Communication Systems Lab, Spring 2018

Lecture 03 **Reliable Communication**

I-Hsiang Wang ihwang@ntu.edu.tw National Taiwan University

2018/04/18

Previous lectures:

Focusing on digital modulation, we can ensure that the coded bits $\{c_i\}$ can be reconstructed optimally (i.e., minimize avg. prob. of error) at the receiver

- Averaged symbol probability of error is exponentially decaying with SNR $P_e \doteq \exp(-c SNR)$
- For each symbol, $P_e = 10^{-3}$ is already pretty good!

However, this is not good enough ...

- Consider a file mapped and converted into n = 250 symbols
- The file cannot be reconstructed if one symbol is wrong
- The "file" probability of error is $1 (1 P_e)^n \approx nP_e = 250/1000 = 0.25$
- Pretty bad ... But we cannot do much because noise is inevitable, while modulation only focus on the symbol level, not the the file level

This lecture:

Reliable Communication!

Introduce error correction coding, to add redundancy to the original file. We are able to make the overall "file" probability of error arbitrarily small! \square

Prices to pay: data rate and energy

Soft decision: jointly consider detection and decoding; directly work on the demodulated symbols

Hard decision: only consider decoding; directly work on the detected bit sequences

$$b \triangleq [b_1 \ b_2 \ \dots \ b_k] \qquad c \triangleq [c_1 \ c_2 \ \dots \ c_n] \qquad u \triangleq [u_1 \ u_2 \ \dots \ u_{\tilde{n}}]$$

$$b \rightarrow ECC \qquad c \qquad Digital \qquad u \qquad Equivale \\ Modulator \qquad \tilde{n} = n/\ell \qquad Discrete-t \\ Complete \\ Basebar \\ Channel \\ V = u + d \\ V = d \\$$

We focus on soft decision first!

ent time ЭX nd el -Z

Outline

- Prelude: repetition coding
- Energy-efficient reliable communication: orthogonal code
- Rate-efficient reliable communication: linear block code
- Convolutional code

Part I. Prelude: Repetition Coding

Repetition code, Rate and Energy efficiency

Repetition: a simple way to enhance reliability

• Idea: repeat each bit N times \Box data rate R = 1/N.

We

	original bit seq.		b_1		b_2		b_3		b_4		b_5		
	coded bit	seq. 1	b_1	b_1	b_2	b_2	b_3	b_3	b_4	b_4	b_5	b_5	
	coded bit	seq. 2	b_1	b_2	b_3	b_4	b_5	b_1	b_2	b_3	b_4	b_5	
										re	epea	t Nt	im
focus	on the a	archited	ctur	re b	oelo	W:	<i>C</i> =	= [$b_1 \sim$	b_ℓ	b_1 c	$\sim b_\ell$	• •
		$\boldsymbol{b} riangleq [b_1$	b_2	$. b_k]$		$c \stackrel{\scriptscriptstyle riangle}{=}$	$[c_1]$	$c_2 \dots $	$c_n]$	\boldsymbol{u}	$\triangleq [u]$	$_1 u_2$	•••

Many ways for repetition

 $\ldots u_{\tilde{n}}]$

Equivalent Discrete-time Complex Baseband Channel V = u + Z

Equivalent vector symbol $\boldsymbol{u} \triangleq \begin{bmatrix} u_1 & u_2 & \cdots & u_N \end{bmatrix} \in \mathbb{C}^N$

