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Wireless Communication
• Wireless is a shared medium, inherently different from wireline
‣ More than one pairs of Tx/Rx can share the same wireless medium
‣ ⟹	can support more users, but also more interference
‣ Signals: broadcast at Tx, superimposed at Rx
‣ ⟹	more paths from Tx to Rx (variation over frequency)
‣ Mobility of Tx and Rx
‣ ⟹	channel variation over time
‣ Fading: the scale of variation over time and frequency matters

• Key challenges: interference and fading

• Look at point-to-point communication and focus on fading
‣ Where does fading come from?
‣ How to combat fading?
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Outline
• Modeling of wireless channels 
‣ Physical modeling
‣ Time and frequency coherence
‣ Statistical modeling

• Fading and diversity
‣ Impact of fading on signal detection
‣ Diversity techniques
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Part I. Modeling Wireless 
Channels

Physical Models; Equivalent Complex Baseband 
Discrete-Time Models; Stochastic Models
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Multi-Path Physical Model

Far-field assumption:

Tx-Rx distance ≫ λc ! c
fc

Signals are transmitted using EM 
waves at a certain frequency fc

speed of light

Approximate EM signals as rays 
under the far-field assumption. 
Each path corresponds to a ray.

The input-output model of the wireless channel (neglect noise)

y(t) =
X

i

ai(t)x (t� ⌧i(t))
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For path i :

y(t) =
X

i

ai(t)x (t� ⌧i(t))

ai(t): channel gain (attenuation) of path i

⌧i(t): propagation delay of path i

Simplest example: single line-of-sight (LOS)

r

x(t)

a(t) =
↵

r
(free space); ⌧(t) =

r

c

y(t) = α
r x(t−

r
c )
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y(t) =
X

i

ai(t)x (t� ⌧i(t))

Example: single LOS with a reflecting wall

d

r

Path 1: a1(t) =
α
r ; τ1(t) =

r
c

Path 2: a2(t) = − α
2d−r ; τ2(t) =

2d−r
c



a2(t) = − α
2d−r0−vt ; τ2(t) =

2d−r0−vt
c

a1(t) =
α

r0+vt ; τ1(t) =
r0+vt

c

r(t) = r0 + vt
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y(t) =
X

i

ai(t)x (t� ⌧i(t))

Example: single LOS with a reflecting wall and moving Rx

d

Path 1:

Path 2:

v
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Linear Time Varying Channel Model

Impulse response:

Frequency response:

h(⌧ ; t) =
X

i

ai(t)� (⌧ � ⌧i(t))

h̆(f ; t) =
X

i

ai(t)e
�j2⇡f⌧i(t)

h (⌧ ; t)
x(t) y(t) =

X

i

ai(t)x (t� ⌧i(t))

Equivalent baseband model can be derived, similar to the 
derivation in wireline communication



Continuous-Time Baseband Model
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xb(t) hb (⌧ ; t) yb(t) =
X

i

a

b
i (t)xb (t� ⌧i(t))

Impulse response: hb(⌧ ; t) = h(⌧ ; t)e�j2⇡fc⌧

=
X

i

abi (t)� (⌧ � ⌧i(t))

Frequency response:

abi (t) , ai(t)e
�j2⇡fc⌧i(t)

h̆b(f ; t) = h̆(f + fc; t)

The gain of each path is rotated with a phase



Discrete-Time Baseband Model  
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vm =
X

l

hl[m]um�lhl[m]um

Impulse response: h`[m] ,
Z 1

�1
hb(⌧ ;mT )g(`T � ⌧) d⌧

=
X

i

abi (mT )g(`T � ⌧i(mT ))

Recall: 
	 	   examples: sinc pulse, raised cosine pulse, etc.

g(t) is the pulse used in pulse shaping

Observation: The `-th tap h`[m] majorly consists of the
aggregation of paths with delay lying inside
the “delay bin” ⌧i(mT ) 2

⇥
`T � T

2 , `T + T
2

⇤



12

delay
0 T 2T 3T

τ1 τ2 τ3τ4 τ5 τ6 τ7 τ8
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delay
0 T 2T 3T

τ1 τ2 τ3τ4 τ5 τ6 τ7 τ8

ℓ = 0
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delay
0 T 2T 3T

τ1 τ2 τ3τ4 τ5 τ6 τ7 τ8

ℓ = 1
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delay
0 T 2T 3T

τ1 τ2 τ3τ4 τ5 τ6 τ7 τ8

ℓ = 2
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delay
0 T 2T 3T

τ1 τ2 τ3τ4 τ5 τ6 τ7 τ8

ℓ = 3
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delay
0 T 2T 3T

τ1 τ2 τ3τ4 τ5 τ6 τ7 τ8

Path resolution capability depends 
on the operating bandwidth 



vm =
X

`

h`[m]um�`h`[m]um
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h`[m] =
X

i

abi (mT )g(`T � ⌧i(mT ))

