AGU

WILEY

- Michael J. McPhaden (PMEL, NOAA, USA)
- Agus Santoso (Univ. NSW, Australia)
- Wenju Cai (CSHOR/CSIRO,Australia)

Ch 1. Introduction Editors (New Issues..)

- Ch. 2. ENSO in the global climate system **Dr. Kevin Trenberth**, UCAR, USA
- Ch. 5 ENSO diversity *EP, CP, Mixed type (e.g. 2015)]* **Dr. Antonietta Capotondi**, NOAA, USA
- Ch. 12 Greenhouse forcing Dr. Wenju Cai, CSIRO, Aus.

Tropical cyclone intensity distribution

Best track data from NHC and JTWC, 1980~2018 (TD)

TS

C

C2

C3

C4

C5

(courtesy of Dan Fu, after Bell et al. 2014)

TC Track Density Anomaly Maps under El Nino (EP+CP), La Nina, EP, CP

Global Warming, TC, and ENSO

ENSO and 6 TC Basins

Ocean Heat Content Drops 30% During El Niño Over Western North Pacific (Zheng et al. Sci. Rep. 2015)

Ocean Heat Content Increases During La Nina/La Nina Like Multi-Decadal Condition to Fuel Record-Breaking Super typhoons (Lin et al. GRL 2014)

supplementary

a. P1 (Obs. run)	Input TC Size in D50 (km)	Input TC Uh (m s ⁻¹)	SST _{preTC} (°C) [from Argo]	SST _{duringTC} (°C) [3DPWP output]	Cooling (°C)
Hagibis obs. run	266.8 ±91.2	7.7 ±0.6	30.33 ±0.20 [4 Argo]	29.76 ±0.30	0.57 ±0.30
Haiyan obs. run	157.4 ±53.2	7.8 ±0.5	29.05 ±0.59 [3 Argo]	28.94 ±0.05	0.11 ±0.05

b. P1 (Sens. run)	Input TC Size in D50 (km)	Input TC Uh (m s ⁻¹)	SST _{preTC} (°C) [from Argo]	SST _{duringTC} (°C) [3DPWP output]	Cooling (°C)
Size sens. run	157.4 ±53.2	7.7 ±0.6	30.33 ±0.20 [4 Argo]	30.03 ±0.06	0.29 ±0.06
U _h sens. run	266.8 ±91.2	7.8 ±0.5	30.33 ±0.20 [4 Argo]	29.77 ±0.30	0.56 ±0.30
Size + U _h sens. run	157.4 ±53.2	7.8 ±0.5	30.33 ±0.20 [4 Argo]	30.04 ±0.06	0.29 ±0.06
Salinity sens. run	266.8 ±91.2	7.7 ±0.6	30.33 ±0.20 [4 Argo]	29.78 ±0.28	0.54 ±0.28

a. P1	SST _{during} TC	Ta (°C)	q s (g kg ⁻¹)	qa (g kg ⁻¹)	∆ T	∆ q	SHF	LHF	Total Flux
(Obs. run)	(°C) [3DPWP]	[CFS]	[SST _{duringTC}]	[CFS]	(°C)	(g kg ⁻¹)	(W m ⁻²)	(W m ⁻²)	(W m ⁻²)
Hagibis	29.76	28.42	25.74	19.33	1.34	6.42	82	1169	1250
obs. run	±0.30	±0.35	±0.31	±0.28	±0.60	±0.25	±23	±433	±433
Haiyan	28.94	27.78	24.61	19.37	1.15	5.24	69	853	923
obs. run	±0.05	±1.11	±0.16	±0.23	±1.10	±0.09	±65	±212	±240

b. P1	SST _{duringTC}	T _a (°C)	q s (g kg ⁻¹)	q _a (g kg ⁻¹)	∆ T	∆ q	SHF	LHF	Total Flux
(Sens. run)	(°C)[3DPWP]	[CFS]	[SST _{duringTC}]	[CFS]	(°C)	(g kg ⁻¹)	(W m ⁻²)	(W m ⁻²)	(W m ⁻²)
Size	30.03	28.42	26.15	19.33	1.62	6.82	106	1264	1370
sens. run	±0.06	±0.35	±0.08	±0.28	±0.40	±0.30	±33	±529	±554
U _h	29.77	28.42	25.75	19.33	1.35	6.43	82	1171	1253
sens. run	±0.30	±0.35	±0.30	±0.28	±0.57	±0.28	±19	±435	±435
Size + U _h	30.04	28.42	26.16	19.33	1.62	6.83	106	1266	1372
sens. run	±0.06	±0.35	±0.08	±0.28	±0.39	±0.30	±32	±530	±554
Salinity	29.78	28.42	25.78	19.33	1.36	6.45	83	1176	1260
sens. run	±0.28	±0.35	±0.28	±0.28	±0.58	±0.24	±23	±440	±442

