Communication Systems Lab, Spring 2018

Lecture 04
 Wideband Communication

I-Hsiang Wang
ihwang@ntu.edu.tw
National Taiwan University

2018/05/02

This Lecture

- Physical channel model for wideband communication

$$
Y(t)=(h * x)(t)+Z(t), \mathrm{S}_{Z}(f)=\frac{N_{0}}{2}
$$

- Intuition: when the band is wide, signals in difference band will experience different frequency response of the channel
- Use an LTI filter to model the channel

This Lecture

- New challenge: inter-symbol interference (ISI)
- Detect each symbol individually is no longer optimal
- Our focus: mitigate ISI in the digital world (after sampling)
- HW1 tells us that dealing with ISI in the analog world is a pretty bad idea
- Receiver-side solution, transmitter-side solution, and Tx-Rx solution

Outline

- LTI filter channel and inter-symbol interference (ISI)
- Optimal Rx-side solution: MLSD
- Rx-side solution: linear equalizations
- Tx-Rx-side solution: OFDM

Part I. LTI Filter Channel and Inter-Symbol Interference

Equivalent Discrete-Time Baseband Channel; Inter-Symbol Interference; MLSD

Physical Channel Model

$$
\begin{aligned}
Y(t) & =(h * x)(t)+Z(t), \mathrm{S}_{Z}(f)=\frac{N_{0}}{2} \\
& =\int_{-\infty}^{\infty} h(\tau) x(t-\tau) \mathrm{d} \tau+Z(t)
\end{aligned}
$$

- Use LTI filter to model wireline channels
- Examples: telephone lines, Ethernet cables, cable TV wires, optical fibers
- Operating bandwidth range from 1~2MHz to 250~500 MHz.
- Why use LTI filter to model wireline channels?
- Frequency responses are no longer flat
- Channel is rather stationary compared to wireless channels
- Within the interest of time, can be assumed to be time-invariant

Features of the LTI Filter Channel

$$
\Longrightarrow Y(t)=\int_{0}^{h(\tau)} h(\tau) x(t-\tau) \mathrm{d} \tau+Z(t)
$$

- Causal: naturally, impulse response should be causal.

$$
h(\tau)=0, \quad \forall \tau<0
$$

- Dispersive: naturally, input signal cannot "stay" in the channel for too long, and hence most energy of the impulse response of the channel should be contained in an interval $\left[0, T_{\mathrm{d}}\right]$

$$
h(\tau)=0, \quad \forall \tau>T_{\mathrm{d}}
$$

Derivation of the Discrete-Time Model

- Step 1: real passband \square complex baseband (ignore noise)

Pulse shaping: $\quad x_{b}(t) \triangleq \sum_{m} u_{m} p(t-m T)$

Up conversion:

$$
x(t) \triangleq \operatorname{Re}\left\{x_{b}(t) \sqrt{2} \exp \left(\mathrm{j} 2 \pi f_{c} t\right)\right\}
$$

check!
LTI channel:

$$
\begin{array}{r}
y(t)=(h * x)(t) \bigodot \operatorname{Re}\left\{\left(h_{b} * x_{b}\right)(t) \sqrt{2} \exp \left(\mathrm{j} 2 \pi f_{c} t\right)\right\} \\
h_{b}(\tau) \triangleq h(\tau) \exp \left(-\mathrm{j} 2 \pi f_{c} \tau\right)
\end{array}
$$

Down conversion: $\quad y_{b}(t)=\left(h_{b} * x_{b}\right)(t)$

- Step 2: continuous-time \square discrete-time

$$
x_{b}(t) \triangleq \sum_{k} u_{k} p(t-k T)
$$

Demodulation: $\quad \hat{u}_{m}=\left(y_{b} * q\right)(m T)=\left(x_{b} * h_{b} * q\right)(m T)$

$$
\begin{aligned}
& =\sum_{k} u_{k} \int_{0}^{T_{\mathrm{d}}} h_{b}(\tau) g(m T-k T-\tau) \mathrm{d} \tau \\
& =\sum_{k} u_{k} h_{m-k}=(t) \triangleq(p * q)(t) \\
h_{d}[\ell] & \left.\triangleq\left(h_{b} * g\right)(\ell T)=\left(p * h_{d}\right)_{m} * q\right)(\ell T)
\end{aligned}
$$

Step 3: adding noise back

$$
V_{m}=\sum_{\ell} h_{d}[\ell] u_{m-\ell}+Z_{m}, \quad Z_{m} \stackrel{\text { i.i.d. }}{\sim} \mathcal{C N}\left(0, N_{0}\right)
$$

$$
V_{m}=\sum_{\ell} h_{d}[\ell] u_{m-\ell}+Z_{m}, \quad Z_{m} \stackrel{\text { i.i.d. }}{\sim} \mathcal{C N}\left(0, N_{0}\right)
$$

- What is the range of ℓ in the summation of the discrete-time convolution in the equivalent discrete-time model?
- Recall: $h_{d}[\ell] \triangleq\left(h_{b} * g\right)(\ell T) \quad h_{b}(\tau) \triangleq h(\tau) \exp \left(-\mathrm{j} 2 \pi f_{c} \tau\right)$

- The overall "spread" of the digital filter is hence $\frac{T_{p}+T_{\mathrm{d}}}{T}$
- The equivalent discrete-time filter has finite impulse response, that is, the number of taps $L \approx \frac{T_{p}+T_{\mathrm{d}}}{T}$ is finite:

$$
V_{m}=\sum_{\ell=0}^{L-1} h_{d}[\ell] u_{m-\ell}+Z_{m}, \quad Z_{m} \stackrel{\text { i.i.d. }}{\sim} \mathcal{C N}\left(0, N_{0}\right)
$$