Since the noises are i.i.d., it suffices to use the N-dim. demodulated

$$V = u + Z$$

to optimally decode $b_1 \sim b_\ell$

BPSK + repetition coding

- Equivalent channel model: $V = u + Z \in \mathbb{C}^N$ $Z_1, ..., Z_N \stackrel{\text{i.i.d.}}{\sim} CN(0, N_0)$
- Equivalent constellation set: $u \in \{a_0, a_1\}$

$$oldsymbol{a}_0 = -ig[d \ d \ \cdots \ dig] \qquad oldsymbol{a}_1 = ig]$$

Performance analysis:

$$\begin{aligned} \mathsf{P}_{\mathsf{e}}^{(N)} &= \mathsf{Q}\left(\frac{\|\boldsymbol{a}_{1} - \boldsymbol{a}_{0}\|}{2\sqrt{N_{0}/2}}\right) = \mathsf{Q}\left(\sqrt{\frac{N \cdot 4d^{2}}{2N_{0}}}\right) = \mathsf{Q}\left(\sqrt{N\frac{2d^{2}}{N_{0}}}\right) \frac{\mathsf{Re}}{\mathsf{in}} \\ &= \mathsf{Q}\left(\sqrt{N2\mathsf{SNR}}\right) \doteq \exp(-N\mathsf{SNR}) \end{aligned}$$

 $SNR \triangleq \frac{\text{average energy per uncoded symbol}}{\text{total noise variance per symbol}} = \frac{d^2}{N_0}$

$+ \begin{bmatrix} d & \cdots & d \end{bmatrix}$

epetition effectively crease SNR by N-fold!

Rate and energy efficiency

• Rate:
$$R = 1/N \rightarrow 0$$
 as $N \rightarrow \infty$

• Energy per bit: $E_{\rm b} = Nd^2 \rightarrow \infty$ as $N \rightarrow \infty$

- Achieving arbitrarily small prob. of error at the price of zero rate and infinite energy per bit
- Question: can we resolve the issue with more general constellation sets?

General modulation + repetition coding

- Equivalent channel model: $V = u + Z \in \mathbb{C}^N$ $Z_1, ..., Z_N \stackrel{\text{i.i.d.}}{\sim} CN(0, N_0)$
- Equivalent constellation set: $\boldsymbol{u} \in \{\boldsymbol{a}_1, ..., \boldsymbol{a}_M\}$ $M = 2^{\ell}$
- Rate: $R = \ell/N$ Energy per bit: $\frac{E_{\rm b}}{N_0} = \frac{N}{\ell} SNR = \frac{SNR}{R}$ $\rightarrow 0$ as $N \rightarrow \infty$ $\rightarrow \infty$ as $N \rightarrow \infty$
- **Probability of error** (take *M*-ary PAM as an example):

$$\mathsf{P}_{\mathsf{e}}^{(N)} = 2(1 - 2^{-\ell}) \mathsf{Q}\left(\sqrt{N\frac{6}{4^{\ell} - 1}}\mathsf{SNR}\right) = 2(1 - 2^{-NR}) \mathsf{Q}\left(\sqrt{N\frac{6}{4^{\ell} -$$

it is necessary that $\lim_{N\to\infty} R = 0$

 $\left(\sqrt{\frac{N}{4^{NR}-1}}6\mathsf{SNR}\right)$

Why repetition coding is not very good

- Repetition coding: high reliability at the price of asymptotically zero rate and infinite energy per bit
- Repetition is too naive and does not utilize the available degrees of freedom in the *N*-dimensional space efficiently
- Is it possible to design better coding schemes with the following?
 - Vanishing probability of error
 - Positive rate
 - Finite energy per bit

YES!

Part II. Convolutional Code

Encoding Architecture, Trellis Representation, Maximum Likelihood Sequence Detection, Viterbi Algorithm

Convolutional Code

Introduced by Peter Elias in 1955

Efficient ML decoding algorithm by Andrew Viterbi in 1967

- Used in NASA space exploration projects, from Voyager (1977) onwards
- Widely applied in digital video, radio, satellite communications, etc.

