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This Lecture

• Physical channel model for wideband communication

‣ Intuition: when the band is wide, signals in difference band will 
experience different frequency response of the channel

‣ Use an LTI filter to model the channel
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Y (t) = (h ∗ x)(t) + Z(t), SZ(f) =
N0
2

ECC 
Encoder

Symbol 
Mapper

Pulse 
Shaper

Filter + 
Sampler + 
Detection

Symbol 
Demapper

ECC 
Decoder

coded
bits

discrete 
sequence

Binary 
Interface

Channel Coding

Information 
bits

Up 
Converter

Down 
Converter

baseband 
waveform Noisy

Channel

passband 
waveform

x(t)

Y (t)

LTI filter 
+ noise



This Lecture

• New challenge: inter-symbol interference (ISI)
‣ Detect each symbol individually is no longer optimal

• Our focus: mitigate ISI in the digital world (after sampling)
‣ HW1 tells us that dealing with ISI in the analog world is a pretty bad idea
‣ Receiver-side solution, transmitter-side solution, and Tx-Rx solution
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Outline
• LTI filter channel and inter-symbol interference (ISI)

• Optimal Rx-side solution: MLSD

• Rx-side solution: linear equalizations

• Tx-Rx-side solution: OFDM
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Part I. LTI Filter Channel and 
Inter-Symbol Interference

Equivalent Discrete-Time Baseband Channel; 
Inter-Symbol Interference; MLSD



Physical Channel Model
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Y (t) = (h ∗ x)(t) + Z(t), SZ(f) =
N0
2

• Use LTI filter to model wireline channels
‣ Examples: telephone lines, Ethernet cables, cable TV wires, optical fibers
‣ Operating bandwidth range from 1~2MHz to 250~500 MHz.

• Why use LTI filter to model wireline channels?
‣ Frequency responses are no longer flat
‣ Channel is rather stationary compared to wireless channels
‣ Within the interest of time, can be assumed to be time-invariant

=

Z 1

�1
h(⌧)x(t� ⌧) d⌧ + Z(t)



Features of the LTI Filter Channel

• Causal: naturally, impulse response should be causal.

• Dispersive: naturally, input signal cannot “stay” in the channel for 
too long, and hence most energy of the impulse response of the 
channel should be contained in an interval 
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h(⌧) = 0, 8 ⌧ < 0

h(⌧)

⌧

[0, Td]

h(τ) = 0, ∀ τ > Td

time dispersion (delay spread)Td

=) Y (t) =

Z Td

0
h(⌧)x(t� ⌧) d⌧ + Z(t)



Derivation of the Discrete-Time Model
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Step 1: real passband $  complex baseband (ignore noise) 

Pulse shaping: xb(t) !
∑

m um p(t−mT )

Up conversion: x(t) ! Re
{
xb(t)

√
2 exp(j2πfct)

}

LTI channel: y(t) = (h ∗ x)(t) = Re
{
(hb ∗ xb)(t)

√
2 exp(j2πfct)

}check!

Down conversion: yb(t) = (hb ∗ xb)(t)
hb(τ) ! h(τ) exp(−j2πfcτ)
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Step 2: continuous-time $  discrete-time

Demodulation: ûm = (yb ∗ q)(mT ) = (xb ∗ hb ∗ q)(mT )

xb(t) !
∑

k uk p(t− kT )

=
X

k

uk

Z Td

0
hb(⌧)g(mT � kT � ⌧) d⌧

g(t) ! (p ∗ q)(t)

=
X

k

ukhm�k = (u ⇤ hd)m

hd[ℓ] ! (hb ∗ g)(ℓT ) = (p ∗ hb ∗ q)(ℓT )

Step 3: adding noise back

Vm =
∑

ℓ hd[ℓ]um−ℓ + Zm, Zm ∼ CN (0, N0)



Number of Taps

• What is the range of    in the summation of the discrete-time 
convolution in the equivalent discrete-time model?
‣ Recall:

‣ The overall “spread” of the digital filter is hence   

• The equivalent discrete-time filter has finite impulse response, 
that is, the number of taps                    is finite:
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Vm =
∑

ℓ hd[ℓ]um−ℓ + Zm, Zm ∼ CN (0, N0)

ℓ

hd[ℓ] ! (hb ∗ g)(ℓT ) hb(τ) ! h(τ) exp(−j2πfcτ)
h(τ)

