# Lecture 03 <br> <br> Reliable Communication 

 <br> <br> Reliable Communication}

I-Hsiang Wang
ihwang@ntu.edu.tw
National Taiwan University


## Previous lectures:

Focusing on digital modulation, we can ensure that the coded bits $\left\{c_{i}\right\}$ can be reconstructed optimally (i.e., minimize avg. prob. of error) at the receiver

- Averaged symbol probability of error is exponentially decaying with SNR

$$
\mathrm{P}_{\mathrm{e}} \doteq \exp (-c \mathrm{SNR})
$$

- For each symbol, $\mathrm{P}_{\mathrm{e}}=10^{-3}$ is already pretty good!


## However, this is not good enough ...

- Consider a file mapped and converted into $n=250$ symbols
- The file cannot be reconstructed if one symbol is wrong
- The "file" probability of error is $1-\left(1-\mathrm{P}_{\mathrm{e}}\right)^{n} \approx n \mathrm{P}_{\mathrm{e}}=250 / 1000=0.25$
- Pretty bad ... But we cannot do much because noise is inevitable, while modulation only focus on the symbol level, not the the file level



## This lecture:

## Reliable Communication!

Introduce error correction coding, to add redundancy to the original file.

- We are able to make the overall "file" probability of error arbitrarily small!


## Prices to pay: data rate and energy

Soft decision: jointly consider detection and decoding; directly work on the demodulated symbols


Hard decision: only consider decoding; directly work on the detected bit sequences


## Outline

- Prelude: repetition coding
- Energy-efficient reliable communication: orthogonal code
- Rate-efficient reliable communication: linear block code
- Convolutional code


# Part I. Prelude: Repetition Coding 

Repetition code, Rate and Energy efficiency

## Repetition: a simple way to enhance reliability

- Idea: repeat each bit $N$ times $\square$ data rate $R=1 / N$.

| original bit seq. | $b_{1}$ |  | $b_{2}$ |  |  | $b_{3}$ |  |  | $b_{4}$ |  |  | $b_{5}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| coded bit seq. 1 | $b_{1}$ | $b_{1}$ | $b_{2}$ | $b_{2}$ | $b_{3}$ | $b_{3}$ | $b_{4}$ | $b_{4}$ | $b_{5}$ | $b_{5}$ |  |  |  |
| coded bit seq. 2 | $b_{1}$ | $b_{2}$ | $b_{3}$ | $b_{4}$ | $b_{5}$ | $b_{1}$ | $b_{2}$ | $b_{3}$ | $b_{4}$ | $b_{5}$ |  |  |  |

- We focus on the architecture below: $c=[\overbrace{b_{1} \sim b_{\ell} \square b_{1} \sim b_{\ell}}^{\cdots} \cdots \square_{b_{1} \sim b_{\ell}}^{\left[\frac{b_{e+1} \sim b_{2}}{}\right.} \cdots \cdot]$




Equivalent vector symbol $u \triangleq\left[\begin{array}{lll}u_{1} & u_{2} & \cdots\end{array} u_{N}\right] \in \mathbb{C}^{N}$

- Since the noises are i.i.d., it suffices to use the $N$-dim. demodulated

$$
V=u+Z
$$

to optimally decode $b_{1} \sim b_{\ell}$

## BPSK + repetition coding

- Equivalent channel model: $\boldsymbol{V}=\boldsymbol{u}+\boldsymbol{Z} \in \mathbb{C}^{N} \quad Z_{1}, \ldots Z_{N} \stackrel{\text { i.i.d. }}{\sim} \mathcal{C N}\left(0, N_{0}\right)$
- Equivalent constellation set: $\boldsymbol{u} \in\left\{\boldsymbol{a}_{0}, \boldsymbol{a}_{1}\right\}$

$$
\boldsymbol{a}_{0}=-\left[\begin{array}{llll}
d & d & \cdots & d
\end{array}\right] \quad \boldsymbol{a}_{1}=+\left[\begin{array}{llll}
d & d & \cdots & d
\end{array}\right]
$$