Encoding architecture

Message bits passing through causal LTI filters to generate coded bits

Multiple filters to introduce redundancy: (example: 2 filters)

 $C_1 C_2 C_3 C_4 C_5 C_6 \ldots$ $\{c_m, m \in \mathbb{N}\}$ coded bit sequence

 $c_1^{(1)}c_1^{(2)}c_2^{(1)}c_2^{(2)}c_3^{(1)}c_3^{(2)}\dots$ $\{c_m, m \in \mathbb{N}\}$ coded bit sequence

Encoding \equiv FIR filtering

Each filter is causal and has finite impulse response (FIR)

$$\begin{vmatrix} \dots & 0 & 0 & h_0^{(j)} & h_1^{(j)} & \dots & h_{L-1}^{(j)} & 0 & 0 \end{vmatrix}$$

The output bit sequence of one branch is the input convolve with the IR

j-th branch:
$$c_m^{(j)} = (h * b)_m \triangleq \sum_{\ell=-\infty}^{\infty} h_\ell^{(j)} b_{m-\ell} = \sum_{\ell=0}^{L-1} h_\ell^{(j)} b_{m-\ell}$$

More generally, there can be K input sequences and N output sequences, and the code rate is R = K/NK L-1

j-th branch:
$$c_m^{(j)} \triangleq \sum_{i=1} \sum_{\ell=0} h_\ell^{(i,j)} b_{m-\ell}^{(i)}, \quad j = 0$$

filter taps are ±1

 $u_{\ell}^{(j)}b_{m-\ell}$

binary field arithmetic

Implementation with shift registers

The encoder (FIR filtering) can be implemented with L-1 shift registers

$$L = 3 \quad K = 1, N = 2 \qquad \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(2)} = \begin{bmatrix} 1 \\ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(2)} = \begin{bmatrix} 1 \\ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(2)} = \begin{bmatrix} 1 \\ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(2)} = \begin{bmatrix} 1 \\ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(2)} = \begin{bmatrix} 1 \\ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(2)} = \begin{bmatrix} 1 \\ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(2)} = \begin{bmatrix} 1 \\ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(2)} = \begin{bmatrix} 1 \\ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(2)} = \begin{bmatrix} 1 \\ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(2)} = \begin{bmatrix} 1 \\ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(2)} = \begin{bmatrix} 1 \\ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(2)} = \begin{bmatrix} 1 \\ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(2)} = \begin{bmatrix} 1 \\ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(2)} = \begin{bmatrix} 1 \\ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(2)} = \begin{bmatrix} 1 \\ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(2)} = \begin{bmatrix} 1 \\ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(2)} = \begin{bmatrix} 1 \\ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(2)} = \begin{bmatrix} 1 \\ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(2)} = \begin{bmatrix} 1 \\ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(2)} = \begin{bmatrix} 1 \\ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(2)} = \begin{bmatrix} 1 \\ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(2)} = \begin{bmatrix} 1 \\ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(2)} = \begin{bmatrix} 1 \\ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(2)} = \begin{bmatrix} 1 \\ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(2)} = \begin{bmatrix} 1 \\ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(2)} = \begin{bmatrix} 1 \\ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(2)} = \begin{bmatrix} 1 \\ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(2)} = \begin{bmatrix} 1 \\ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(2)} = \begin{bmatrix} 1 \\ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(2)} = \begin{bmatrix} 1 \\ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(2)} = \begin{bmatrix} 1 \\ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(2)} = \begin{bmatrix} 1 \\ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(1)} = \begin{bmatrix} 1 \\ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(1)} = \begin{bmatrix} 1 \\ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \ \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \\end{bmatrix}$$

Call the content of the two registers as the "state" of the encoder

input	State (before)	State (after)	Output $c_m^{(1)}$	Output $c_m^{(2)}$
1	00	10	1	1
0	10	01	0	1
0	01	00	1	1
1	00	10	1	1

$1 \quad 1$ $b^{(1)} = b_m \oplus b_{m-2}$

$c_m^{(2)} = b_m \oplus b_{m-1} \oplus b_{m-2}$

finite state machine!