τ

Td

g(t)

t

Tp

Tp + Td

T

Vm =
L−1∑
ℓ=0

hd[ℓ]um−ℓ + Zm, Zm ∼ CN (0, N0)

L ≈ Tp+Td

T



• With a little abuse of notation, identifying                 , the equivalent 
discrete-time baseband channel model is given as

• The filter tap coefficients        depends on
‣ one-sided bandwidth      (or symbol time              )
‣ carrier frequency
‣ modulation pulse 
‣ channel impulse response

• In practice, these taps are measured via training: sending known 
pilot symbols to estimate the tap coefficients.

• Total # of taps is proportional to bandwidth: 

Discrete-Time Complex Baseband Model
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hd[ℓ] ≡ hℓ

{Zm}
#

{um} ! FIR L-tap LTI filter �!��! {Vm}

h , [h0 h1 ... hL�1] 2 CL

{h`}

h(⌧)

g(t)

Vm =
L�1X

`=0

h` um�` + Zm,

Zm ⇠ CN (0, N0)

L ≈ Tp+Td

T ∝ W

fc

W T = 1
2W



Inter-Symbol Interference

• With ISI, it is no longer optimal to detect each symbol       from the 
single observed       only.

• ISI introduces memory, and hence one needs to detect the entire 
sequence jointly &  Maximum Likelihood Sequence Detection 
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Narrowband channel (no ISI) 

Wideband channel (with ISI) 

Vm =
L�1X

`=0

h` um�` + Zm, Zm ⇠ CN (0, N0)

Vm = h0 um + Zm, Zm ⇠ CN (0, N0)

= h0 um + (h1um�1 + ...+ hL�1um�L+1) + Zm

Im inter-symbol interference
um

Vm



Optimal Receiver: MLSD 
• ISI channel is the same as the convolutional encoder, except that 

the arithmetic is in the complex field, not the finite (binary) field

• Hence, each possible sequence in MLSD can be represented by a 
path on a trellis

• Procedure of MLSD: received a length-n sequence 
‣ Define the state as the past interfering symbols:

‣ Each transition       has       possible outgoing arrows.    : constellation set
‣ Each transition outputs a symbol:

‣ Goal of MLSD: find a path on the trellis such that                                is 
minimized ⟹ Viterbi algorithm!

• However, the complexity of Viterbi algorithm is                 , while 
the # of taps is quite large (100~200) in wideband systems (DSL). 

• MLSD is optimal but infeasible in practice for wideband systems.
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sm , (um�1, . . . , um�L+1)

|A| Aum

ûm = h0um +
∑L−1

ℓ=1 hℓ um−ℓ ∑n
m=1 |Vm − ûm|2

(V1, . . . , Vn)

⇥(n |A|L)
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Part II. Linear Equalizations

Matched-Filter, Zero-Forcing, 
MMSE Equalization
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Mitigate ISI with Linear Filters

• ISI is caused by a (discrete-time) LTI filter due to the frequency 
selectivity of the channel

• Why not use another discrete-time LTI filter at the receiver to 
mitigate ISI, and do symbol-wise detection at the filtered output?

• Design of the filter         requires some objectives for optimization:
‣ Probability of error? hard to analyze
‣ Energy will be easier to handle

• Since the ISI is treated as noise in the symbol-wise detection, we 
should try to maximize the signal-to-interference-and-noise ratio 
(SINR) at the filtered output 

{Vm} Linear Equalizer
  LTI filter: {g`}

{Wm} symbol-wise 
detection

{ûm}

{g`}

{Wm}



Linear Equalizers to be Introduced
• Use Z transform to represent the discrete-time LTI filter

‣ Recall its relation with DTFT:

• Three kinds of linear equalizers:
‣ Matched filter (MF):
‣ Zero forcing (ZF):
‣ Minimum mean squared error (MMSE): maximize SINR

• Low SNR regime (               ): 

• High SNR regime (               ): 
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g`  ! ǧ(⇣) ,
X

`

g`⇣
�`

ğ(f) = ǧ(ej2⇡f )

ǧ( )(ζ) = ȟ∗(1/ζ∗).

ǧ( )(ζ) = (ȟ(ζ))−1.