a. P2 (Obs. run)	Input TC Size in D50 (km)	Input TC Uh (m s ⁻¹)	SST _{preTC} (°C) [from Argo]	SST _{during} TC (°C) [3DPWP output]	Cooling (°C)
Hagibis obs. run	447.2 ±45.4	4.5 ±1.1	29.62 ±0.10 [10 Argo]	28.34 ±0.26	1.29 ±0.26
Haiyan obs. run	231.6 ±25.6	9.5 ±0.9	29.24 ±0.23 [20 Argo]	29.06 ±0.01	0.18 ±0.01

b. P2 (Sens. run)	Input TC Size in D50 (km)	Input TC U _h (m s ⁻¹)	SST _{preTC} (°C) [from Argo]	SST _{during} TC (°C) [3DPWP output]	Cooling (°C)
Size sens. run	231.6 ±25.6	4.5 ±1.1	29.62 ±0.10 [10 Argo]	28.96 ±0.17	0.66 ±0.17
U _h sens. run	447.2 ±45.4	9.5 ±0.9	29.62 ±0.10 [10 Argo]	29.00 ±0.02	0.62 ±0.02
Size + U _h sens. run	231.6 ±25.6	9.5 ±0.9	29.62 ±0.10 [10 Argo]	29.34 ±0.01	0.28 ±0.01
Salinity sens. run	447.2 ±45.4	4.5 ±1.1	29.62 ±0.10 [10 Argo]	28.39 ±0.25	1.24 ±0.25

a. P2	SST _{during} TC	Ta (°C)	q s (g kg ⁻¹)	qa (g kg ⁻¹)	∆ T	∆ q	SHF	LHF	Total Flux
(Obs. run)	(°C) [3DPWP]	[CFS]	[SST _{duringTC}]	[CFS]	(°C)	(g kg ⁻¹)	(W m ⁻²)	(W m ⁻²)	(W m ⁻²)
Hagibis	28.34	29.29	25.62	21.25	-0.95	4.37	-81	957	876
obs. run	±0.26	±0.33	±0.52	±0.45	±0.58	±0.96	±51	±163	±213
Haiyan	29.06	27.65	25.73	19.15	1.41	6.57	138	1689	1827
obs. run	±0.01	±0.77	±0.40	±0.87	±0.78	±1.07	±78	±364	±416

b. P2	SST _{during} TC	Ta (°C)	q s (g kg ⁻¹)	qa (g kg ⁻¹)	∆ T	∆ q	SHF	LHF	Total Flux
(Sens. run)	(°C) [3DPWP]	[CFS]	[SST _{duringTC}]	[CFS]	(°C)	(g kg ⁻¹)	(W m ⁻²)	(W m ⁻²)	(W m ⁻²)
Size	28.96	29.29	26.56	21.25	-0.32	5.31	-28	1166	1138
sens. run	±0.17	±0.33	±0.40	±0.45	± 0.49	±0.81	±41	±124	±164
U _h	29.00	29.29	26.62	21.25	-0.29	5.37	-25	1180	1155
sens. run	±0.02	±0.33	±0.21	±0.45	± 0.34	±0.62	±29	±81	±107
Size + U _h	29.34	29.29	27.15	21.25	0.06	5.90	4	1297	1301
sens. run	±0.01	±0.33	±0.19	±0.45	± 0.34	±0.62	±28	±75	±100
Salinity	28.39	29.29	25.69	21.25	-0.90	4.44	-77	973	896
sens. run	±0.25	±0.33	±0.52	±0.45	± 0.58	±0.95	±51	±162	±211

Summary

1. Weather: Rapid Intensification (RI), Ocean Eddy, TC Translation Speed (Uh), TC Size, Shallow Water RI

▲

- 2. ITOP & Ocean Coupling Potential Intensity
- 3. Climate: Cat. 6, Haiyan/Hiatus, Patricia/2015 El Niño, ElNiño's stealth heat supply, South China Sea Uh/intensity trend
- 4. Global Warming

PDI reduction, Increase in subsurface stratification, Sea level rise and surge, Global Warming-Future ENSO-TC

5. Offset, Competition (Atm./Ocean), & Gaia Inter-annual, Multi-decadal, Centennial/Global Warming Scales

Negative process exist to offset positive processs to prevent TCs from developing towards only 1 direction

ECS: Larth & Space Science News	Search Eos Q
NEWS • NEWS FROM AGU JOURNALS • TOPICS & DISCIPLINES • OPINIONS •	BLOGS JOBS & RESOURCES
NAI URAL HAZARDS	
Probing the Power of Pacific	
Supertyphoons	Importance of Category '6'
	Haiyan (170kts, 2013)

≣ 🗔

E 35 B

百 15 節 1

Hornyak EOS 2017;

Patricia (185kts, 2015)

Figure 1 | Map showing distribution of hazard frequency and mortality risk from TCs for the year 2010. Estimates are applied to all pixels on a geographic grid. Mortality risk is categorized from low to extreme.