Discrete-Time Complex Baseband Model

- With a little abuse of notation, identifying $h_{d}[\ell] \equiv h_{\ell}$, the equivalent discrete-time baseband channel model is given as

$$
\begin{gathered}
V_{m}=\sum_{\ell=0}^{L-1} h_{\ell} u_{m-\ell}+Z_{m}, \\
Z_{m} \stackrel{\text { i.i.d. }}{\sim} \mathcal{C N}\left(0, N_{0}\right)
\end{gathered}
$$

- The filter tap coefficients $\left\{h_{\ell}\right\}$ depends on
- one-sided bandwidth W (or symbol time $T=\frac{1}{2 W}$)
- carrier frequency f_{c}
- modulation pulse $g(t)$
- channel impulse response $h(\tau)$
- In practice, these taps are measured via training: sending known pilot symbols to estimate the tap coefficients.
- Total \# of taps is proportional to bandwidth: $L \approx \frac{T_{p}+T_{\mathrm{d}}}{T} \propto W$

Inter-Symbol Interference

- Narrowband channel (no ISI)

$$
V_{m}=h_{0} u_{m}+Z_{m}, \quad Z_{m} \stackrel{\text { i.i.d. }}{\sim} \mathcal{C N}\left(0, N_{0}\right)
$$

- Wideband channel (with ISI)

$$
\begin{aligned}
V_{m} & =\sum_{\ell=0}^{L-1} h_{\ell} u_{m-\ell}+Z_{m}, \quad Z_{m} \stackrel{\text { i.i.d. }}{\sim} \mathcal{C N}\left(0, N_{0}\right) \\
& =h_{0} u_{m}+\underbrace{\left(h_{1} u_{m-1}+\ldots+h_{L-1} u_{m-L+1}\right)}_{I_{m} \text { inter-symbol interference }}+Z_{m}
\end{aligned}
$$

- With ISI, it is no longer optimal to detect each symbol u_{m} from the single observed V_{m} only.
- ISI introduces memory, and hence one needs to detect the entire sequence jointly $[$ Maximum Likelihood Sequence Detection

Optimal Receiver: MLSD

- ISI channel is the same as the convolutional encoder, except that the arithmetic is in the complex field, not the finite (binary) field
- Hence, each possible sequence in MLSD can be represented by a path on a trellis
- Procedure of MLSD: received a length- n sequence $\left(V_{1}, \ldots, V_{n}\right)$
- Define the state as the past interfering symbols:

$$
s_{m} \triangleq\left(u_{m-1}, \ldots, u_{m-L+1}\right)
$$

- Each transition u_{m} has $|\mathcal{A}|$ possible outgoing arrows. \mathcal{A} : constellation set
- Each transition outputs a symbol:

$$
\hat{u}_{m}=h_{0} u_{m}+\sum_{\ell=1}^{L-1} h_{\ell} u_{m-\ell}
$$

- Goal of MLSD: find a path on the trellis such that $\sum_{m=1}^{n}\left|V_{m}-\hat{u}_{m}\right|^{2}$ is minimized \Rightarrow Viterbi algorithm!
- However, the complexity of Viterbi algorithm is $\Theta\left(n|\mathcal{A}|^{L}\right)$, while the \# of taps is quite large (100~200) in wideband systems (DSL).
- MLSD is optimal but infeasible in practice for wideband systems.

Part II. Linear Equalizations

Matched-Filter, Zero-Forcing,
MMSE Equalization

Mitigate ISI with Linear Filters

- ISI is caused by a (discrete-time) LTI filter due to the frequency selectivity of the channel
- Why not use another discrete-time LTI filter at the receiver to mitigate ISI, and do symbol-wise detection at the filtered output?
- Design of the filter $\left\{g_{\ell}\right\}$ requires some objectives for optimization:
- Probability of error? hard to analyze
- Energy will be easier to handle
- Since the ISI is treated as noise in the symbol-wise detection, we should try to maximize the signal-to-interference-and-noise ratio (SINR) at the filtered output $\left\{W_{m}\right\}$

Linear Equalizers to be Introduced

- Use Z transform to represent the discrete-time LTI filter

$$
g_{\ell} \longleftrightarrow \check{g}(\zeta) \triangleq \sum_{\ell} g_{\ell} \zeta^{-\ell}
$$

- Recall its relation with DTFT: $\breve{g}(f)=\check{g}\left(e^{\mathrm{j} 2 \pi f}\right)$
- Three kinds of linear equalizers:
- Matched filter (MF): $\check{g}^{(\mathrm{MF})}(\zeta)=\check{h}^{*}\left(1 / \zeta^{*}\right)$.
- Zero forcing (ZF): $\quad \check{g}^{(\mathrm{ZF})}(\zeta)=(\check{h}(\zeta))^{-1}$.
- Minimum mean squared error (MMSE): maximize SINR

$$
\check{g}^{(\mathrm{MMSE})}(\zeta)=\frac{E_{s} \check{h}^{*}\left(1 / \zeta^{*}\right)}{N_{0}+E_{s} \check{h}^{*}\left(1 / \zeta^{*}\right) \check{h}(\zeta)}
$$