ǧ( )(⇣) =
Esȟ⇤(1/⇣⇤)

N0 + Esȟ⇤(1/⇣⇤)ȟ(⇣)

Es ⌧ N0 ǧ( )(ζ) ≈ Es
N0

ǧ( )(ζ)

Es � N0 ǧ( )(⇣) ⇡ ǧ( )(⇣)



Matrix Representation of ISI Channel
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V1 = h0u1 + Z1

V2 = h0u2 + h1u1 + Z2

VL = h0uL + h1uL−1 + · · · + hL−1u1 + ZL

VL+1 = h0uL+1 + h1uL + · · · + hL−1u2 + ZL+1

Vn = h0un + h1un−1 + · · · + hL−1un−L+1 + Zn

Vn+1 = h1un + · · · + hL−1un−L+2 + Zn+1

Vn+L−1 = hL−1un + Zn+L−1



Matrix Representation of ISI Channel
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h !

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 0 · · · 0

h1 h0

h1

hL−1 0
0 hL−1 h0

0 h1

0 0 hL−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

V = hu+Z = um[h]m +
∑

i ̸=m

ui[h]i +Z

[h]m

m ⇠ (m+ L� 1)-th
elements are h0, h1, ...hL�1



Matrix Representation of Equalizer
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{Vm} Linear Equalizer
  LTI filter: {g`}

{Wm} symbol-wise 
detection

{ûm}

Wm = ⟨V , [g]m⟩ = [g]HmV

= ([g]Hm[h]m)um +
∑

i ̸=m

([g]Hm[h]i)ui + Z̃m

signal ISI noise

Goal: maximize

Z̃m ! [g]HmZ

SINR =
|⟨[h]m, [g]m⟩|2 Es∑

i ̸=m |⟨[h]i, [g]m⟩|2 Es + ∥[g]m∥2 N0



Low SNR Regime
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Wm = ([g]Hm[h]m)um +
∑

i ̸=m

([g]Hm[h]i)ui + Z̃m

SINR =
|⟨[h]m, [g]m⟩|2 Es∑

i ̸=m |⟨[h]i, [g]m⟩|2 Es + ∥[g]m∥2 N0

Es ⌧ N0 =)

=

(
|⟨[h]m, [g]m⟩|

∥[g]m∥

)2 Es

N0

=⇒ [g( )]m = [h]m



Matched Filter
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Wm = h⇤
0Vm + h⇤

1Vm+1 + . . .+ h⇤
L�1Vm+L�1

=
L�1X

`=0

h⇤
`Vm+` =

0X

`=�(L�1)

h⇤
�`Vm�` =

0X

`=�(L�1)

g( )
` Vm�`,

=) g( )
` = h⇤

�` ǧ( )(⇣) = ȟ⇤(1/⇣⇤)

ğ( )(f) = h̆⇤(f)

project the signal onto the signal direction, 
so that the signal energy is maximized.



High SNR Regime
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Es � N0 =)

Wm = ([g]Hm[h]m)um +
∑

i ̸=m

([g]Hm[h]i)ui + Z̃m

SINR =
|⟨[h]m, [g]m⟩|2 Es∑

i ̸=m |⟨[h]i, [g]m⟩|2 Es + ∥[g]m∥2 N0

=⇒ [g( )]m ⊥ [h]i, ∀ i ̸= m

one choice: [g( )]m = (h†)Hem = h(hHh)−1em



Geometric Interpretation
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interference subspace

[g( )]m ⌘ [h]m

[g( )]m

n� 1
h [h]m



Max. SINR       Min. MSE
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⌘

{Vm} Linear Equalizer {Wm}

Wm =
X

k

gkVm�k =
X

k

L�1X

`=0

gkh`um�k�` +
X

k

gkZm�k

=
(∑L−1

ℓ=0 g−ℓhℓ

)
um + Ĩm + Z̃m

the same for all m !  WLOG assume it is 1

= um + Ĩm + Z̃m ⌅m

SINR =
E
⇥
|Um|2

⇤

E [|⌅m|2] =
Es

E [|⌅m|2]
max SINR ⌘ minE

h
|⌅m|2

i

: kind of estimation error

mean squared error (MSE)



Minimum MSE Estimation
• In general, one can consider the following estimation problem:
‣ Given a random observation, estimate a target s.t. the MSE is minimized

‣ You might be familiar with the general case: 