=
X

i

ai(mT )e�j2⇡fc⌧i(mT )g(`T � ⌧i(mT ))

⇡
X

i2`

ai(mT )e�j2⇡fc⌧i(mT )

Difference in phases (over the paths 
that contribute significantly to the tap), 
causes variation of the tap gain



Large-scale Fading
• Path loss and Shadowing
‣ In free space, received power 
‣ With reflections and obstacles, can attenuate faster than 

• Variation over time: very slow, order of seconds

• Critical for coverage and cell-cite planning
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∝ r−2

r−2



Multi-path (Small-scale) Fading
• Due to constructive and destructive interference of the waves

• Channel varies when the mobile moves a distance of the order of 
the carrier wavelength 
‣ Typical carrier frequency ~ 1GHz 

• Variation over time: order of hundreds of microseconds

• Critical for design of communication systems

20

λc

=) �c ⇡ c/fc = 0.3



Fading over Frequency
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d

Transmitted Waveform (electric field): cos 2⇡ft

r

Received Waveform (path 1):

↵

r
cos 2⇡f

⇣
t� r

c

⌘

Received Waveform (path 2): � ↵

2d� r
cos 2⇡f

✓
t� 2d� r

c

◆

=) Received Waveform (aggregate):

↵

r
cos 2⇡f

⇣
t� r

c

⌘
� ↵

2d� r
cos 2⇡f

✓
t� 2d� r

c

◆
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d

Transmitted Waveform (electric field): cos 2⇡ft

r

Received Waveform (aggregate):

↵

r
cos 2⇡f

⇣
t� r

c

⌘
� ↵

2d� r
cos 2⇡f

✓
t� 2d� r

c

◆

Phase Di↵erence between the two sinusoids:

�✓ =

⇢
2⇡f(2d� r)

c
+ ⇡

�
� 2⇡fr

c
= 2⇡

(2d� r)� r

c
f + ⇡

=

(
2n⇡, constructive interference

(2n+ 1)⇡, destructive interference

Delay Spread
delay differences

Td
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Variation in Frequency Domain

h (⌧ ; t)
x(t) y(t) =

X

i

ai(t)x (t� ⌧i(t))

Frequency response:

neglect dependency on time

h̆(f) =
X

i

aie
�j2⇡⌧if

Frequency variation causes variation in phase shift. Phase 
difference causes constructive or destructive interference.

Phase difference: ! 2πf Delay Spread2⇡fmax

i 6=ĩ
|⌧i � ⌧ĩ|

Frequency change by      , channel changes drastically! 

Td ! max
i ̸=ĩ

|τi − τĩ|

1
2Td



Coherence Bandwidth
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Coherence bandwidth: Wc ⇠
1

Td

From the perspective of the equivalent discrete-time model, 
for a system with operating (one-sided) bandwidth W :

Wc � 2W =)
Wc < 2W =)

Note: this is a rough qualitative classification
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33 2.3 Time and frequency coherence
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phase causes selective fading in frequency. This says that Er!f" t# changesFigure 2.13 (a) A channel over
200MHz is frequency-selective,
and the impulse response has
many taps. (b) The spectral
content of the same channel.
(c) The same channel over
40MHz is flatter, and has for
fewer taps. (d) The spectral
contents of the same channel,
limited to 40MHz bandwidth.
At larger bandwidths, the same
physical paths are resolved into
a finer resolution.

significantly, not only when t changes by 1/!4Ds#, but also when f changes
by 1/!2Td#. This argument extends to an arbitrary number of paths, so the
coherence bandwidth, Wc, is given by

Wc =
1
2Td

$ (2.47)

This relationship, like (2.44), is intended as an order of magnitude relation,
essentially pointing out that the coherence bandwidth is reciprocal to the
multipath spread. When the bandwidth of the input is considerably less than
Wc, the channel is usually referred to as flat fading. In this case, the delay
spread Td is much less than the symbol time 1/W , and a single channel
filter tap is sufficient to represent the channel. When the bandwidth is much
larger than Wc, the channel is said to be frequency-selective, and it has to
be represented by multiple taps. Note that flat or frequency-selective fading
is not a property of the channel alone, but of the relationship between the
bandwidth W and the coherence bandwidth Td (Figure 2.13).
The physical parameters and the time-scale of change of key parameters of

the discrete-time baseband channel model are summarized in Table 2.1. The
different types of channels are summarized in Table 2.2.

