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Focusing on digital modulation, we can ensure that the coded bits {ci} can 
be reconstructed optimally (i.e., minimize avg. prob. of error) at the receiver
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However, this is not good enough …

Averaged symbol probability of error is exponentially decaying with SNR 
Pe

.
= exp(�c SNR)

For each symbol, Pe = 10–3 is already pretty good!

Consider a file mapped and converted into n = 250 symbols

The file cannot be reconstructed if one symbol is wrong

Pretty bad … But we cannot do much because noise is inevitable, while 
modulation only focus on the symbol level, not the the file level

The “file” probability of error is 1 � (1 � Pe)
n � nPe = 250/1000 = 0.25
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Introduce error correction coding, to add redundancy to the original file.
!  We are able to make the overall “file” probability of error arbitrarily small!

Prices to pay: data rate and energy

Reliable Communication!
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Equivalent 
Discrete-time 

Complex 
Baseband 
Channel 

ECC 
Encoder

Digital 
Modulator

b � [b1 b2 ... bk] c � [c1 c2 ... cn]

c
b

V = u + Z

u � [u1 u2 ... uñ]

u

ñ = n/�

VDetection
 + Decoderb̂

Soft decision: jointly consider detection and decoding; directly work on the demodulated symbols

Hard decision: only consider decoding; directly work on the detected bit sequences

Equivalent 
Discrete-time 

Complex 
Baseband 
Channel 

ECC 
Encoder

Digital 
Modulator

b � [b1 b2 ... bk] c � [c1 c2 ... cn]

c
b

V = u + Z

u � [u1 u2 ... uñ]

u

ñ = n/�

VECC
Decoderb̂ Demod. + 

Detection
d

We focus on 
soft decision 
first!

Rate: R = k/n



Outline
• Prelude: repetition coding

• Energy-efficient reliable communication: orthogonal code

• Rate-efficient reliable communication: linear block code 

• Convolutional code 

6
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Part I. Prelude: Repetition Coding

Repetition code, Rate and Energy efficiency



Repetition: a simple way to enhance reliability 
• Idea: repeat each bit N times !  data rate R = 1/N .

• We focus on the architecture below:

8

original bit seq.

coded bit seq. 1

coded bit seq. 2

b1 b2 b4b3 b5

b1 b2 b3 b4 b5

b1 b2 b3 b4 b5

b1 b2 b3 b4 b5

b1 b2 b3 b4 b5

Many ways for repetition

Equivalent 
Discrete-time 

Complex 
Baseband 
Channel 

Repetition Digital 
Modulator

b � [b1 b2 ... bk] c � [c1 c2 ... cn]

c
b

V = u + Z

u � [u1 u2 ... uñ]

u

ñ = n/�

VDetection
 + Decoderb̂

�
c =

�
b1 � b� b1 � b� b1 � b�

��������������������������������������� repeat N times

b�+1 � b2�

n = kN

�: # of bits in a symbol



9

�
c =

�
b1 � b� b1 � b� b1 � b�

��������������������������������������� repeat N times

b�+1 � b2�

u �
�
u1 u2 · · · uN

�
� CNEquivalent vector symbol

u1

mod mod mod mod

u2 uN
� �

Since the noises are i.i.d., it suffices to use the N-dim. demodulated  

to optimally decode 
V = u + Z

b1 � b�



= Q
(√

N ·4d2

2N0

)
= Q

(√
N 2d2

N0

)

BPSK + repetition coding
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Equivalent channel model: V = u + Z � CN Z1, ...ZN
i.i.d.� CN (0, N0)

Equivalent constellation set: u � {a0, a1}

a0 = �
�
d d · · · d

�
a1 = +

�
d d · · · d

�

Performance analysis:

P(N)
e = Q

(
∥a1−a0∥
2
√

N0/2

)

SNR ! average energy per uncoded symbol
total noise variance per symbol = d2

N0

Repetition effectively 
increase SNR by N-fold!

= Q
(√

N2SNR
) .
= exp(−NSNR)



Rate and energy efficiency
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Rate: R = 1/N � 0 as N � �

Energy per bit: Eb = Nd2 � � as N � �

Achieving arbitrarily small prob. of error at the price of zero rate and 
infinite energy per bit

Question: can we resolve the issue with more general constellation sets?