• Here, we focus on the random process case and linear estimators 
without any causality and finite-tap constraints.
‣ After deriving the optimal filter for MMSE estimation, we apply it back to 

the original problem
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g( )(·) = argmin
g2H

MSE(X, g(Y ))

observation

Y
Estimator in H

g(·) X̂ = g(Y )

target

X

estimation

MSE(X, X̂) , E

���X � X̂
���
2
�

random processes 
random vectors

{Xn}, {Yn}
X,Y

H

LTI filter (FIR/IIR, causal/non-causal) 
general functions/linear functions

g( )(Y ) = E [X|Y ]

PX,Y



Recap: Discrete-Time Random Process
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First 
moment

Second 
moment

(auto-correlation)

µX [n] , E [Xn]

RX [n1, n2] , E
⇥
Xn1X

⇤
n2

⇤

RXY [n1, n2] , E
⇥
Xn1Y

⇤
n2

⇤

(cross-correlation)

General (joint) WSS

µX [n] ⌘ µX

RX [n+ k, n] ⌘ RX [k]

RXY [n+ k, n] ⌘ RXY [k]

PSD
RXY [k] ! SXY (⇣)

RX [k] ! SX(⇣)

RY X [k] = R⇤
XY [�k]

RX [�k] = R⇤
X [k]

SY X(⇣) = S⇤XY (1/⇣
⇤)



Recap: Filtering Random Processes
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jointly WSS jointly WSS

X1[n] h1[n]

h2[n]X2[n]

Y1[n] = (X1 ⇤ h1)[n]

Y2[n] = (X2 ⇤ h2)[n]

Cross-correlation:

Cross PSD:

RY1,Y2 [k] = (h1 ⇤ RX1,X2 ⇤ h2,rv) [k]

SY1,Y2(⇣) = ȟ1(⇣)SX1,X2(⇣)ȟ
⇤
2(1/⇣

⇤)



Derivation of the Optimal Filter
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Estimation via 
Linear Filter{Xn} {Yn}

jointly WSS

{gk} ! ǧ(⇣)
{X̂n} = {(g ⇤ Y )n}

Goal:
⌅n

MSE , E

���Xn � X̂n

���
2
�

{g( )
k } = argmin

{gk}
MSE also WSS!

MSE = E
h
(Xn � X̂n)(Xn � X̂n)

⇤
i
= E

"
⌅n

 
Xn �

X

k

gkYn�k

!⇤#

8 k, 0 =
@

@g⇤k
MSE = �E

⇥
⌅nY

⇤
n�k

⇤
= E

⇥
(g ⇤ Y )nY

⇤
n�k

⇤
� E

⇥
XnY

⇤
n�k

⇤

Note:

() 8 k, (g ⇤ RY )[k] = RXY [k] () ǧ(⇣)SY (⇣) = SXY (⇣)

Solution: (non-causal IIR Wiener filter)ǧ( )(⇣) = (SY (⇣))
�1SXY (⇣)



Orthogonality Principle
• A key equation in deriving the optimal estimator is 

‣ For two r.v.’s           , we define the “inner product” as
‣ (you can check the axioms of inner product space …)

• A geometric interpretation: for an estimator that minimizes MSE, 
its estimation error should be “orthogonal” to the any estimators 
that one can choose
‣ Caveat: the family of estimators (which are also r.v.‘s) should form a 

“subspace” of the r.v. inner product space
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E
⇥
⌅nY

⇤
n�k

⇤
= 0, 8 k () h⌅n, (f ⇤ Y )ni = 0, 8 {f`}

hX,Y i , E [XY ⇤](X,Y )
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estimator subspace

targetX

observation

Y
Estimator in H

g(·) X̂ = g(Y )

target

X

estimation

HPX,Y

X̂ (Y )

Ξ



min MSE = E [⌅n⌅
⇤
n] = E [⌅nX

⇤
n]

The Minimum MSE
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= E [XnX
⇤
n]� E

h
(g( ) ⇤ Y )nX

⇤
n

i

= RX [0]�
X

k

g( )
k RY X [�k]

= RX [0]� (g( ) ⇤ RY X)[0]

=

Z 1
2

� 1
2

⇣
SX(f)� ğ( )(f)SY X(f)

⌘
df

=

Z 1
2

� 1
2

 
SX(f)� |SXY (f)|2

SY (f)