Larger bandwidth, more paths can be resolved

Same channel, different operating bandwidth
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Fading over Time

v

d

Received Waveform (path 1):

↵

r(t)
cos 2⇡f

✓
t� r(t)

c

◆
Transmitted Waveform (electric field): cos 2⇡ft

Received Waveform (path 2): � ↵

2d� r(t)
cos 2⇡f

✓
t� 2d� r(t)

c

◆

=) Received Waveform (aggregate):

↵

r(t)
cos 2⇡f

✓
t� r(t)

c

◆
� ↵

2d� r(t)
cos 2⇡f

✓
t� 2d� r(t)

c

◆

=

↵

r0 + vt
cos 2⇡f

h⇣
1� v

c

⌘
t� r0

c

i
� ↵

2d� r0 � vt
cos 2⇡f

⇣
1 +

v

c

⌘
t� 2d� r0

c

�

r(t) = r0 + vt
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v

d

Approximation: distance to mobile Rx ⌧ distance to Tx

Time-invariant shift of the 
original input waveform

Time-varying amplitude

=) Received Waveform (aggregate):

=

↵

r0 + vt
cos 2⇡f

h⇣
1� v

c

⌘
t� r0

c

i
� ↵

2d� r0 � vt
cos 2⇡f

⇣
1 +

v

c

⌘
t� 2d� r0

c

�

⇡ 2↵

r0 + vt
sin 2⇡f

✓
vt

c
+

r0 � d

c

◆
sin 2⇡f

✓
t� d

c

◆
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Difference of the Doppler shifts of the 
two paths, cause this variation over time. 
Time-variation scale:		   (ms)

17 2.1 Physical modeling for wireless channels

Figure 2.5 The received
waveform oscillating at
frequency f with a slowly
varying envelope at frequency
Ds/2.

t

Er (t)

interference pattern and at its narrowest when the mobile is at a valley. Thus,
the Doppler spread determines the rate of traversal across the interference
pattern and is inversely proportional to the coherence time of the channel.
We now see why we have partially ignored the denominator terms in (2.11)

and (2.13). When the difference in the length between two paths changes by
a quarter wavelength, the phase difference between the responses on the two
paths changes by !/2, which causes a very significant change in the overall
received amplitude. Since the carrier wavelength is very small relative to
the path lengths, the time over which this phase effect causes a significant
change is far smaller than the time over which the denominator terms cause
a significant change. The effect of the phase changes is of the order of
milliseconds, whereas the effect of changes in the denominator is of the order
of seconds or minutes. In terms of modulation and detection, the time-scales
of interest are in the range of milliseconds and less, and the denominators are
effectively constant over these periods.
The reader might notice that we are constantly making approximations in

trying to understand wireless communication, much more so than for wired
communication. This is partly because wired channels are typically time-
invariant over a very long time-scale, while wireless channels are typically
time-varying, and appropriate models depend very much on the time-scales of
interest. For wireless systems, the most important issue is what approximations
to make. Thus, it is important to understand these modeling issues thoroughly.

2.1.5 Reflection from a ground plane

Consider a transmit and a receive antenna, both above a plane surface such
as a road (Figure 2.6). When the horizontal distance r between the antennas
becomes very large relative to their vertical displacements from the ground

Time-varying envelope
2↵

r0 + vt
sin 2⇡f

✓
vt

c
+

r0 � d

c

◆

Time-variation scale: 
(seconds or minutes), 
much smaller than that of 
the second term

r0/v

c/fv

Doppler Spread
Ds ,

2fv

c



Variation in Time Domain
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h (⌧ ; t)
x(t) y(t) =

X

i

ai(t)x (t� ⌧i(t))

Frequency response: h̆(f ; t) =
X

i

ai(t)e
�j2⇡f⌧i(t)

Phase shift changes over time at a rate
Doppler shift (shift in frequency) of path i : 

2πfτ ′i(t)
δi ! fτ ′i(t)

Phase difference changes over time at a rate

Doppler spread: 

2πf max
i ̸=ĩ

∣∣∣τ ′i(t)− τ ′
ĩ
(t)

∣∣∣

Ds ! fc max
i ̸=ĩ

∣∣∣τ ′i(t)− τ ′
ĩ
(t)

∣∣∣



Coherence Time
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Coherence time: Tc ⇠
1

Ds

For a system with latency requirement T :

Note: this is a rough qualitative classification

Tc � T =)
Tc < T =)



Parameters of Wireless Channels

31

34 The wireless channel

Table 2.1 A summary of the physical parameters of the channel and the
time-scale of change of the key parameters in its discrete-time baseband
model.

Key channel parameters and time-scales Symbol Representative values

Carrier frequency fc 1GHz
Communication bandwidth W 1MHz
Distance between transmitter and receiver d 1 km
Velocity of mobile v 64 km/h
Doppler shift for a path D = fcv/c 50Hz
Doppler spread of paths corresponding to

a tap Ds 100Hz
Time-scale for change of path amplitude d/v 1 minute
Time-scale for change of path phase 1/!4D" 5ms
Time-scale for a path to move over a tap c/!vW " 20 s
Coherence time Tc = 1/!4Ds" 2.5ms
Delay spread Td 1#s
Coherence bandwidth Wc = 1/!2Td" 500 kHz

Table 2.2 A summary of the types of wireless
channels and their defining characteristics.

