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Introduction

This supporting information provides 1 text, 14 figures and 2 tables:

Text S1 provides the descriptions of 3DPWP model and the simulation information in this
study.

Figure S1 shows the anomalies ocean conditions for Patricia and Haiyan. Figures S2-S5
and S7-S8 are TC’s intensification process of SHF and LHF. Figure S6 is SST cooling
effect under a slower translation speed between different latitude. Figures S9-S12 show the
comparison of three strong EP El Nifio conditions. Figures S13-S14 show the TC wind
profile and the implementation of TC forcing in the 3DPWP model.

Table S1 provides TC data of Patricia and Haiyan. Table S2 is corresponding to Figures
S9-S12, show the comparison of three strong EP El Nifio conditions.


mailto:iilin@webmail.as.ntu.edu.tw

33
34

35
36
37
38
39
40
41
42
43
44
45

46
47
48
49
50
51
52
53
54
55

56
57
58

59

60

61
62
63
64
65

66
67
68
69
70
71
72

Text S1. Description of three dimensional Price-Weller-Pinkel (3DPWP) mixed layer
model

The 3DPWP model is a numerical ocean model proposed by Price et al. [1994]. It
simulates the changes of upper ocean current, temperature, and salinity fields induced by a
hurricane. The 3DPWP model essentially embraces the 1D version of PWP model [Price
et al., 1986] that is hydrostatic with primitive equations. This model is designed to handle
the vertical mixing process, vertical and horizontal advections, as well as air-sea exchanges.
In this model, the surface mixed layer evolves due to entrainment mixing and air-sea
exchanges. The surface heat flux is computed by assuming the air temperature (T, = 26 °C)
and the dewpoint temperature (T,; = 25 °C) are constant. The bulk transfer coefficient for
sensible and latent heat flux is 1.3 x 103, The momentum flux (or surface wind stress) is
calculated from bulk transfer formula. The drag coefficient (C;) in this study is based on
Powell et al. [2003].

It has been noted in Price [1981] that entrainment mixing is the primary mechanism
for reducing the SST beneath a moving hurricane (or tropical cyclone (TC)), while air-sea
heat exchange plays only a minor role. According to Price [1981], the entrainment mixing
accounted for ~85% of the TC-induced SST cooling, and air-sea heat exchange for
remained ~15%. It solves the wind-driven, baroclinic ocean response, including a treatment
of turbulent vertical mixing in the upper ocean. The important process of vertical mixing
in the 3DPWP model is implemented through the mixing parameterization, inducing
density (modified by temperature and salinity) and velocity shears (driven by TC wind).
The upper ocean will be adjusted until three stability criteria are satisfied, which are
static stability:

ap
- >
0z — 0,

mixed-layer shear flow stability (bulk Richardson number R,):

géph
=—> (.
b= vz = 063

and stratified shear flow stability (gradient Richardson number R):

gop/oz
=2 L7 >
9= poGav/jonye = 0%

where z is positive downward depth with z = 0 begin the sea surface, p, is density of sea
water taken as 1024 kg/m3, p is the density of sea water at each depth, h is the mixed layer
depth, V is the horizontal current, g is the acceleration due to gravity, and & represents the
vertical difference across the base of the mixed layer. The model runs with time steps At =
360 s.

The size of this model domain is 450 km (in the cross-track direction) by 460 km (in
the along-track direction) with a 5 km horizontal resolution. The vertical resolution is5 m
for the upper 100 m, 10 m for the depth between 100-200 m, and 50 m for the depth between
200-1000 m. Each model grid point is homogeneously initialized with the same
temperature and salinity vertical profiles, and thus the ocean initial condition is horizontally
homogeneous over the whole domain. Simulations were performed for the periods of TC’s
intensification, from tropical storm (TS, =35 knots) stage to peak strength. The initial
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ocean temperature and salinity profiles in this study were obtained from two datasets, a)
GODAS reanalysis monthly means data averaged from TS to peak and b) the nearest pre-
TC (within 3-5 days prior to TC’s passing) Argo in-situ floats observation data along TC
tracks.