- Low SNR regime $\left(E_{s} \ll N_{0}\right): \check{g}^{(\mathrm{MMSE})}(\zeta) \approx \frac{E_{s}}{N_{0}} \check{g}^{(\mathrm{MF})}(\zeta)$
- High SNR regime $\left(E_{s} \gg N_{0}\right): \check{g}^{(\mathrm{MMSE})}(\zeta) \approx \check{g}^{(\mathrm{ZF})}(\zeta)$

Matrix Representation of ISI Channel

$\begin{aligned} & V_{1} \\ & V_{2} \end{aligned}$	$=$	$h_{0} u_{1}$ $h_{0} u_{2}$	+	$h_{1} u_{1}$				+ +	$\begin{aligned} & Z_{1} \\ & Z_{2} \end{aligned}$
V_{L}	$=$	$h_{0} u_{L}$	$+$	$h_{1} u_{L-1}$	$+$	$+$	$h_{L-1} u_{1}$	$+$	Z_{L}
V_{L+1}	$=$	$h_{0} u_{L+1}$	$+$	$h_{1} u_{L}$	$+$	+	$h_{L-1} u_{2}$	+	Z_{L+1}
V_{n}	=	$h_{0} u_{n}$	$+$	$h_{1} u_{n-1}$	$+$	$+$	$h_{L-1} u_{n-L+1}$	$+$	Z_{n}
V_{n+1}	$=$			$h_{1} u_{n}$	$+$	+	$h_{L-1} u_{n-L+2}$	+	Z_{n+1}
V_{n+L-1}	$=$						$h_{L-1} u_{n}$	+	Z_{n+L-1}

Matrix Representation of ISI Channel

$$
\boldsymbol{V}=\mathbf{h} \boldsymbol{u}+\boldsymbol{Z}=u_{m}[\mathbf{h}]_{m}+\sum_{i \neq m} u_{i}[\mathbf{h}]_{i}+\boldsymbol{Z}
$$

Matrix Representation of Equalizer

$$
\begin{aligned}
& W_{m}=\left\langle\boldsymbol{V},[\mathbf{g}]_{m}\right\rangle=[\mathbf{g}]_{m}^{\mathrm{H}} \boldsymbol{V} \\
& \tilde{Z}_{m} \triangleq[\mathrm{~g}]_{m}^{\mathrm{H}} \boldsymbol{Z} \\
& =\left([\mathbf{g}]_{m}^{\mathrm{H}}[\mathbf{h}]_{m}\right) u_{m}+\sum_{i \neq m}\left([\mathbf{g}]_{m}^{\mathrm{H}}[\mathbf{h}]_{i}\right) u_{i}+\tilde{Z}_{m} \\
& \text { signal } \\
& \text { ISI noise }
\end{aligned}
$$

Goal: maximize $\operatorname{SINR}=\frac{\left|\left\langle[\mathbf{h}]_{m},[\mathbf{g}]_{m}\right\rangle\right|^{2} E_{s}}{\sum_{i \neq m}\left|\left\langle[\mathbf{h}]_{i},[\mathbf{g}]_{m}\right\rangle\right|^{2} E_{s}+\left\|[\mathbf{g}]_{m}\right\|^{2} N_{0}}$

Low SNR Regime

$$
E_{s} \ll N_{0} \Longrightarrow \text { neglect ISI. }
$$

$$
W_{m}=\left([\mathbf{g}]_{m}^{\mathrm{H}}[\mathbf{h}]_{m}\right) u_{m}+\sum_{i \neq m}\left(\left[\mathrm{~g} \mathrm{~m}_{m}^{\mathrm{H}}\right] i w_{i}+\tilde{Z}_{m}\right.
$$

$$
\text { SINR }=\frac{\left|\left\langle[\mathbf{h}]_{m},[\mathbf{g}]_{m}\right\rangle\right|^{2} E_{s}}{\sum_{i \neq m}+\left\|[\mathbf{g}]_{m}\right\|^{2} N_{0}}
$$

$$
=\left(\frac{\left|\left\langle[\mathbf{h}]_{m},[\mathbf{g}]_{m}\right\rangle\right|}{\left\|[\mathbf{g}]_{m}\right\|}\right)^{2} \frac{E_{s}}{N_{0}}
$$

$$
\Longrightarrow\left[\mathbf{g}^{(\mathrm{MF})}\right]_{m}=[\mathbf{h}]_{m}
$$

Matched Filter

$$
\begin{aligned}
& W_{m}=h_{0}^{*} V_{m}+h_{1}^{*} V_{m+1}+\ldots+h_{L-1}^{*} V_{m+L-1} \\
&=\sum_{\ell=0}^{L-1} h_{\ell}^{*} V_{m+\ell}=\sum_{\ell=-(L-1)}^{0} h_{-\ell}^{*} V_{m-\ell}=\sum_{\ell=-(L-1)}^{0} g_{\ell}^{(\mathrm{MF})} V_{m-\ell} \\
& \Longrightarrow g_{\ell}^{(\mathrm{MF})}=h_{-\ell}^{*} \quad \check{g}^{(\mathrm{MF})}(\zeta)=\check{h}^{*}\left(1 / \zeta^{*}\right) \\
& \breve{g}^{(\mathrm{MF})}(f)=\breve{h}^{*}(f)
\end{aligned}
$$

project the signal onto the signal direction, so that the signal energy is maximized.