!
df



Other kinds of Wiener Filter
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FIR Wiener Filter

IIR Causal Wiener Filter



Optimal Linear Equalizer
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Back to our problem of linear equalization

{Vm} Linear Equalizer {Wm}

{Yn} {X̂n}{Xn}

{Um} SU (⇣) = Es

SZ(⇣) = N0

Vm = (h ⇤ U)m + Zm

SUV (⇣) = SU (⇣)ȟ
⇤(1/⇣⇤)

Vm = (h ⇤ U)m + Zm =) SV (⇣) = ȟ(⇣)SU (⇣)ȟ
⇤(1/⇣⇤) + SZ(⇣)

Optimal linear equalizer: 

ǧ( )(⇣) =
SUV (⇣)

SV (⇣)
=

Esȟ⇤(1/⇣⇤)

Esȟ⇤(1/⇣⇤)ȟ(⇣) +N0



The Maximum SINR
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max SINR =

Es

min MSE

min MSE =

Z 1
2

� 1
2

 
SU (f)�

|SUV (f)|2

SV (f)

!
df

=

Z 1
2

� 1
2

0

B@Es �

���h̆(f)
���
2
E2

s
���h̆(f)

���
2
Es +N0

1

CA df

= Es

Z 1
2

� 1
2

df

|h̆(f)|2 Es
N0

+ 1

=

 Z 1
2

� 1
2

✓���h̆(f)
���
2 Es

N0
+ 1

◆�1

df

!�1
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Part III. OFDM

Discrete Fourier Transform; Circular Convolution; 
Eigen Decomposition of Circulant Matrices
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Motivation

LTI Filter Channel{um} {Vm}
{h`}

{Zm}

• Previous parts: only receiver-centric methods
‣ MLSD with Viterbi algorithm: optimal but computationally infeasible
‣ Linear equalizations: simple but suboptimal.

• Is it possible to “pre-process”          at Tx and “post-process”           
at Rx, so that the end-to-end channel is ISI-free?
‣ Note: ZF can already remove ISI completely, but the noises after ZF are 

not independent anymore
‣ Post processing should preserve mutual independence of the noises

• Observation: IDTFT and DTFT will work, “if” we are willing to roll 
back to analog communication

{um} {Vm}
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{h`}

{Zm}

{um}

{Vm}

IDTFT

DTFT

ŭ(f)

V̆ (f)

um =

Z 1/2

�1/2
ŭ(f)ej2⇡mf dfIDTFT:

DTFT: V̆ (f) =
X

m

Vme�j2⇡mf

Vm = (h ⇤ u)m + Zm  ! V̆ (f) = h̆(f)ŭ(f) + Z̆(f)

In frequency domain, the outcome at a 
frequency only depends on the input at 
that frequency:
⟹ no ISI!

Caveat: analog communication in the frequency domain

Why it works: because            is 
an eigenfunction to any LTI filter.

ej2πmf

Using these eigenfunctions as a 
new basis to carry data renders 
infinite # of ISI-free channels in the frequency domain.
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Discretized DTFT: Discrete Fourier Transform
Idea: use the discretized version of DTFT/IDTFT

um =

Z 1/2

�1/2
ŭ(f)ej2⇡mf dfIDTFT:

DTFT: V̆ (f) =
X

m

Vme�j2⇡mf

N-pt. IDFT:

N-pt. DFT:

um =
1p
N

N�1X

k=0

ŭ[k]ej2⇡
mk
N

V̆ [k] =
1p
N

N�1X

m=0

Vme�j2⇡mk
N

f = k
N

k = 0, ..., N − 1
m = 0, ..., N − 1

Note: N-point DFT/IDFT are transforms between 
two length-N sequences, indexed from 0 to N–1.

Unfortunately, the convolution-multiplication property of the 
DTFT-IDTFT pair no longer holds

We need a new kind of convolution for DFT-IDFT pair!