Furthermore, the TC-induced SST in 3DPWP model is not only affected by pre-TC
ocean conditions and atmospheric factors as mentioned above, but also associated with TC
intensity (wind speed) and TC transit time, which controlled by TC size (D) and TC
translation speed (U,) [Lin et al., 2008]:

TCiransit—time = UE
h
In this study, the TC is assumed moving with a constant translation speed (U), and its
intensity and structure will not change over time. A maximum wind speed, radius of
maximum wind (rmw), and U,, are required to characterize the TC in the model. The TC's
latitude and U, are mean values along the TC tracks from TS to peak and TC size (D) is
determined by the radius of 50 knots wind at the peak strength. The TC-induced SST
cooling impact region is averaged over a circle area of 2.5 times rmw from the TC center.
All the TC characteristics (U, D, rmw, and storm structure) in the simulations were
obtained from the best track data of NHC and JTWC. TC's radial wind profile which we
used to construct the TC wind field in the model consists of rmw, the radii of 64 knots wind
(r64), 50 knots wind (r50), and 34 knots wind (r34) at TC’s peak (corresponds to Table S1).
The wind profiles for Patricia and Haiyan are shown as Figure S13.

In addition, the implementation of TC forcing is shown as Figure S14. The TC in the
model moves from bottom to top along the middle of x-axis at a constant U,, (left panel).
For example, given the radius of Patricia is 83.3 km, Patricia moves from (x, y) = (0, -83.3)
to (0, 83.3) at U, = 6.2 m/s. The initial SST and the resultant TC-induced SST field are
presented in the right panel of Figure S14.

Furthermore, given the current model setting we have mentioned above, 3DPWP may
overestimate the SST cooling, because the TC intensity (wind speed) and structure of the
TC are unchanged over time. It is one of the limitation we have to note for this uncoupled
model.
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Figure S1. As in Figure 1, but for SST anomalies, TCHP anomalies, D26 anomalies, and

D20 anomalies.
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Figure S2. As in Figure 2, but for the corresponding mean pre-TC SST (SSTpreTC) along

TC track (thin line) and TC-induced SST cooling result (SST

mixed

= T) (thick line) in (a),

the mean near surface air temperature (T, ) along TC track in (b), during-TC air-sea
temperature difference (AT = T; — T,) in (c), and sensible heat flux (SHF) in (d).
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Figure S3. As in Figure 2, but for the corresponding surface specific humidity of pre-TC
SST (qs) in (a), mean near-surface air humidity (q,) along TC track in (b), air-sea humidity
difference (Aq = g5 — q,) in (c), and latent heat flux (LHF) in (d).
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Figure S4. As in Figure 3, but for the corresponding mean pre-TC SST (SSTpreTC) along

TC track (thin line) and TC-induced SST cooling result (SST

mixed

= T) (thick line) in (a),

the mean near surface air temperature (T, ) along TC track in (b), during-TC air-sea
temperature difference (AT = T; — T,) in (c), and sensible heat flux (SHF) in (d).
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125  Figure S5. As in Figure 3, but for the corresponding the surface specific humidity of pre-
126 TC SST (qs) in (a), the mean near-surface air humidity (q,) along TC track in (b), air-sea
127  humidity difference (Aq = qs — q,) in (¢), and latent heat flux (LHF) in (d).
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Figure S7. As in Figure 6, but for the corresponding mean pre-TC SST (SSTpreTC) along

TC track (thin line) and TC-induced SST cooling result (SST

mixed

= T) (thick line) in (a),

the mean near surface air temperature (T, ) along TC track in (b), during-TC air-sea
temperature difference (AT = T; — T,) in (c), and sensible heat flux (SHF) in (d).
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Figure S8. As in Figure 6, but for the corresponding the surface specific humidity of pre-
TC SST (q5) in (a), the mean near-surface air humidity (q,) along TC track in (b), air-sea
humidity difference (Aq = g5 — q,) in (c), and latent heat flux (LHF) in (d).
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Figure S9. The pre-existing ocean conditions of different strong EP developing year, 1982
(right panels), 1997 (middle panels), and 2015 (left panels). (a)-(d) are respectively
monthly sea surface temperature (SST), tropical cyclone heat potential (TCHP), depth of
26 °C isotherms (D26), and depth of 20 °C isotherms (D20) anomalies in October 2015
with the trajectories and intensity of hurricane Patricia superimposed. (e)-(h) and (i)-(l) are
the same but in 1997 and 1982.
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Figure S10. The intensification process from TS to peak of Patricia in 2015 and different
strong EP developing year, 1982 and 1997. (a) shows the pre-existing sea surface
temperature anomalies from GODAS reanalysis data in October 2015 with the trajectory
and intensity of hurricane Patricia and the available Argo floats locations (magenta triangle
marks in Figure 1e) superimposed. (b) shows the pre-TC oceanic vertical thermal structure
of GODAS reanalysis monthly mean data along Patricia track in 2015 (red), 1997 (green),
1982 (blue), and the average of 2015 Argo profiles (magenta). The respective
corresponding TC-induced SST cooling effect and inferred enthalpy fluxes estimated from
different wind speed (categories) are shown in (¢, d).
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163  Figure S11. As in Figure S10, but for the corresponding mean pre-TC SST (SSTpreTC) along
164  TC track (thin line) and TC-induced SST cooling result (SST, . = T) (thick line) in (a),