High SNR Regime

$E_{s} \gg N_{0} \Longrightarrow$ neglect noise.

$$
W_{m}=\left([\mathbf{g}]_{m}^{\mathrm{H}}[\mathbf{h}]_{m}\right) u_{m}+\sum_{i \neq m}\left([\mathbf{g}]_{m}^{\mathrm{H}}[\mathbf{h}]_{i}\right) u_{i}+\tilde{Z}_{m}
$$

$$
\operatorname{SINR}=\frac{\left|\left\langle[\mathbf{h}]_{m},[\mathbf{g}]_{m}\right\rangle\right|^{2} E_{s}}{\sum_{i \neq m}\left|\left\langle[\mathbf{h}]_{i},[\mathbf{g}]_{m}\right\rangle\right|^{2} E_{s}+\ldots \mathbf{g} \mathbf{N}_{0}}
$$

$$
\Longrightarrow\left[\mathbf{g}^{(\mathrm{ZF})}\right]_{m} \perp[\mathbf{h}]_{i}, \forall i \neq m
$$

one choice: $\quad\left[\mathbf{g}^{(\mathrm{ZF})}\right]_{m}=\left(\mathbf{h}^{\dagger}\right)^{\mathrm{H}} \boldsymbol{e}_{m}=\mathbf{h}\left(\mathbf{h}^{\mathrm{H}} \mathbf{h}\right)^{-1} \boldsymbol{e}_{m}$

Geometric Interpretation

Max. SINR \equiv Min. MSE

$$
\begin{aligned}
&\left\{V_{m}\right\} \longrightarrow \text { Linear Equalizer } \longrightarrow\left\{W_{m}\right\} \\
& W_{m}= \sum_{k} g_{k} V_{m-k}=\sum_{k} \sum_{\ell=0}^{L-1} g_{k} h_{\ell} u_{m-k-\ell}+\sum_{k} g_{k} Z_{m-k} \\
&=\left(\sum_{\ell=0}^{L-1} g_{-\ell} h_{\ell}\right) u_{m}+\tilde{I}_{m}+\tilde{Z}_{m} \\
& \text { the same for all } m \text { 回 WLOG assume it is } 1
\end{aligned}
$$

$\mathrm{SINR}=\frac{\mathrm{E}\left[\left|U_{m}\right|^{2}\right]}{\mathrm{E}\left[\left|\Xi_{m}\right|^{2}\right]}=\frac{E_{s}}{\mathrm{E}\left[\left|\Xi_{m}\right|^{2}\right]}$
$\max \operatorname{SINR} \equiv \min E\left[\left|\Xi_{m}\right|^{2}\right]$
mean squared error (MSE)

Minimum MSE Estimation

- In general, one can consider the following estimation problem:
- Given a random observation, estimate a target s.t. the MSE is minimized target observation estimation

$$
g^{(\operatorname{MMSE})}(\cdot)=\underset{g \in \mathcal{H}}{\operatorname{argmin}} \operatorname{MSE}(X, g(Y)) \operatorname{MSE}(X, \hat{X}) \triangleq \mathrm{E}\left[\|X-\hat{X}\|^{2}\right]
$$

- You might be familiar with the general case: $g^{(\mathrm{MMSE})}(\boldsymbol{Y})=\mathrm{E}[\boldsymbol{X} \mid \boldsymbol{Y}]$
- Here, we focus on the random process case and linear estimators without any causality and finite-tap constraints.
- After deriving the optimal filter for MMSE estimation, we apply it back to the original problem

Recap: Discrete-Time Random Process

moment

$$
\mu_{X}[n] \triangleq \mathrm{E}\left[X_{n}\right]
$$

Second moment

PSD

$$
\mathrm{R}_{X}\left[n_{1}, n_{2}\right] \triangleq \mathrm{E}\left[X_{n_{1}} X_{n_{2}}^{*}\right]
$$ (auto-correlation)

$$
\mathrm{R}_{X Y}\left[n_{1}, n_{2}\right] \triangleq \mathrm{E}\left[X_{n_{1}} Y_{n_{2}}^{*}\right] \quad \mathrm{R}_{X Y}[n+k, n] \equiv \mathrm{R}_{X Y}[k]
$$

(cross-correlation)

(joint) WSS

$$
\mu_{X}[n] \equiv \mu_{X}
$$

$$
\begin{gathered}
\mathrm{R}_{X}[n+k, n] \equiv \mathrm{R}_{X}[k] \\
\mathrm{R}_{X}[-k]=\mathrm{R}_{X}^{*}[k] \\
\mathrm{R}_{X Y}[n+k, n] \equiv \mathrm{R}_{X Y}[k] \\
\mathrm{R}_{Y X}[k]=\mathrm{R}_{X Y}^{*}[-k] \\
\mathrm{R}_{X}[k] \longleftrightarrow \mathrm{S}_{X}(\zeta) \\
\mathrm{R}_{X Y}[k] \longleftrightarrow \mathrm{S}_{X Y}(\zeta) \\
\mathrm{S}_{X X}(\zeta)=\mathrm{S}_{X Y}^{*}\left(1 / \zeta^{*}\right)
\end{gathered}
$$

Recap: Filtering Random Processes

$$
X_{1}[n] \longrightarrow h_{1}[n]=\left(X_{1} * h_{1}\right)[n]
$$

jointly WSS
jointly WSS

$$
X_{2}[n] \longrightarrow Y_{2}[n]=\left(X_{2} * h_{2}\right)[n]
$$

Cross-correlation: $\quad \mathrm{R}_{Y_{1}, Y_{2}}[k]=\left(h_{1} * \mathrm{R}_{X_{1}, X_{2}} * h_{2, \mathrm{rv}}\right)[k]$