Types of channel Defining characteristic

Fast fading Tc ≪ delay requirement
Slow fading Tc ≫ delay requirement
Flat fading W ≪Wc
Frequency-selective fading W ≫Wc
Underspread Td ≪ Tc

2.4 Statistical channel models

2.4.1 Modeling philosophy

We defined Doppler spread and multipath spread in the previous section as
quantities associated with a given receiver at a given location, velocity, and
time. However, we are interested in a characterization that is valid over some
range of conditions. That is, we recognize that the channel filter taps {hℓ%m&}
must be measured, but we want a statistical characterization of how many
taps are necessary, how quickly they change and how much they vary.
Such a characterization requires a probabilistic model of the channel tap

values, perhaps gathered by statistical measurements of the channel. We are
familiar with describing additive noise by such a probabilistic model (as
a Gaussian random variable). We are also familiar with evaluating error
probability while communicating over a channel using such models. These



Types of Wireless Channels

• Typical channels are underspread

• Coherence time Tc depends on carrier frequency and mobile 
speed, of the order of ms or more

• Delay spread Td depends on distance to scatters and cell size, of 
the order of ns (indoor) to µs (outdoor)
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34 The wireless channel

Table 2.1 A summary of the physical parameters of the channel and the
time-scale of change of the key parameters in its discrete-time baseband
model.

Key channel parameters and time-scales Symbol Representative values

Carrier frequency fc 1GHz
Communication bandwidth W 1MHz
Distance between transmitter and receiver d 1 km
Velocity of mobile v 64 km/h
Doppler shift for a path D = fcv/c 50Hz
Doppler spread of paths corresponding to

a tap Ds 100Hz
Time-scale for change of path amplitude d/v 1 minute
Time-scale for change of path phase 1/!4D" 5ms
Time-scale for a path to move over a tap c/!vW " 20 s
Coherence time Tc = 1/!4Ds" 2.5ms
Delay spread Td 1#s
Coherence bandwidth Wc = 1/!2Td" 500 kHz

Table 2.2 A summary of the types of wireless
channels and their defining characteristics.

Types of channel Defining characteristic

Fast fading Tc ≪ delay requirement
Slow fading Tc ≫ delay requirement
Flat fading W ≪Wc
Frequency-selective fading W ≫Wc
Underspread Td ≪ Tc

2.4 Statistical channel models

2.4.1 Modeling philosophy

We defined Doppler spread and multipath spread in the previous section as
quantities associated with a given receiver at a given location, velocity, and
time. However, we are interested in a characterization that is valid over some
range of conditions. That is, we recognize that the channel filter taps {hℓ%m&}
must be measured, but we want a statistical characterization of how many
taps are necessary, how quickly they change and how much they vary.
Such a characterization requires a probabilistic model of the channel tap

values, perhaps gathered by statistical measurements of the channel. We are
familiar with describing additive noise by such a probabilistic model (as
a Gaussian random variable). We are also familiar with evaluating error
probability while communicating over a channel using such models. These



Fading: Short Summary
• In wireless communications, channel coefficients can have a 

widely varying magnitude. They change over time as well.

• As for the effective discrete-time LTV model:
‣ The number of taps depends on the coherence bandwidth Wc and the 

operating bandwidth W

‣ The tap coefficient changes over time at a scale of the coherence time Tc

• The tap coefficients can be tracked, but due to the widely varying 
range and the variation over time and frequency, it is beneficial to 
model them as random processes
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Stochastic Modeling of Fading

34

h`[m]um Vm =
X

`

h`[m]um�` + Zm

h`[m] ⇡
X

i2`

ai(mT )e�j2⇡fc⌧i(mT )

• Additive noise
‣ Essentially completely random, no correlation over time
‣ Largely depends on nature
‣ Can be dealt with using wireline communication techniques

• Filter taps
‣ Varying over time and frequency
‣ Largely depends on nature
‣ Why not use stochastic models for taps as well?