165 the mean near surface air temperature (T,) along TC track in (b), during-TC air-sea
166  temperature difference (AT = Ty — T,) in (¢), and sensible heat flux (SHF) in (d).
167
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169  Figure S12. As in Figure S10, but for the corresponding the surface specific humidity of
170  pre-TC SST (gy) in (a), the mean near-surface air humidity (q,) along TC track in (b), air-
171  sea humidity difference (Aq = g5 — q,) in (¢), and latent heat flux (LHF) in (d).

172
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TC wind profile at peak
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Figure S13. The wind profiles for Patricia (red) and Haiyan (black). TC's radial wind
profile which we used to construct the TC wind field in the model consists of rmw, the radii
of 64 knots wind (r64), 50 knots wind (r50), and 34 knots wind (r34) at TC’s peak

(corresponds to Table S1).
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Figure S14. The implementation of TC forcing. The TC in the model moves from bottom
to top along the middle of x-axis at a constant U,, (left panel). For example, given the radius
of Patricia is 83.3 km, Patricia moves from (x, y) = (0, -83.3) to (0, 83.3) at U;, = 6.2 m/s.
The initial SST and the resultant TC-induced SST field are presented in the right panel.
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185

186
187
188
189
190

TC size at peak
Translation speed,
TIC radius of max radius of 64knts  radius of S0knts  radius of 34knts | impact size, TR,
characteristics wind, rmw wind, r64 wind, r50 wind, r34 r=2.5*rmw (:n/s)
(km) (km) (km) (km) (km)
Haiyan in Nov. 2013 315 76.4 115.8 219.9 78.8 84
Patricia in Oct. 2015 9.3 44 83.3 203.7 233 6.2

Table S1. Corresponding to Figures 3 and S4, S5, TC size (radius of max wind, 64 knots
wind, 50 knots wind, and 34 knots wind), and cooling impact size (averaged over a circle
area of 2.5 times radius of maximum wind) at the lifetime peak and average translation
speed from Tropical Storm (TS) to Peak of Haiyan and Patricia.
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198
199
200

(a) Ocean pre-conditions
Patricia in different SSTpreTcC T100pre1C TCHPpretC D26preTC D20preTc
EP developing years (°C) (°C) (kJ/em?®) (m) (m)
2015 Argo 302 27.2 104 70 96
2015 30.0 27.0 101 70 92
1997 288 25.1 48 54 85
1982 288 248 54 58 79
(b) Atmospheric environment
Patricia in different Ta Ta qa VWS
EP developing years (°C) (°C) (g/kg) (m/s)
2015 Argo 28.6 24.7 18.8 22
2015 28.6 24.7 18.8 22
1997 27.7 248 18.0 4.0
1982 278 239 17.9 39
(c) Air-sea interaction at TC peak
e . s SST cooling SSTmixed AT SHF Aq LHF Enthalpy flux
Patricia in different :
EP developing years effect (Ts) (T=-Ta) (Qs), (gqusg] (9:-03) (Qu), ([LELERTET
P year (6] (W) O (W) (gkg) (Wim') (W/m’)
2015 Argo 0.5 20.8 1.2 152 253 6.5 2066 2218
2015 04 296 1.0 131 25.0 6.2 1992 2122
1997 0.9 28.0 02 30 228 4.7 1516 1546
1982 0.7 280 02 28 229 5.0 1605 1633

Table S2. Corresponding to Figures S10-S12, the pre-existing ocean conditions from Argo
profiles, GODAS monthly mean reanalysis (a) and atmospheric environment from
NCEP/NCAR R1 monthly mean reanalysis (b) along Patricia trajectories in October 2015
and strong EP developing years, 1997 and 1982. Panel (c¢) shows the corresponding TC-
induced ocean cooling effect, SST . ., g5, atmospheric and ocean temperature and

humidity differences(AT, Aq), and air-sea enthalpy flux (SHF and LHF) from the cooling
effect at the life-time peak of Patricia.
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