Cross PSD:

$$
\mathrm{S}_{Y_{1}, Y_{2}}(\zeta)=\check{h}_{1}(\zeta) \mathrm{S}_{X_{1}, X_{2}}(\zeta) \check{h}_{2}^{*}\left(1 / \zeta^{*}\right)
$$

Derivation of the Optimal Filter

jointly WSS
$\left\{X_{n}\right\} \cdots \cdots \cdots \cdot\left\{Y_{n}\right\}$
Estimation via Linear Filter

$$
\left\{g_{k}\right\} \longleftrightarrow \check{g}(\zeta)
$$

$$
\begin{gathered}
\rightarrow\left\{\hat{X}_{n}\right\}=\left\{(g * Y)_{n}\right\} \\
\text { MSE } \triangleq \mathrm{E}\left[\left|X_{n}-\hat{X}_{n}\right|^{2}\right] \\
-\Xi_{n} \\
\text { also WSS! }
\end{gathered}
$$

Goal: $\quad\left\{g_{k}^{(\mathrm{MMSE})}\right\}=\operatorname{argmin}$ MSE
Note: $\mathrm{MSE}=\mathrm{E}\left[\left(X_{n}-\hat{X}_{n}\right)\left(X_{n}-\hat{X}_{n}\right)^{*}\right]=\mathrm{E}\left[\Xi_{n}\left(X_{n}-\sum_{k} g_{k} Y_{n-k}\right)^{*}\right]$

$$
\begin{aligned}
& \forall k, 0=\frac{\partial}{\partial g_{k}^{*}} \mathrm{MSE}=-\mathrm{E}\left[\Xi_{n} Y_{n-k}^{*}\right]=\mathrm{E}\left[(g * Y)_{n} Y_{n-k}^{*}\right]-\mathrm{E}\left[X_{n} Y_{n-k}^{*}\right] \\
\Longleftrightarrow & \forall k,\left(g * \mathrm{R}_{Y}\right)[k]=\mathrm{R}_{X Y}[k] \Longleftrightarrow \check{g}(\zeta) \mathrm{S}_{Y}(\zeta)=\mathrm{S}_{X Y}(\zeta)
\end{aligned}
$$

Solution: $\check{g}^{(\mathrm{MMSE})}(\zeta)=\left(\mathrm{S}_{Y}(\zeta)\right)^{-1} \mathrm{~S}_{X Y}(\zeta)$ (non-causal IIR Wiener filter)

Orthogonality Principle

- A key equation in deriving the optimal estimator is

$$
\mathrm{E}\left[\Xi_{n} Y_{n-k}^{*}\right]=0, \forall k \Longleftrightarrow\left\langle\Xi_{n},(f * Y)_{n}\right\rangle=0, \forall \text { LTI filter }\left\{f_{\ell}\right\}
$$

- For two r.v.'s (X, Y), we define the "inner product" as $\langle X, Y\rangle \triangleq \mathrm{E}\left[X Y^{*}\right]$
- (you can check the axioms of inner product space ...)
- A geometric interpretation: for an estimator that minimizes MSE, its estimation error should be "orthogonal" to the any estimators that one can choose
- Caveat: the family of estimators (which are also r.v.'s) should form a "subspace" of the r.v. inner product space

The Minimum MSE

$\min \mathrm{MSE}=\mathrm{E}\left[\Xi_{n} \Xi_{n}^{*}\right]=\mathrm{E}\left[\Xi_{n} X_{n}^{*}\right]$

$$
\begin{aligned}
& =\mathrm{E}\left[X_{n} X_{n}^{*}\right]-\mathrm{E}\left[\left(g^{(\mathrm{MMSE})} * Y\right)_{n} X_{n}^{*}\right] \\
& =\mathrm{R}_{X}[0]-\sum_{k} g_{k}^{(\mathrm{MMSE})} \mathrm{R}_{Y X}[-k] \\
& =\mathrm{R}_{X}[0]-\left(g^{(\mathrm{MMSE})} * \mathrm{R}_{Y X}\right)[0]
\end{aligned}
$$

$$
=\int_{-\frac{1}{2}}^{\frac{1}{2}}\left(\mathrm{~S}_{X}(f)-\breve{g}^{(\mathrm{MMSE})}(f) \mathrm{S}_{Y X}(f)\right) \mathrm{d} f
$$

$$
=\int_{-\frac{1}{2}}^{\frac{1}{2}}\left(\mathrm{~S}_{X}(f)-\frac{\left|\mathrm{S}_{X Y}(f)\right|^{2}}{\mathrm{~S}_{Y}(f)}\right) \mathrm{d} f
$$

Other kinds of Wiener Filter

FIR Wiener Filter

IIR Causal Wiener Filter

Optimal Linear Equalizer

Back to our problem of linear equalization

$$
V_{m}=(h * U)_{m}+Z_{m}
$$

$$
\begin{array}{cc}
\substack{\left\{U_{m}\right\} \cdots \cdots \cdots \cdots \\
\left\{X_{m}\right\} \\
\left\{X_{n}\right\} \\
\left\{Y_{n}\right\}} & \begin{array}{c}
\text { Linear Equalizer }
\end{array} \\
\left\{\begin{array}{c}
\left\{W_{m}\right\} \\
\left\{\hat{X}_{n}\right\}
\end{array}\right. & \begin{array}{l}
\mathrm{S}_{U}(\zeta)=E_{s} \\
\mathrm{~S}_{Z}(\zeta)=N_{0}
\end{array} \\
V_{m}=(h * U)_{m}+Z_{m} \Longrightarrow \mathrm{~S}_{V}(\zeta)=\check{h}(\zeta) \mathrm{S}_{U}(\zeta) \check{h}^{*}\left(1 / \zeta^{*}\right)+\mathrm{S}_{Z}(\zeta) \\
& \mathrm{S}_{U V}(\zeta)=\mathrm{S}_{U}(\zeta) \check{h}^{*}\left(1 / \zeta^{*}\right)
\end{array}
$$