Zm

h`[m]



Modeling Philosophy
• Simple models may not fit the practical scenarios perfectly

• Complicated models can be established by extensive 
measurement

• But simple models make analysis tractable and generate insights 
for system design

• So it is better to develop new systems based on simple yet 
representative models, and validate the design over-the-air or 
through simulation on complicated models

• We will focus on a classical model, Rayleigh fading, to model a 
single tap

• Then we discuss about modeling the variation over time by using 
WSS random processes
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Rayleigh Fading
• Many small scattered paths for each tap (no dominant path):
‣ Phase of each path is uniformly distributed over

‣ For each path it is a circular symmetric random variable

• Each tap: sum of many small indep. circular symmetric r.v.’s
‣ By Central Limit Theorem (CLT), we can model
‣ Zero-mean because of rich scattering

36

[0, 2⇡]

h`[m] ⇡
X

i2`

ai(mT )e�j2⇡fc⌧i(mT )

X : () X
d
= Xej�, 8�

H`[m] ⇠ CN
�
0,�2

`

�

H ⇠ CN (0,�2
) () |H|2 ⇠ Exp(��2

), \H ⇠ Unif[0, 2⇡]



Observe that

Time and Frequency Coherence
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Model                             as a WSS random process{Hℓ[m] | m ∈ Z} ∀ tap ℓ

Tap gain auto-correlation function:
RHℓ [k] ! E [Hℓ[m+ k]H∗

ℓ [m]]

Processes                            are independent across {Hℓ[m] | m ∈ Z} ℓ

H` [0] =
⇥
|H`[m]|2

⇤
: energy at the `-th tap

Delay spread: T × the range of    that contain most energyℓ

Coherence time: T × the largest value of k such that
H` [k] is very different from H` [0]
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Part II. Fading and Diversity

Impact of Fading in Detection; Time Diversity; 
Antenna Diversity; Frequency Diversity
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Simplest Model: Single-Tap Rayleigh Fading
Flat fading: single-tap Rayleigh fading

V = Hu+ Z, H ⇠ CN (0, 1), Z ⇠ CN (0, N0)

Detection:

u = a� � A � {a1, . . . , aM}

Detector (Rx) may or may not know the channel coefficients

Coherent Detection:		 	 Rx knows the realization of H

Noncoherent Detection:		 Rx does not know the realization of H

Detection û = a�̂V = Hu+ Z ⇥̂



Coherent Detection of BPSK
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Detection û = a�̂V = Hu+ Z

u 2 {±
p

Es} a0 = +
p

Es, a1 = �
p

Es

H ⇠ CN (0, 1), Z ⇠ CN (0, N0)

⇥̂ = �(V,H)

Likelihood function:

The detection problem is equivalent to binary detection in

Ṽ = u+ Z̃, Ṽ ! V /h, Z̃ ! Z/h ∼ CN (0, N0/|h|2)

Probability of error conditioned on the realization of H = h :

fV,H|Θ(v, h|θ) = fV |H,Θ(v|h, θ)fH(h) ∝ fV |H,Θ(v|h, θ)

Pe(φ ;H = h) = Q

(
2
√
Es

2
√

N0/(2|h|2)

)
= Q

(√
2|h|2Es

N0

)
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Probability of error:

Pe(φ ;H = h) = Q

(√
2|h|2Es

N0

)

Pe(φ ) = EH∼CN (0,1) [Pe(φ ;H)]

= EH∼CN (0,1)

[
Q

(√
2|H|2Es

N0

)]

≤ E|H|2∼Exp(0,1)

[
1
2 exp(−|H|2SNR)

]

=

Z 1

0

1

2
e�tSNRe�t dt =

1

2(1 + SNR)
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Impact of Fading
• Let us explore the impact of fading by comparing the performance 

of coherent BPSK between AWGN and single-tap Rayleigh fading

• The average received SNRs are the same: 

• AWGN: probability of error decays exponentially fast:

• Rayleigh fading: probability of error decays much slower:

EH∼CN (0.1)

[
|H|2SNR

]
= SNR

Pe(φML) = Q
(√

2SNR
)
≤ 1

2 exp(−SNR)

Pe(φML) = EH∼CN (0,1)

[
Q
(√

2|H|2SNR
)]

≤ 1
2

1
1+SNR

e�SNR

SNR�1
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54 Point-to-point communication

Detection of x from y can be done in a way similar to that in the AWGN
case; the decision is now based on the sign of the real sufficient statistic

r != ℜ"#h/"h"$∗y%= "h"x+ z& (3.17)

where z∼ N#0&N0/2$. If the transmitted symbol is x=±a, then, for a given
value of h, the error probability of detecting x is

Q

(
a"h"
√
N0/2

)

=Q
(√

2"h"2SNR
)

(3.18)

where SNR = a2/N0 is the average received signal-to-noise ratio per symbol
time. (Recall that we normalized the channel gain such that !'"h"2( = 1.)
We average over the random gain h to find the overall error probability. For
Rayleigh fading when h∼ "# #0&1$, direct integration yields

pe = !
[
Q
(√

2"h"2SNR
)]

= 1
2

⎛

⎝1−
√

SNR
1+ SNR

⎞

⎠ ) (3.19)