Peduzzi et al. Nat. C.C. 2012

4 factors affect the cooling effect

- Pre-existing ocean T-S profile
 - TC wind speed
 - TC translation speed
 - TC size
 - * TC_transit time

= D/Uh

Lin et al. MWR 2009; Lin JGR 2012, Lin et al. GRL 2013 The bulk formulae for SHF and LHF calculations are, SHF: $Q_s = C_H W (T_s - T_a) \rho_a C_{pa}$, LHF:

 $Q_L = C_E W(q_s - q_a) \rho_a L_{va}$, where C_H and C_E are the sensible and latent heat exchange

coefficients under high wind condition (Zhang et al. 2008). As in Zhang et al. 2008, $C_H(C_E)$ is

1.1 (1.2) x 10³. W is ocean surface wind speed (in 1-min average, from JTWC), T_s and T_a are

during-TC SST and near surface air temperature, q_s and q_a are surface and air specific humidity

 ρ_a , C_{pa} , and L_{va} are air density, heat capacity of the air, and latent heat of vaporization. q_s

is calculated from the during-TC SST.

REWRITING THE TROPICAL **RECORD BOOKS** The Extraordinary Intensification of Hurricane Patricia (2015)

ROBERT F. ROGERS, SIM ABERSON, MICHAEL M. BELL, DANIEL J. CECIL, JAMES D. DOYLE, TODD B. KIMBERLAIN, JOSH MORGERMAN, LYNN K. SHAY, AND CHRISTOPHER VELDEN

East Pacific Hurricane Patricia (2015) broke several records, including intensification rate and peak intensity. An impressive array of observations was collected in this storm for much of its life cycle.

n late October 2015, a remarkable meteorological event unfolded off the west coast of Mexico. At

Hurricane Center (NHC), the WMO's Archive of Weather and Climate Extremes, a compendium of first the event seemed like a typical east Pacific internationally accepted extremes (https://www.asu

MIMIC Animations

Hagibis http://tropic.ssec.wisc.edu/realtime/mimtc/2019_20W/web/displayGifsBy12hr_07.html

Haiyan http://tropic.ssec.wisc.edu/real-time/mimictc/2013_31W/webManager/mainpage.html

Haiyan

M-PERC (Microwave-based Probability of Eyewall Replacement Cycle)

ERC archive dataset (1999-2011, 2016)

Cindy	1999_04L	Hovmoller	ARCHER Track
Dennis	1999_05L	<u>Hovmoller</u>	ARCHER Track
Floyd	1999_08L	<u>Hovmoller</u>	ARCHER Track
Gert	1999_09L	<u>Hovmoller</u>	ARCHER Track
Lenny	1999_16L	<u>Hovmoller</u>	ARCHER Track
Alberto	2000_03L	<u>Hovmoller</u>	ARCHER Track
Isaac	2000_13L	<u>Hovmoller</u>	ARCHER Track
Keith	2000_15L	<u>Hovmoller</u>	ARCHER Track
Erin	2001_06L	<u>Hovmoller</u>	ARCHER Track
Felix	2001_07L	<u>Hovmoller</u>	ARCHER Track
Michelle	2001_15L	<u>Hovmoller</u>	ARCHER Track

Data & Method-2 : Numerical Simulations & Air-Sea Flux Estimation

3-D PWP (Price-Weller-Pinkel, Price et al. 1986; 1994) Ocean Model Drag Coefficient: high wind Cd, Powell et al. 2013 TC's Transit Time (Size in D50/Uh) at each 6hrly point. Input: pre-TC Argo T/S profiles and JTWC max. intensity and wind profile shape

6 Experiments: 2 Observational + 4 Sensitivity Experiments (for Uh, Size, Uh+Size, Salinity)

VOLUME 11

4 factors affect the cooling effect

- Pre-existing ocean T-S profile
 - TC wind speed
 - TC translation speed
 - TC size

* TC_transit time = D/Uh

Lin et al. MWR 2009; Lin JGR 2012

RI: 1250-920/920= 36%

Conclusions – ALL Conclusions

- 1. P1: Ocean opping tmpl for both STY (free Uh & TS profile), but Hagibis had really high pre-TC SST, so during-TC SST still maintain ~ 30° C .vs. ~ 29° C for Haiyan. 36% more flux for Hagy i. Stratege location of deep convection nearly coincident at center, rapid eyewall contraction (30km to 10km in 6h) -favouring Hagibis's Explosive RI
- 2. P2: Major size expansion for Hagibis (>200%, R34 ~520km), Haiyan remained compact. Proposed negative impacts on Hagibis's intensity: larger cooling (also slower Uh), slower ERCs, & possible reduction in radial inflow via enhanced inertial stability at outer core

3. Multi-scale interactions:

- Change in vortex-scale properties (e.g., size) to impact TC intensity via interacting with large-scale ocean environment & ocean sub-surface pathway
- Size change may impact TC intensity via ERC pathway
- Configuration of convective-scale feature, e.g., ice scattering at TC center may associate with vortex-scale rapid eyewall contraction to favour RI

Nature's fascinating and co-existing cross-scale interaction pathways: Delicate Control on TC Intensity