- Performance analysis:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{e}}^{(N)} & =\mathrm{Q}\left(\frac{\left\|a_{1}-a_{0}\right\|}{2 \sqrt{N_{0} / 2}}\right)=\mathrm{Q}\left(\sqrt{\frac{N \cdot 4 d^{2}}{2 N_{0}}}\right)=\mathrm{Q}\left(\sqrt{N \frac{2 d^{2}}{N_{0}}}\right) \begin{array}{l}
\text { Repetition effectively } \\
\text { increase SNR by } N \text {-fold! } \\
\\
\end{array}=\mathrm{Q}(\sqrt{N 2 \mathrm{SNR}}) \doteq \exp (-N \mathrm{SNR})
\end{aligned}
$$

$$
\mathrm{SNR} \triangleq \frac{\text { average energy per uncoded symbol }}{\text { total noise variance per symbol }}=\frac{d^{2}}{N_{0}}
$$

## Rate and energy efficiency

- Rate: $R=1 / N \rightarrow 0$ as $N \rightarrow \infty$
- Energy per bit: $E_{\mathrm{b}}=N d^{2} \rightarrow \infty$ as $N \rightarrow \infty$
- Achieving arbitrarily small prob. of error at the price of zero rate and infinite energy per bit
- Question: can we resolve the issue with more general constellation sets?


## General modulation + repetition coding

- Equivalent channel model: $\boldsymbol{V}=\boldsymbol{u}+\boldsymbol{Z} \in \mathbb{C}^{N} Z_{1}, \ldots Z_{N} \stackrel{\text { i.i.d. }}{\sim} \mathcal{C N}\left(0, N_{0}\right)$
- Equivalent constellation set: $\boldsymbol{u} \in\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{M}\right\} \quad M=2^{\ell}$
- Rate: $R=\ell / N$ - Energy per bit: $\frac{E_{\mathrm{b}}}{N_{0}}=\frac{N}{\ell} \mathrm{SNR}=\frac{\mathrm{SNR}}{R}$

$$
\rightarrow 0 \text { as } N \rightarrow \infty \quad \rightarrow \infty \text { as } N \rightarrow \infty
$$

- Probability of error (take $M$-ary PAM as an example):

$$
\begin{gathered}
\mathrm{P}_{\mathrm{e}}^{(N)}=2\left(1-2^{-\ell}\right) \mathrm{Q}\left(\sqrt{N \frac{6}{4^{\ell}-1} \mathrm{SNR}}\right)=2\left(1-2^{-N R}\right) \mathrm{Q}\left(\sqrt{\frac{N}{4^{N R}-1} 6 \mathrm{SNR}}\right) \\
\lim _{N \rightarrow \infty} \mathrm{P}_{\mathrm{e}}^{(N)}=0 \Longleftrightarrow \lim _{N \rightarrow \infty} \frac{4^{N R}-1}{N}=0 \\
\text { it is necessary that } \lim _{N \rightarrow \infty} R=0
\end{gathered}
$$

## Why repetition coding is not very good

- Repetition coding: high reliability at the price of asymptotically zero rate and infinite energy per bit
- Repetition is too naive and does not utilize the available degrees of freedom in the $N$-dimensional space efficiently
- Is it possible to design better coding schemes with the following?
- Vanishing probability of error
- Positive rate
- Finite energy per bit

> YES!

# Part II. Convolutional Code 

Encoding Architecture, Trellis Representation, Maximum
Likelihood Sequence Detection, Viterbi Algorithm

## Convolutional Code

- Introduced by Peter Elias in 1955

- Efficient ML decoding algorithm by Andrew Viterbi in 1967

- Used in NASA space exploration projects, from Voyager (1977) onwards
- Widely applied in digital video, radio, satellite communications, etc.