(See Exercise 3.1.) Figure 3.2 compares the error probabilities of coherent
BPSK and non-coherent orthogonal signaling over the Rayleigh fading chan-
nel, as well as BPSK over the AWGN channel. We see that while the error
probability for BPSK over the AWGN channel decays very fast with the
SNR, the error probabilities for the Rayleigh fading channel are much worse,

Figure 3.2 Performance of
coherent BPSK vs.
non-coherent orthogonal
signaling over Rayleigh fading
channel vs. BPSK over AWGN
schannel.
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Availability of channel state information (CSI) at Rx 
only changes the intercept, but not the slope
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Coherent Detection of General QAM
Probability of error for                -ary QAM

Pe(φ ;H = h) ≤ 4Q

(√
|h|2d2

min
2N0

)
= 4Q

(√
3

M−1 |h|2SNR
)

M = 22ℓ

Pe(φ ) ≤ EH∼CN (0,1)

[
4Q

(√
3

M−1 |H|2SNR
)]

≤ E|H|2∼Exp(0,1)

[
2 exp(−|H|2 3

2(M−1)SNR)
]

=
2

1 + 3
2(M�1)SNR

⇡ 4(M � 1)

3
SNR�1

Using general constellation does not change the order of 
performance (the “slope” on the log Pe vs. log SNR plot)

Different constellation only changes the intercept



Deep Fade: the Typical Error Event
• In Rayleigh fading channel, regardless of constellation size and 

detection method (coherent/non-coherent),

• This is in sharp contrast to AWGN: 

• Why? Let’s take a deeper look at the BPSK case:

‣ If                              channel is good, error probability
‣ If                             channel is bad, error probability is

• Deep fade event: 

45

Pe ⇠ SNR�1

Pe ⇠ exp(�cSNR)

Pe(φ ;H = h) = Q
(
2|h|2SNR

)

|h|2SNR ≫ 1 =⇒
|h|2SNR < 1 =⇒ Θ(1)

∼ exp(−cSNR)

Pe ⌘ P {E} = P
�
|H|2 > SNR�1 P

�
E | |H|2 > SNR�1 

+ P
�
|H|2 < SNR�1 P

�
E | |H|2 < SNR�1 

{|H|2 < SNR−1}

/ P
�
|H|2 < SNR�1 = 1� e�SNR�1

⇡ SNR�1



Diversity

• Reception only relies on a single “look” at the fading state H

• If H is in deep fade ⟹ big trouble (low reliability)

• Increase the number of “looks” ⟺ Increase diversity
‣ If one look is in deep fade, other looks can compensate!

• If there are L indep. looks, the probability of deep fade becomes

• Find independent “looks” over time, space, and frequency to 
increase diversity!
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V = Hu+ Z {|H|2 < SNR−1}Deep fade event:

LY

`=1

P{ i } ⇡ SNR�L



Time Diversity
• Channel varies over time, at the scale of coherence time Tc .

• Interleaving: 
‣ Channels within a coherence time are highly correlated
‣ Realizations separated by several Tc’s apart are roughly independent

‣ Diversity is obtained if we spread the codeword across multiple 
coherence time periods

• Architecture(s):
‣ bit-level interleaver: interleave before modulation
‣ symbol-level interleaver: interleave after modulation

47
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61 3.2 Time diversity

Figure 3.5 The codewords are
transmitted over consecutive
symbols (top) and interleaved
(bottom). A deep fade will
wipe out the entire codeword
in the former case but only
one coded symbol from each
codeword in the latter. In the
latter case, each codeword can
still be recovered from the
other three unfaded symbols.

Interleaving

x2

Codeword
x3

Codeword
x0

Codeword
x1
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| hl |

L = 4

l

No interleaving

Consider now coherent detection of x1, i.e., the channel gains are known
to the receiver. This is the canonical vector Gaussian detection problem in
Summary A.2 of Appendix A. The scalar

h∗

"h"y= "h"x1+
h∗

"h"w (3.33)

is a sufficient statistic. Thus, we have an equivalent scalar detection problem
with noise !h∗/"h""w∼ !" !0#N0". The receiver structure is a matched filter
and is also called a maximal ratio combiner: it weighs the received signal in
each branch in proportion to the signal strength and also aligns the phases
of the signals in the summation to maximize the output SNR. This receiver
structure is also called coherent combining.