Optimal linear equalizer:

$$
\check{g}^{(\mathrm{MMSE})}(\zeta)=\frac{\mathrm{S}_{U V}(\zeta)}{\mathrm{S}_{V}(\zeta)}=\frac{E_{s} \check{h}^{*}\left(1 / \zeta^{*}\right)}{E_{s} \check{h}^{*}\left(1 / \zeta^{*}\right) \check{h}(\zeta)+N_{0}}
$$

The Maximum SINR

$\max \operatorname{SINR}=\frac{E_{s}}{\min \mathrm{MSE}}=\left(\int_{-\frac{1}{2}}^{\frac{1}{2}}\left(|\breve{h}(f)|^{2} \frac{E_{s}}{N_{0}}+1\right)^{-1} \mathrm{~d} f\right)^{-1}$
$\min \mathrm{MSE}=\int_{-\frac{1}{2}}^{\frac{1}{2}}\left(\mathrm{~S}_{U}(f)-\frac{\left|\mathrm{S}_{U V}(f)\right|^{2}}{\mathrm{~S}_{V}(f)}\right) \mathrm{d} f$

$$
=\int_{-\frac{1}{2}}^{\frac{1}{2}}\left(E_{s}-\frac{|\breve{h}(f)|^{2} E_{s}^{2}}{|\breve{h}(f)|^{2} E_{s}+N_{0}}\right) \mathrm{d} f
$$

$$
=E_{s} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{\mathrm{~d} f}{|\breve{h}(f)|^{2} \frac{E_{s}}{N_{0}}+1}
$$

Part III. OFDM

Discrete Fourier Transform; Circular Convolution; Eigen Decomposition of Circulant Matrices

Motivation

- Previous parts: only receiver-centric methods
- MLSD with Viterbi algorithm: optimal but computationally infeasible
- Linear equalizations: simple but suboptimal.
- Is it possible to "pre-process" $\left\{u_{m}\right\}$ at Tx and "post-process" $\left\{V_{m}\right\}$ at $R x$, so that the end-to-end channel is ISI-free?
- Note: ZF can already remove ISI completely, but the noises after ZF are not independent anymore
- Post processing should preserve mutual independence of the noises
- Observation: IDTFT and DTFT will work, "if" we are willing to roll back to analog communication

IDTFT: $u_{m}=\int_{-1 / 2}^{1 / 2} \breve{u}(f) e^{\mathrm{j} 2 \pi m f} \mathrm{~d} f$

DTFT: $\breve{V}(f)=\sum_{m} V_{m} e^{-\mathrm{j} 2 \pi m f}$

$$
V_{m}=(h * u)_{m}+Z_{m} \longleftrightarrow \breve{V}(f)=\breve{h}(f) \breve{u}(f)+\breve{Z}(f)
$$

Why it works: because $e^{\mathrm{j} 2 \pi m f}$ is
In frequency domain, the outcome at a an eigenfunction to any LTI filter. frequency only depends on the input at that frequency:
Using these eigenfunctions as a
\Rightarrow no ISI! new basis to carry data renders infinite \# of ISI-free channels in the frequency domain.

Caveat: analog communication in the frequency domain

Discretized DTFT: Discrete Fourier Transform

- Idea: use the discretized version of DTFT/IDTFT

IDTFT: $u_{m}=\int_{-1 / 2}^{1 / 2} \breve{u}(f) e^{\mathrm{j} 2 \pi m f} \mathrm{~d} f$

DTFT: $\breve{V}(f)=\sum_{m} V_{m} e^{-\mathrm{j} 2 \pi m f}$
$\begin{aligned} k=0, \ldots, N-1 \\ k=0, \ldots, N-1\end{aligned}$
$\begin{array}{ll}\stackrel{k}{N}\end{array} \quad N$-pt. DFT: $\quad \breve{V}[k]=\frac{1}{\sqrt{N}} \sum_{m=0}^{N-1} V_{m} e^{-\mathrm{j} 2 \pi \frac{m k}{N}}$

- Note: N-point DFT/IDFT are transforms between two length- N sequences, indexed from 0 to $N-1$.
- Unfortunately, the convolution-multiplication property of the DTFT-IDTFT pair no longer holds
- We need a new kind of convolution for DFT-IDFT pair!