## Encoding architecture

- Message bits passing through causal LTI filters to generate coded bits

- Multiple filters to introduce redundancy: (example: 2 filters)



## Encoding $\equiv$ FIR filtering

- Each filter is causal and has finite impulse response (FIR)

$$
\left[\begin{array}{llllllllll}
\ldots & 0 & 0 & h_{0}^{(j)} & h_{1}^{(j)} & \ldots & h_{L-1}^{(j)} & 0 & 0 & \ldots
\end{array}\right]_{\begin{array}{c}
\text { coefficients of } \\
\text { filter taps are } \pm 1
\end{array}}
$$

- The output bit sequence of one branch is the input convolve with the IR
$j$-th branch: $\quad c_{m}^{(j)}=(h * b)_{m} \triangleq \sum_{\ell=-\infty}^{\infty} h_{\ell}^{(j)} b_{m-\ell}=\sum_{\ell=0}^{L-1} h_{\ell}^{(j)} b_{\substack{m-\ell \\ \text { binary field arithmetic }}}$
- More generally, there can be $K$ input sequences and $N$ output sequences, and the code rate is $R=K / N$

$$
j \text {-th branch: } c_{m}^{(j)} \triangleq \sum_{i=1}^{K} \sum_{\ell=0}^{L-1} h_{\ell}^{(i, j)} b_{m-\ell}^{(i)}, \quad j=1, \ldots, N
$$

## Implementation with shift registers

- The encoder (FIR filtering) can be implemented with $L-1$ shift registers

$$
L=3 \quad K=1, N=2 \quad \boldsymbol{h}^{(1)}=\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right] \quad \boldsymbol{h}^{(2)}=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]
$$



- Call the content of the two registers as the "state" of the encoder

| input | State (before) | State (after) | Output $c_{m}^{(1)}$ | Output $c_{m}^{(2)}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 00 | 10 | 1 | 1 |
| 0 | 10 | 01 | 0 | 1 |
| 0 | 01 | 00 | 1 | 1 |
| 1 | 00 | 10 | 1 | 1 |

## State transition diagram



- For the finite state machine, its state transition diagram can be drawn



## Trellis representation of codewords



| message: | 1 | 0 | 0 | 1 |
| :--- | :---: | :---: | :---: | :---: |
| codeword: | 11 | 01 | 11 | 11 |



Each path represents a message and its corresponding codeword!

Transition: $\begin{aligned} & 0 \longrightarrow \\ & 1 \longrightarrow\end{aligned}$

## Equivalent channel model under hard decision



- Binary-input, binary-output: for the each integer $i, c_{i}, d_{i} \in\{0,1\}, i=1, \ldots, n$
- Each input bit is flipped with certain probability $p$ :

$$
D_{i}=c_{i} \oplus E_{i}, \quad E_{i} \sim \operatorname{Ber}(p)
$$

- For hard decision (bit-level detection), assume that the flips are i.i.d.
$p$ : bit error probability of the modulation scheme


## Hard decision vs. soft decision


$\boldsymbol{b} \triangleq\left[\begin{array}{llll}b_{1} & b_{2} \ldots & b_{k}\end{array}\right] \quad c \triangleq\left[\begin{array}{ccc}c_{1} & c_{2} & \ldots\end{array} c_{n}\right] \quad \boldsymbol{u} \triangleq\left[\begin{array}{lll}u_{1} & u_{2} & \ldots \\ u_{\tilde{n}}\end{array}\right]$


Equivalent Binary-Input Binary-Output Channel

## Soft decision:

Decode $b$ from $V$

$$
V_{i}=u_{i}+Z_{i}, Z_{i} \stackrel{\text { i.i.d. }}{\sim} \mathcal{C N}\left(0, N_{0}\right)
$$

## Hard decision:

Decode $b$ from $D$
$D_{i}=c_{i} \oplus E_{i}, E_{i} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Ber}(p)$
Focus on hard decision next