Consider BPSK modulation, with x1 = ±a. The error probability, condi-
tional on h, can be derived exactly as in (3.18):

Q
(√

2"h"2SNR
)

(3.34)

where as before SNR= a2/N0 is the average received signal-to-noise ratio per
(complex) symbol time, and "h"2SNR is the received SNR for a given channel
vector h. We average over "h"2 to find the overall error probability. Under
Rayleigh fading with each gain hℓ i.i.d. !" !0#1",

"h"2 =
L∑

ℓ=1

$hℓ$2 (3.35)

All are bad

Only one is bad

L = 4
|H[ℓ]|

ℓ

H[1]

H[2]

H[3]

H[4]
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Repetition Coding + Interleaving
• Equivalent vector channel
‣ Channel model:

‣ (sufficient) Interleaving 

‣ Repetition coding

‣ Equivalent vector channel:

• Probability of error analysis for BPSK:
‣ Conditioned on             :

‣ Average probability of error: 

=⇒ {H[ℓ]}Lℓ=1 : CN (0, 1)

=⇒ u[ℓ] = u, ℓ = 1, ..., L

V !
[
V [1] · · · V [L]

]ᵀ
H !

[
H[1] · · · H[L]

]ᵀ
V = Hu+Z

Z !
[
Z[1] · · · Z[L]

]ᵀ

V [ℓ] = H[ℓ]u[ℓ] + Z[ℓ], Z[ℓ] ∼ CN (0, N0), ℓ = 1, ..., L

H = h Pe(φ ;H = h) = Q
(
2 ∥h∥2 SNR

)

=

1

2

LY

`=1

EH`

⇥
exp(�|H`|2SNR)

⇤
=

1

2
(1 + SNR)�L

SNR�L

Pe(φ ) = EH

[
Q

(√
2 ∥H∥2 SNR

)]
≤ EH

[
1
2 exp(−∥H∥2 SNR)

]



Probability of Deep Fade
• Deep fade event: 
‣ “Equivalent squared channel”           is the sum of L i.i.d. Exp(1) r.v.: 

‣ Chi-squared distribution with 2L degrees of freedom: 

• Probability of deep fade:

‣ Approximation at high SNR:
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{∥H∥2 < SNR−1}
∥H∥2

P{kHk2 < SNR�1} ⇡
Z SNR�1

0

1

(L� 1)!
x

L�1 dx =
1

L!
SNR�L

P{kHk2 < SNR�1} =

Z SNR�1

0

1

(L� 1)!
x

L�1
e

�x dx

fkHk2(x) =
1

(L� 1)!
x

L�1
e

�x

, x � 0

SNR�L

∥H∥2 ∼ χ2
2L
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63 3.2 Time diversity

Furthermore,

L−1∑

ℓ=0

(
L−1+ℓ

ℓ

)
=
(
2L−1

L

)
" (3.40)

Hence,

pe ≈
(
2L−1

L

)
1

#4SNR$L
(3.41)

at high SNR. In particular, the error probability decreases as the Lth power of
SNR, corresponding to a slope of −L in the error probability curve (in dB/dB
scale).

To understand this better, we examine the probability of the deep fade
event, as in our analysis in Section 3.1.2. The typical error event at high SNR
is when the overall channel gain is small. This happens with probability

!%#h#2 < 1/SNR&" (3.42)

Figure 3.7 plots the distribution of #h#2 for different values of L; clearly the
tail of the distribution near zero becomes lighter for larger L. For small x, the
probability density function of #h#2 is approximately

f#x$≈ 1
#L−1$!x

L−1 (3.43)

and so

!%#h#2 < 1/SNR&≈
∫ 1

SNR

0

1
#L−1$!x

L−1dx = 1
L!

1
SNRL

" (3.44)

Figure 3.7 The probability
density function of !h!2 for
different values of L. The
larger the L, the faster the
probability density function
drops off around 0.
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Diversity Order: 1 → L

62 Point-to-point communication

is a sum of the squares of 2L independent real Gaussian random variables,
each term !hℓ!2 being the sum of the squares of the real and imaginary parts
of hℓ. It is Chi-square distributed with 2L degrees of freedom, and the density
is given by

f"x#= 1
"L−1#!x

L−1e−x$ x ≥ 0% (3.36)

The average error probability can be explicitly computed to be (cf. Exer-
cise 3.6)

pe =
∫ $

0
Q
(√

2xSNR
)
f"x#dx

=
(
1−&

2

)L L−1∑

ℓ=0

(
L−1+ℓ

ℓ

)(
1+&

2

)ℓ

$ (3.37)

where

& '=
√

SNR
1+ SNR

% (3.38)

The error probability as a function of the SNR for different numbers of diver-
sity branches L is plotted in Figure 3.6. Increasing L dramatically decreases
the error probability.
At high SNR, we can see the role of L analytically: consider the leading

term in the Taylor series expansion in 1/SNR to arrive at the approximations

1+&

2
≈ 1$ and

1−&

2
≈ 1

4SNR
% (3.39)

Figure 3.6 Error probability as
a function of SNR for different
numbers of diversity
branches L.
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Time-Diversity Code
• Full diversity order: 
‣ Total L independent looks (interleave over L coherence time intervals)

‣ The scheme can achieve full diversity order if its diversity order is L.