General modulation + repetition coding
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Equivalent channel model: V = u + Z � CN Z1, ...ZN
i.i.d.� CN (0, N0)

Equivalent constellation set:

Probability of error (take M-ary PAM as an example):

u � {a1, ..., aM} M = 2�

P(N)
e = 2(1− 2−ℓ)Q

(√
N 6

4ℓ−1SNR
)

Rate: R = �/N

= 2(1− 2−NR)Q
(√

N
4NR−16SNR

)

limN→∞ P(N)
e = 0 ⇐⇒ limN→∞

4NR−1
N = 0

Energy per bit: Eb
N0

= N
ℓ SNR = SNR

R

� � as N � �� 0 as N � �

it is necessary that limN→∞ R = 0



Why repetition coding is not very good
• Repetition coding: high reliability at the price of asymptotically zero rate and 

infinite energy per bit

• Repetition is too naive and does not utilize the available degrees of freedom in 
the N-dimensional space efficiently

• Is it possible to design better coding schemes with the following? 
‣ Vanishing probability of error
‣ Positive rate
‣ Finite energy per bit

13

YES!
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Part II. Convolutional Code
Encoding Architecture, Trellis Representation, Maximum 

Likelihood Sequence Detection, Viterbi Algorithm 
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Convolutional Code

Introduced by Peter Elias in 1955 

Efficient ML decoding algorithm by Andrew Viterbi in 1967

Used in NASA space exploration projects, from Voyager (1977) onwards 

Widely applied in digital video, radio, satellite communications, etc. 
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Encoding architecture

LTI Filtering
b1 b2 b3 ...

message bit sequence coded bit sequence

c1 c2 c3 c4 c5 c6 ...

Message bits passing through causal LTI filters to generate coded bits

Multiple filters to introduce redundancy: (example: 2 filters)

b1 b2 b3 ...

message bit sequence

{h(1)
` }

{h(2)
` }

merge
coded bit sequence

c(1)1 c(2)1 c(1)2 c(2)2 c(1)3 c(2)3 ...

{bm,m 2 N} {cm,m 2 N}

{cm,m 2 N}{bm,m 2 N}

{c(1)
m }

{c(2)
m }



Encoding       FIR filtering
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⌘

Each filter is causal and has finite impulse response (FIR)
h
... 0 0 h(j)

0 h(j)
1 ... h(j)

L�1 0 0 ...
i

The output bit sequence of one branch is the input convolve with the IR

More generally, there can be K input sequences and N output sequences, 
and the code rate is R = K/N

j-th branch:
binary field arithmetic

coefficients of 
filter taps are ±1

c(j)m = (h ⇤ b)m ,
1X

`=�1
h(j)
` bm�` =

L�1X

`=0

h(j)
` bm�`

j-th branch: c(j)m ,
KX

i=1

L�1X

`=0

h(i,j)
` b(i)m�`, j = 1, ..., N



Implementation with shift registers
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The encoder (FIR filtering) can be implemented with L–1 shift registers
h(1) =

�
1 0 1

�
L = 3 h(2) =

�
1 1 1

�

bm bm�1 bm�2
b1 b2 b3 ...

{bm,m 2 N}
register 1 register 2

c(1)
m = bm � bm�2

c(2)
m = bm � bm�1 � bm�2

D D

input  State (before)  State (after)  Output  Output 

1 00 10 1 1

0 10 01 0 1

0 01 00 1 1

1 00 10 1 1

c(1)
m c(2)

m

Call the content of the two registers as the “state” of the encoder

finite state machine!

K = 1, N = 2



State transition diagram
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h(1) =
�
1 0 1

�

h(2) =
�
1 1 1

�

bm bm�1 bm�2
b1 b2 b3 ...

{bm,m 2 N}
register 1 register 2

c(1)
m = bm � bm�2

c(2)
m = bm � bm�1 � bm�2

D D

For the finite state machine, its state transition diagram can be drawn
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Trellis representation of codewords
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10
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11

10

00

01

11

10

00

01

11

time
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00

01

11

10

00

01

11
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00

01

11

00

11

01
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11

00

10

01

Transition: 0
1

message: 1 0 0 1

codeword: 11 01 11 11

Each path represents a message 
and its corresponding codeword!