Circular Convolution
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Definition: for two length-N sequences 

Convolution-multiplication property: for length-N sequences 
	 	 	 	 	 	 	 	 	 with                         , {xn}N−1

n=0 , {yn}
N−1
n=0 , {hn}N−1

n=0 yn = (h~ x)n

y̆[k] =
p
Nh̆[k]x̆[k], 8 k = 0, 1, ..., N � 1

{xn}N−1
n=0 , {hn}N−1

n=0

(h~ x)n ,
N�1X

`=0

h` x
(n�`) mod N , n = 0, 1, ..., N � 1

h0

h1

h2

hN�1

xN�1

x0

x1

x2

n = 0
h0

h1

h2

hN�1

xN�1

x0

x1

x2

n = 2



h0 h1 hL�1· · ·

u0uN�1 · · · · · ·uN�L
+1

uN�1 · · · uN�L
+1

Implement Circular Conv. in LTI Channel
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Original LTI channel (ignore noise): linear convolution

(N � L)vm = (h ⇤ u)m =
L�1X

`=0

h`um�`, m = 0, ..., N � 1

Desired channel (ignore noise): circular convolution

vm = (h~ u)m =
L�1X

`=0

h`u
(m�`) mod N , m = 0, ..., N � 1

cyclic prefix
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transmit

uN�L+1

uN�1

u0

u1

uN�1

u0

u1

uN�1

CP

x1

xL�1

xL

xN+L�1

xL+1

add cyclic prefix

convolution

receive

y1

yL�1

yL

yL+1

yN+L�1 vN�1

v1

v0

remove cyclic prefix

vN�1

v1

v0

vm = (h~ u)m, m = 0, ..., N � 1

h0

hL�1



Matrix Form of Circular Convolution
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u0

u1

uN�1vN�1

v1

v0

=

vm = (h~ u)m, m = 0, ..., N � 1

v u

3

777777775

2

666666664

h0

h1

hL�1

0

0

0

h0

h1

hL�1

0

h0

h1

hL�1

0

0

hL�1 h1· · ·

h0

hL�2 h0· · ·

0

0

hL�1

hc

v = hcu

V = hcu+Zwith noise: ∈ CN

∈ CN



Linear Algebraic View
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3

777777775

2

666666664

h0

h1

hL�1

0

0

0

h0

h1

hL�1

0

h0

h1

hL�1

0

0

hL�1 h1· · ·

h0

hL�2 h0· · ·

0

0

hL�1

hc

Circulant Matrix
Every row/column is a circular shift of the first row/column

Define

Can show: for any               , {hℓ}N−1
ℓ=0

φ(k)
m ! 1√

N
ej2π

k
N m, m = 0, ..., N − 1

(h! φ(k))m =
√
Nh̆[k]φ(k)

m
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(h! φ(k))m =
√
Nh̆[k]φ(k)

m , m = 0, ..., N − 1

=) �(k) hcp
Nh̆[k] k = 0, ..., N � 1

3

777777775

2

666666664

h0

h1

hL�1

0

0

0

h0

h1

hL�1

0

h0

h1

hL�1

0

0

hL�1 h1· · ·

h0

hL�2 h0· · ·

0

0

hL�1

hc

=�(k)

2

666666664

3

777777775

�(k)
0

�(k)
1

�(k)
N�1

�(k)

p
Nh̆[k]

h̆(f)|f= k
N

hc�
(k) =

p
Nh̆[k]�(k), 8 k = 0, ..., N � 1

Furthermore, can show that ⟨φ(k),φ(l)⟩ = {k = l}
=) {�(k) | k = 0, ..., N � 1} CN: an orthonormal basis of



45

Hence, we can obtain the eigenvalue decomposition of any 
circulant matrix hc

hc = ΦΛh̆Φ
H

Φ !
[
φ(0) ... φ(N−1)

]

Λh̆ ! diag(h̆(f0), h̆(f1), ..., h̆(fN−1))

fk ! k
N , k = 0, ..., N − 1

{hn | n = 0, ..., N � 1} hc

h̆(f) {hn}

Can diagonalize the channel (remove ISI) without knowing it 
using the DFT basis. Only true for circulant matrix! 
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(Φ)m,k = 1√
N
exp

(
j2πmk

N

)
IDFT matrix     and DFT matrix      : Φ

(ΦH)m,k = 1√
N
exp

(
−j2πmk

N

)

ΦH

N-pt. IDFT:

N-pt. DFT:

um =
1p
N

N�1X

k=0

ŭ[k]ej2⇡
mk
N

V̆ [k] =
1p
N

N�1X

m=0

Vme�j2⇡mk
N

u = Φŭ, V̆ = ΦHV

V = hcu+Z = �⇤h̆�
Hu+Z �HV = ⇤h̆�

Hu+�HZ

Pre-processing and post-processing: 