## Maximum likeligood sequence detection

$$
\boldsymbol{D}=\boldsymbol{c} \oplus \boldsymbol{E} \longrightarrow \mathrm{ML} \text { Decoder } \longrightarrow \hat{\boldsymbol{B}}=\phi_{\mathrm{ML}}(\boldsymbol{D})
$$

- Equivalently, finding a length- $k$ path on the trellis diagram such that the likelihood is maximized
- Likelihood (conditional pmf of $\boldsymbol{D}$ given $\boldsymbol{c}$ ): WLOG $p<1 / 2$

$$
P_{\boldsymbol{D} \mid \boldsymbol{C}}(\boldsymbol{d} \mid \boldsymbol{c})=(1-p)^{n-w(\boldsymbol{d} \oplus \boldsymbol{c})} p^{w(\boldsymbol{d} \oplus \boldsymbol{c})}=(1-p)^{n}\left(\frac{p}{1-p}\right)^{w(\boldsymbol{d} \oplus \boldsymbol{c})}
$$

- Maximum likelihood is equivalent to minimum Hamming distance!

$$
\begin{aligned}
& \phi_{\mathrm{ML}}(\boldsymbol{d})=\underset{\boldsymbol{c} \in \mathcal{C}}{\operatorname{argmax}} P_{\boldsymbol{D} \mid \boldsymbol{C}}(\boldsymbol{d} \mid \boldsymbol{c})=\underset{\boldsymbol{c} \in \mathcal{C}}{\operatorname{argmin}} \frac{w(\boldsymbol{d} \oplus \boldsymbol{c})}{\mathrm{d}_{\mathrm{H}}(\boldsymbol{d}, \boldsymbol{c})} \text { \# of locations where } \\
& \text { d and } c \text { disagree }
\end{aligned}
$$

Again, ML $\equiv$ MD!

## Decompose the target function (distance)

$$
\mathrm{d}_{\mathrm{H}}(\boldsymbol{d}, \boldsymbol{c})=\sum_{i=1}^{n} \mathrm{~d}_{\mathrm{H}}\left(d_{i}, c_{i}\right)=\sum_{m=1}^{k} \mathrm{~d}_{\mathrm{H}}\left(\boldsymbol{d}_{m}, \boldsymbol{c}_{m}\right)
$$

decompose into stages of the encoding finite state machine


## Decoding: finding the minimum-cost path



## Viterbi algorithm

- How to efficiently find a minimum cost path on a trellis?
- For a directed acyclic graph is acyclic, one can use dynamic programming to find the min-cost path, with computational complexity polynomial in the size of the graph
- Viterbi algorithm is a special case of finding the shortest path on a trellis


## State



Transition:


- Initialization: start with State 00

State

00

10

01

11


Transition:


- Termination: end with State 00 by inserting 0,0 in the last two input bits

State

00

10

01

11


Transition:



Transition:



Transition:



Transition:



Transition:



Transition: $\begin{aligned} & 0 \longrightarrow \\ & 1 \longrightarrow\end{aligned}$


Transition:



Transition:



Transition:



Transition:



Transition:




Transition:



$$
\begin{aligned}
& \underline{b}=111100 \\
& \underline{c}=111001011011
\end{aligned}
$$

Transition: $\begin{aligned} & 0 \longrightarrow \\ & 1 \longrightarrow\end{aligned}$

## Other channel models

- Soft decision: the additive cost function becomes the square of Euclidean distance from the estimated signal to the received signal
- Remark: things can be a bit trickier when the modulation size (\# of bits in one symbol) is larger than the \# of output streams.
- Think about how to draw the state transition diagram and the trellis!
- Erasure channel: each bit is either obtained without any error, or it is erased
- This can be realized by a detector which report the decoded bits if the likelihood function of the decoded symbol is significantly larger than the threshold of other candidates
- For an erasure channel, decoding is simple: find the codeword that match the received sequence at the non-erased locations
- Aside: derive the pairwise error probability!
- Can you derive the Viterbi decoder for a convolutional code in the erasure channel?