Equivalent channel model under hard decision
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Equivalent 
Discrete-time 

Complex 
Baseband 
Channel 

ECC 
Encoder

Digital 
Modulator

b � [b1 b2 ... bk] c � [c1 c2 ... cn]

c
b

V = u + Z

u � [u1 u2 ... uñ]

u

ñ = n/�

VECC
Decoderb̂ Demod. + 

Detection
d

Equivalent Binary-Input 
Binary-Output Channel

Binary-input, binary-output: for the each integer i,

Each input bit is flipped with certain probability p :

For hard decision (bit-level detection), assume that the flips are i.i.d.
p : bit error probability of the modulation scheme

ci, di 2 {0, 1}, i = 1, ..., n

Di = ci � Ei, Ei ⇠ Ber(p)



Hard decision vs. soft decision
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Equivalent 
Discrete-time 

Complex 
Baseband 
Channel 

ECC 
Encoder

Digital 
Modulator

b � [b1 b2 ... bk] c � [c1 c2 ... cn]

c
b

V = u + Z

u � [u1 u2 ... uñ]

u

ñ = n/�

VDetection
 + Decoderb̂

Equivalent 
Discrete-time 

Complex 
Baseband 
Channel 

ECC 
Encoder

Digital 
Modulator

b � [b1 b2 ... bk] c � [c1 c2 ... cn]

c
b

V = u + Z

u � [u1 u2 ... uñ]

u

ñ = n/�

VECC
Decoderb̂ Demod. + 

Detection
d

Soft decision:

Hard decision:

Decode b from V

Decode b from D

Equivalent Binary-Input 
Binary-Output Channel

Focus on hard decision next

Vi = ui + Zi, Zi ⇠ CN (0, N0)

Di = ci � Ei, Ei ⇠ Ber(p)



D = c�E

Maximum likeligood sequence detection
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ML Decoder B̂ = �ML(D)

Equivalently, finding a length-k path on the trellis diagram such that the 
likelihood is maximized

Likelihood (conditional pmf of D given c):

PD|C(d|c) = (1− p)n−w(d⊕c)pw(d⊕c) = (1− p)n( p
1−p )

w(d⊕c)

Maximum likelihood is equivalent to minimum Hamming distance!

WLOG p < 1/2

�ML(d) = argmax

c2C
PD|C(d|c) = argmin

c2C
w(d� c)

dH(d, c)

# of locations where 
d and c disagree

Again, ML	≡	MD!



Decompose the target function (distance)
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dH(d, c) =
∑n

i=1 dH(di, ci) =
∑k

m=1 dH(dm, cm)
decompose into stages of the 
encoding finite state machine

m = 1

message: 1 0 0 1
codeword: 11 01 11 11

m = 2 m = 3 m = 4
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Decoding: finding the minimum-cost path
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00

01

11

10

00

01

11

m = 1

received: 10 00 11 00
codeword: 11 01 11 11

m = 3 m = 4m = 2

cost: (distance) 1 1 0 2 dH(d, c) = 4



Viterbi algorithm
• How to efficiently find a minimum cost path on a trellis? 

• For a directed acyclic graph is acyclic, one can use dynamic programming to 
find the min-cost path, with computational complexity polynomial in the size of 
the graph

• Viterbi algorithm is a special case of finding the shortest path on a trellis

27
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00
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00

10

01

11

State

0
1Transition:

Initialization: start with State 00
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00

10

01

11

State

0
1Transition:

Termination: end with State 00 by inserting 0,0 in the last two input bits
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0
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01 10 11 01 10 00



32

00
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11

d

0
1Transition:

V = 1
p = 00

V = 1
p = 00

01 10 11 01 10 00
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0
1Transition:

V = 1
p = 00

V = 1
p = 00
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V = 2
p = 00

V = 2
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V = 3
p = 10

V = 1
p = 10

01 10 11 01 10 00
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V = 1
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V = 2
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0
1Transition:
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V = 3
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V = 2
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V = 2
p = 11

01 10 11 01 10 00
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V = 3
p = 01

V = 2
p = 10
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01 10 11 01 10 00

b = 111100
c = 111001011011
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Other channel models
• Soft decision: the additive cost function becomes the square of Euclidean 

distance from the estimated signal to the received signal
‣ Remark: things can be a bit trickier when the modulation size (# of bits in one symbol) is 

larger than the # of output streams.
‣ Think about how to draw the state transition diagram and the trellis!

• Erasure channel: each bit is either obtained without any error, or it is erased
‣ This can be realized by a detector which report the decoded bits if the likelihood function 

of the decoded symbol is significantly larger than the threshold of other candidates
‣ For an erasure channel, decoding is simple: find the codeword that match the received 

sequence at the non-erased locations
‣ Aside: derive the pairwise error probability!
‣ Can you derive the Viterbi decoder for a convolutional code in the erasure channel?