Circular Convolution

- Definition: for two length- N sequences $\left\{x_{n}\right\}_{n=0}^{N-1},\left\{h_{n}\right\}_{n=0}^{N-1}$

- Convolution-multiplication property: for length- N sequences $\left\{x_{n}\right\}_{n=0}^{N-1},\left\{y_{n}\right\}_{n=0}^{N-1},\left\{h_{n}\right\}_{n=0}^{N-1}$ with $y_{n}=(h \circledast x)_{n}$,

$$
\breve{y}[k]=\sqrt{N} \breve{h}[k] \breve{x}[k], \quad \forall k=0,1, \ldots, N-1
$$

Implement Circular Conv. in LTI Channel

- Original LTI channel (ignore noise): linear convolution

$$
v_{m}=(h * u)_{m}=\sum_{\ell=0}^{L-1} h_{\ell} u_{m-\ell}, m=0, \ldots, N-1 \quad(N \gg L)
$$

- Desired channel (ignore noise): circular convolution

$$
v_{m}=(h \circledast u)_{m}=\sum_{\ell=0}^{L-1} h_{\ell} u_{(m-\ell) \bmod N}, m=0, \ldots, N-1
$$

add cyclic prefix transmit

$$
v_{m}=(h \circledast u)_{m}, m=0, \ldots, N-1
$$

Matrix Form of Circular Convolution

$$
\begin{gathered}
v_{m}=(h \circledast u)_{m}, m=0, \ldots, N-1 \\
\boldsymbol{v}=\mathbf{h}_{\mathrm{c}} \boldsymbol{u} \in \mathbb{C}^{N}
\end{gathered}
$$

with noise: $\boldsymbol{V}=\mathbf{h}_{\mathrm{c}} \boldsymbol{u}+\boldsymbol{Z} \in \mathbb{C}^{N}$

Linear Algebraic View

Circulant Matrix

Every row/column is a circular shift of the first row/column

$$
\left[\begin{array}{cccccc}
h_{0} & 0 & 0 & h_{L-1} & \cdots & h_{1} \\
h_{1} & h_{0} & \vdots & & & \vdots \\
\vdots & h_{1} & 0 & & & h_{L-1} \\
h_{L-1} & \vdots & h_{0} & & & 0 \\
0 & h_{L-1} & h_{1} & h_{0} & & \vdots \\
\vdots & & \vdots & & & 0 \\
0 & 0 & h_{L-1} & h_{L-2} & \cdots & h_{0}
\end{array}\right]
$$

- Define $\phi_{m}^{(k)} \triangleq \frac{1}{\sqrt{N}} e^{\mathrm{j} 2 \pi \frac{k}{N} m}, \quad m=0, \ldots, N-1$
- Can show: for any $\left\{h_{\ell}\right\}_{\ell=0}^{N-1},\left(h \circledast \phi^{(k)}\right)_{m}=\sqrt{N} \breve{h}[k] \phi_{m}^{(k)}$
$\left(h \circledast \phi^{(k)}\right)_{m}=\sqrt{N} \breve{h}[k] \phi_{m}^{(k)}, \quad m=0, \ldots, N-1$
$\Longrightarrow \phi^{(k)}$ is an eigenvector of matrix \mathbf{h}_{c} with eigenvalue $\sqrt{N} \breve{h}[k]$, for all $k=0, \ldots, N-1$.

- Furthermore, can show that $\left\langle\phi^{(k)}, \phi^{(l)}\right\rangle=\mathbb{1}\{k=l\}$
$\Longrightarrow\left\{\phi^{(k)} \mid k=0, \ldots, N-1\right\}:$ an orthonormal basis of \mathbb{C}^{N}
- Hence, we can obtain the eigenvalue decomposition of any circulant matrix \mathbf{h}_{c}

$$
\begin{aligned}
& \mathbf{h}_{\mathrm{C}}=\boldsymbol{\Phi} \boldsymbol{\Lambda}_{\breve{h}} \boldsymbol{\Phi}^{\mathrm{H}} \\
& \mathbf{\Phi} \triangleq\left[\boldsymbol{\phi}^{(0)} \ldots \boldsymbol{\phi}^{(N-1)}\right] \\
& \mathbf{\Lambda}_{\breve{h}} \triangleq \operatorname{diag}\left(\breve{h}\left(f_{0}\right), \breve{h}\left(f_{1}\right), \ldots, \breve{h}\left(f_{N-1}\right)\right) \\
& \quad f_{k} \triangleq \frac{k}{N}, \quad k=0, \ldots, N-1 \\
& \left\{h_{n} \mid n=0, \ldots, N-1\right\}: \text { the first column of } \mathbf{h}_{\mathrm{c}} \\
& \breve{h}(f): \operatorname{DTFT} \text { of }\left\{h_{n}\right\}
\end{aligned}
$$

- Can diagonalize the channel (remove ISI) without knowing it using the DFT basis. Only true for circulant matrix!
- IDFT matrix $\boldsymbol{\Phi}$ and DFT matrix $\boldsymbol{\Phi}^{\mathrm{H}}$:

$$
\begin{aligned}
(\boldsymbol{\Phi})_{m, k} & =\frac{1}{\sqrt{N}} \exp \left(\mathrm{j} 2 \pi \frac{m k}{N}\right) & & N \text {-pt. IDFT: } u_{m}=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \breve{u}[k] e^{\mathrm{j} 2 \pi \frac{m k}{N}} \\
\left(\boldsymbol{\Phi}^{\mathrm{H}}\right)_{m, k} & =\frac{1}{\sqrt{N}} \exp \left(-\mathrm{j} 2 \pi \frac{m k}{N}\right) & & N-\text {-pt. DFT: } \breve{V}[k]=\frac{1}{\sqrt{N}} \sum_{m=0}^{N-1} V_{m} e^{-\mathrm{j} 2 \pi \frac{m k}{N}} \\
\boldsymbol{u} & =\boldsymbol{\Phi} \breve{\boldsymbol{u}}, \quad \breve{\boldsymbol{V}}=\boldsymbol{\Phi}^{\mathrm{H}} \boldsymbol{V} & &
\end{aligned}
$$