=) V̆ = ⇤h̆ŭ+ Z̆ Z̆[k] ⇠ CN (0, N0), k = 0, 1, ..., N � 1
because the DFT matrix       is unitary ΦH



Equivalent Parallel Channels
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OFDM creates N parallel non-interfering sub-channels:

V̆ [k] = h̆(fk)ŭ[k] + Z̆[k], k = 0, 1, ..., N − 1

Channel gain at the k-th branch:

h̆(fk) = h̆( k
N ) =

√
Nh̆[k] h̆(f): DTFT of {h`}

= periodic copies of h̆a(
f
T ), period 1

ha(τ) ! (hb ∗ g)(τ)

Equivalently, the overall bandwidth 2W is partitioned into N 
narrowbands, and each sub-channel use that narrowband 
for transmission (centered at                                    ) k 2W

N , k = 0, ..., N − 1

Subcarrier spacing: 2W
N



Capacity of Parallel Channels
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h̆(f0)

ŭ[0] V̆ [0]

Z̆[0]

ŭ[1]

h̆(f1) Z̆[1]

V̆ [1]

ŭ[N − 1]

h̆(fN−1) Z̆[N − 1]

V̆ [N − 1]

...

...

Capacity of N parallel channels is 
the sum of individual capacities 

Since channel gains are different, 
each branch has different capacity

coding across subcarriers does not help!

Goal: maximize capacity subject 
to a total power constraint

Power allocation: maximize rate
Pk: power of branch k

N�1X

k=0

Pk  NP

R =
N−1∑
k=0

log

(
1 +

|h̆(fk)|2Pk

N0

)



Water-filling
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max

P0,...,PN�1

N�1X

k=0

log

✓
1 +

���˘h(fk)
���
2 Pk

N0

◆
,

N�1X

n=0

Pk = NP, Pk � 0, k = 0, . . . , N � 1

Solved by standard techniques in convex optimization 
(Lagrange multipliers, KKT condition)

Final solution:
P ∗
k =

(
ν − N0

|h̆(fk)|2
)+

ν
N−1∑
k=0

(
ν − N0

|h̆(fk)|2
)+

= NP

(x)+ ! max(0, x)
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h̆(fk) = h̆b(k
2W
N )ğ(k 2W

N )

baseband frequency response 
at f = k 2W

N

Main lesson: one should 
allocate higher rate when 
at the branch with better 
channel condition

N0

|h̆(fk)|2

k

⌫

Total Area = P

· · ·

P ⇤
k P ⇤

0

P ⇤
L�1
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Capacity of Frequency Selective Channel
Pre-processing (IDFT) and post-processing (DFT) are both 
invertible in OFDM systems

The only loss: length-(L–1) cyclic prefix, negligible when we 
take N → ∞

The power allocation problem becomes

Optimal solution: water-filling on the continuous spectrum

max

P (f)

Z 1/2

�1/2
log

✓
1 +

���˘h(f)
���
2 P (f)

N0

◆
df,

Z 1/2

�1/2
P (f) df = P, P (f) � 0, f 2 [�1/2, 1/2]



Water-filling in Frequency-Selective Channel 
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k

N0

|h̆a(f)|2

⌫

Total Area = P

�W +W
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OFDM System Diagram

N-pt
IDFT

ŭ[0]

ŭ[1]

ŭ[N � 1]

u0

u1

uN�1

Insert 
CP

uN�L+1

uN�1

u0

u1

uN�1

P/S {xn}N+L�1
n=1

{h`}

{Zm}

S/PDelete 
CP

{Yn}N+L�1
n=1

V0

V1

VN�1

V0

V1

VN�1

N-pt
DFT

V̆ [N � 1]

V̆ [0]

V̆ [1]



OFDM System Design
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Cyclic prefix overhead:            (the smaller the better) L−1
N

Subcarrier spacing:                  (the larger the better)
prevent frequency offset/asynchrony

2W
N

Subcarriers are basic resource units in OFDM systems

A critical issue of OFDM in practice: peak-to-average ratio 
(PAR) is much higher than single-carrier systems. 

It requires a large dynamic range of the linear characteristic 
of the transmit power amplifier (PA).