• Repetition coding
‣ achieves full diversity order
‣ suffers loss in transmission rate

• Is it possible to achieve full diversity order without compromising 
the transmission rate?

• The answer is yes, with Time-Diversity Code.
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Sending 2 BPSK Symbols for L = 2 “Looks”
• Consider sending 2 independent BPSK symbols (u[1], u[2]) over 

two (interleaved) time slots (L = 2)

‣ Diversity order = 1 because each BPSK symbol has only one “look”
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u[1]

u[2]

(1, 1)
p
Es

(1,�1)
p
Es(�1,�1)

p
Es

(�1, 1)
p
Es



Rotation Code for L = 2
• How about rotating the equivalent constellation set?
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x00

x10

x11

x01

x[2]

x[1]

x = rθu, rθ =

[
cos θ − sin θ
sin θ cos θ

]

each codeword comprises 
2 linear combinations of 
the 2 original symbols
⟹ each info. symbol has 
2 independent looks!



Performance Analysis of Rotation Code
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Equivalent vector (2-dim) channel:

V =

[
H[1] 0
0 H[2]

]
x+Z = x̃+Z

Union bound via pairwise probability of error: x00

x10

x11

x01

x[2]

x[1]

P{x00 ! x10|H = h} = Q

✓
kx̃00 � x̃10kp

2N0

◆

Pe(� ;H = h)  P{x00 ! x01|H = h}
+ P{x00 ! x11|H = h}
+ P{x00 ! x10|H = h}

d1
p
Es

d2
p
Es

kx̃00 � x̃10k2

= Es(|h[1]|2|d1|2 + |h[2]|2|d2|2)
= Q

 r
|h[1]|2|d1|2 + |h[2]|2|d2|2

2
SNR

!

d1 = 2 cos ✓, d2 = 2 sin ✓
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x00

x10

x11

x01

x[2]

x[1]
d1
p
Es

d2
p
Es

squared product distance: kx̃00 � x̃10k2

= Es(|h[1]|2|d1|2 + |h[2]|2|d2|2)

P{x00 ! x10|H = h} = Q

✓
kx̃00 � x̃10kp

2N0

◆

= Q

 r
|h[1]|2|d1|2 + |h[2]|2|d2|2

2
SNR

!

P{x00 ! x10}

 EH[1],H[2]


1

2
e�

1
4 (|H[1]|2|d1|2+|H[2]|2|d2|2)SNR

�

=
1

2

1

1 + |d1|2
4 SNR

1

1 + |d2|2
4 SNR

⇡ 8

|d1d2|2
SNR�2

=
8

�00!10
SNR�2

�00!10 , |d1d2|2 = 4 sin2(2✓)
d1 = 2 cos ✓, d2 = 2 sin ✓
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Rotation Code Achieves Full Diversity
• Total probability of error is upper bounded by

• Diversity order = 2

• Coding gain: maximize the minimum squared product distance
‣ Compute 

‣ The best rotation angle that maximize min. squared product distance:

Pe(� )  P{x00 ! x01}+ P{x00 ! x11}+ P{x00 ! x10}

. 8

✓
1

�00!10
+

1

�00!11
+

1

�00!01

◆
SNR�2

 24

�min
SNR�2

�00!10 = �00!01 = 4 sin

2
(2✓), �00!11 = 16 cos

2
(2✓)

4 sin2(2θ∗) = 16 cos2(2θ∗) =⇒ θ∗ = 1
2 tan

−1(2)



General Time Diversity Code
• The above idea can be generalized to arbitrary L

• Diversity order and coding gain can be analyzed with union bound

• Time diversity code can be used at the bit-level (merged into ECC) 
or used at the symbol level.
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Antenna Diversity
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Typical antenna separation for antenna diversity

Receive
Diversity

SIMO

Transmit
Diversity

MISO

Both

MIMO

⇠ �c = c/fc

Full diversity order: d = N N

Space-time code for exploiting diversity and multiplexing 
capabilities of MIMO systems



Frequency Diversity
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h̆(f0)

ŭ[0] V̆ [0]

Z̆[0]

ŭ[1]

h̆(f1) Z̆[1]

V̆ [1]

ŭ[N − 1]

h̆(fN−1) Z̆[N − 1]

V̆ [N − 1]

...

...

Frequency selectivity can be used 
to provide diversity 

L-taps channel: each Tx symbol 
appears in L Rx symbols

Full diversity order: L

OFDM extracts full diversity:

N parallel channels (subcarriers)

coding + interleaving over subcarriers

total bandwidth:
coherence bandwidth: Wc

diversity order: 

2W

2W/Wc = 2WTd = L



Summary
• Fading makes wireless channels unreliable

• Diversity increases reliability and makes the channel more 
consistent

• Key to increasing diversity: create more independent “looks” of 
the channel

• Smart codes yields a coding gain in addition to the diversity gain
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