- Pre-processing and post-processing:

$$
\begin{aligned}
\boldsymbol{V} & =\mathbf{h}_{\mathrm{c}} \boldsymbol{u}+\boldsymbol{Z}=\boldsymbol{\Phi} \boldsymbol{\Lambda}_{\breve{h}} \boldsymbol{\Phi}^{\mathrm{H}} \boldsymbol{u}+\boldsymbol{Z} \quad \boldsymbol{\Phi}^{\mathrm{H}} \boldsymbol{V}=\boldsymbol{\Lambda}_{\breve{h}} \boldsymbol{\Phi}^{\mathrm{H}} \boldsymbol{u}+\boldsymbol{\Phi}^{\mathrm{H}} \boldsymbol{Z} \\
\Longrightarrow \breve{\boldsymbol{V}} & =\boldsymbol{\Lambda}_{\breve{h}} \breve{\boldsymbol{u}}+\breve{\boldsymbol{Z}} \quad \breve{Z}[k] \stackrel{\text { because the DFT matrix } \Phi^{\mathrm{H}} \text { is unitary }}{\stackrel{\text { i.i.d. }}{\sim}} \mathcal{C N}\left(0, N_{0}\right), k=0,1
\end{aligned}
$$

Equivalent Parallel Channels

- OFDM creates N parallel non-interfering sub-channels:

$$
\breve{V}[k]=\breve{h}\left(f_{k}\right) \breve{u}[k]+\breve{Z}[k], \quad k=0,1, \ldots, N-1
$$

- Channel gain at the k-th branch:
$\breve{h}\left(f_{k}\right)=\breve{h}\left(\frac{k}{N}\right)=\sqrt{N} \breve{h}[k] \quad \breve{h}(f):$ DTFT of $\left\{h_{\ell}\right\}$
= periodic copies of $\breve{h}_{a}\left(\frac{f}{T}\right)$, period 1
$h_{a}(\tau) \triangleq\left(h_{b} * g\right)(\tau)$
- Equivalently, the overall bandwidth $2 W$ is partitioned into N narrowbands, and each sub-channel use that narrowband for transmission (centered at $k \frac{2 W}{N}, k=0, \ldots, N-1$)
- Subcarrier spacing: $\frac{2 W}{N}$

Capacity of Parallel Channels

- Capacity of N parallel channels is the sum of individual capacities coding across subcarriers does not help!
- Since channel gains are different, each branch has different capacity
- Goal: maximize capacity subject to a total power constraint
- Power allocation: maximize rate

$$
P_{k}: \text { power of branch } k \quad \sum_{k=0}^{N-1} P_{k} \leq N P
$$

$$
R=\sum_{k=0}^{N-1} \log \left(1+\frac{\left|\breve{h}\left(f_{k}\right)\right|^{2} P_{k}}{N_{0}}\right)
$$

Water-filling

$$
\begin{aligned}
\max _{P_{0}, \ldots, P_{N-1}} & \sum_{k=0}^{N-1} \log \left(1+\left|\breve{h}\left(f_{k}\right)\right|^{2} \frac{P_{k}}{N_{0}}\right), \\
\text { subject to } & \sum_{n=0}^{N-1} P_{k}=N P, \quad P_{k} \geq 0, k=0, \ldots, N-1
\end{aligned}
$$

- Solved by standard techniques in convex optimization (Lagrange multipliers, KKT condition)
- Final solution:

$$
\begin{aligned}
& P_{k}^{*}=\left(\nu-\frac{N_{0}}{\left|\breve{h}\left(f_{k}\right)\right|^{2}}\right)^{+} \quad(x)^{+} \triangleq \max (0, x) \\
& \nu \text { satisfies } \sum_{k=0}^{N-1}\left(\nu-\frac{N_{0}}{\left|\breve{h}\left(f_{k}\right)\right|^{2}}\right)^{+}=N P
\end{aligned}
$$

$\breve{h}\left(f_{k}\right)=\breve{h}_{b}\left(k \frac{2 W}{N}\right) \breve{g}\left(k \frac{2 W}{N}\right)$
baseband frequency response at $f=k \frac{2 W}{N}$

- Main lesson: one should allocate higher rate when at the branch with better channel condition

Capacity of Frequency Selective Channel

- Pre-processing (IDFT) and post-processing (DFT) are both invertible in OFDM systems
- The only loss: length-($L-1$) cyclic prefix, negligible when we take $N \rightarrow \infty$
- The power allocation problem becomes

$$
\max _{P(f)} \int_{-1 / 2}^{1 / 2} \log \left(1+|\breve{h}(f)|^{2} \frac{P(f)}{N_{0}}\right) \mathrm{d} f,
$$

subject to $\int_{-1 / 2}^{1 / 2} P(f) \mathrm{d} f=P, \quad P(f) \geq 0, f \in[-1 / 2,1 / 2]$

- Optimal solution: water-filling on the continuous spectrum

Water-filling in Frequency-Selective Channel

OFDM System Diagram

OFDM System Design

- Cyclic prefix overhead: $\frac{L-1}{N}$ (the smaller the better)
- Subcarrier spacing: $\frac{2 W}{N}$ (the larger the better) prevent frequency offset/asynchrony
- Subcarriers are basic resource units in OFDM systems
- A critical issue of OFDM in practice: peak-to-average ratio (PAR) is much higher than single-carrier systems.

It requires a large dynamic range of the linear characteristic of the transmit power amplifier (PA).