State transition diagram

For the finite state machine, its state transition diagram can be drawn

$c_m^{(1)} = b_m \oplus b_{m-2}$ $\boldsymbol{h}^{(1)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$

$$b^{(j)} = b_m \oplus b_{m-1} \oplus b_{m-2}$$

 $oldsymbol{h}^{(2)} = egin{bmatrix} 1 & 1 \end{bmatrix}$

Trellis representation of codewords

Equivalent channel model under hard decision

- Binary-input, binary-output: for the each integer i, $c_i, d_i \in \{0, 1\}, i = 1, ..., n$
- Each input bit is flipped with certain probability p: $D_i = c_i \oplus E_i, \quad E_i \sim \operatorname{Ber}(p)$
- For hard decision (bit-level detection), assume that the flips are i.i.d. p: <u>bit error probability</u> of the modulation scheme

Hard decision vs. soft decision

$V_i = u_i + Z_i, \ Z_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{CN}(0, N_0)$

<u>sision:</u>

from D

 $E_i, E_i \overset{\text{i.i.d.}}{\sim} \text{Ber}(p)$

on hard decision next

Maximum likeligood sequence detection

$$oldsymbol{D} = oldsymbol{c} \oplus oldsymbol{E} \longrightarrow oldsymbol{\mathsf{ML}}$$
 ML Decoder $igstarrow \hat{oldsymbol{B}} = \phi_{ ext{ML}}$

- Equivalently, finding a length-k path on the trellis diagram such that the likelihood is maximized
- Likelihood (conditional pmf of D given c): $P_{D|C}(d|c) = (1-p)^{n-w(d\oplus c)} p^{w(d\oplus c)} = (1-p)^n(d\oplus c) = (1-p)^n(d\oplus c)$
- Maximum likelihood is equivalent to minimum <u>Hamming distance</u>!

$$\phi_{\mathrm{ML}}(\boldsymbol{d}) = \operatorname*{argmax}_{\boldsymbol{c} \in \mathcal{C}} P_{\boldsymbol{D}|\boldsymbol{C}}(\boldsymbol{d}|\boldsymbol{c}) = \operatorname*{argmin}_{\boldsymbol{c} \in \mathcal{C}} w(\boldsymbol{d}|\boldsymbol{c})$$

Again, $ML \equiv MD!$

${}_{\mathbf{J}}({oldsymbol{D}})$

WLOG p < 1/2

$$(\frac{p}{1-p})w(\boldsymbol{d}{\oplus}\boldsymbol{c})$$

of locations where $(\boldsymbol{d} \oplus \boldsymbol{c})$ **d** and **c** disagree $d_{\mathrm{H}}(\boldsymbol{d}, \boldsymbol{c})$

Decompose the target function (distance)

decompose into stages of the encoding finite state machine

Decoding: finding the minimum-cost path

Viterbi algorithm

- How to efficiently find a minimum cost path on a trellis?
- For a directed acyclic graph is acyclic, one can use dynamic programming to find the min-cost path, with computational complexity polynomial in the size of the graph
- Viterbi algorithm is a special case of finding the shortest path on a trellis

Transition:

State

Initialization: start with State 00

Termination: end with State 00 by inserting 0,0 in the last two input bits

State

Transition:

Other channel models

- Soft decision: the additive cost function becomes the square of Euclidean distance from the estimated signal to the received signal
 - Remark: things can be a bit trickier when the modulation size (# of bits in one symbol) is larger than the # of output streams.
 - Think about how to draw the state transition diagram and the trellis!
- Erasure channel: each bit is either obtained without any error, or it is erased
 - This can be realized by a detector which report the decoded bits if the likelihood function of the decoded symbol is significantly larger than the threshold of other candidates
 - For an erasure channel, decoding is simple: find the codeword that match the received sequence at the non-erased locations
 - Aside: derive the pairwise error probability!
 - Can you derive the Viterbi decoder for a convolutional code in the erasure channel?