Lecture 7: Wireline Channel and Inter-Symbol Interference (ISI)

Scribe: 王君璇、朱文瑄

Lecture Date: 4/19, 2017

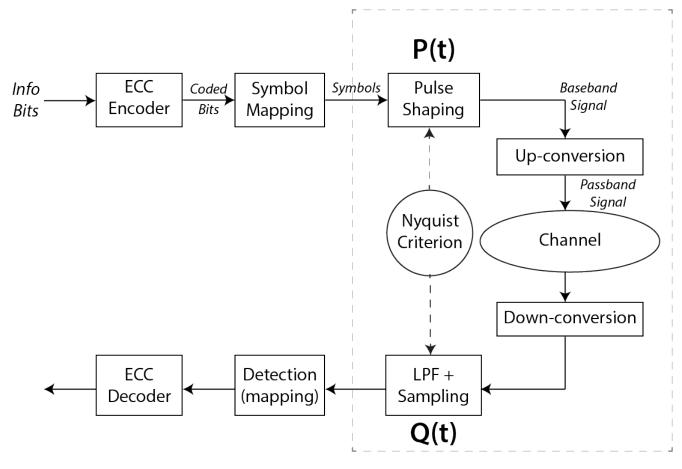
Lecturer: I-Hsiang Wang

Outline

- Wireline Channel and Inter-Symbol Interference (ISI)
 - Wireline Channel (as a LTI filter)
 - Inter-symbol Interference
 - Mitigation of ISI

Recap:

• Digital Communication

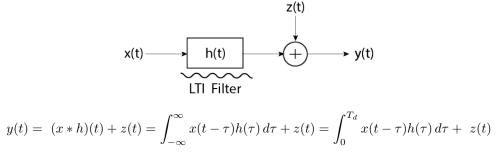


So far, we consider "simple" channels

$$\left\{ \begin{array}{ll} Waveform & y(t) = x(t) + z(t) & \{z(t)\} \; WGN \; with \; psd \; \frac{No}{2} \\ bit \; level & d[n] = c[n] \oplus w[n] & w[n] \sim Ber(P_b) \end{array} \right.$$

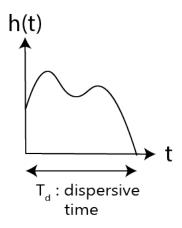
Wireline Channel

• Model (Baseband Waveform level)

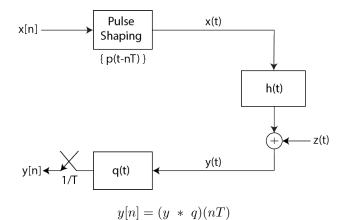


- Features of $h(\tau)$
 - 1. Causal $h(\tau) = 0$, if $\tau < 0$
 - 2. Dispersive

(After the dispersive time $h(\tau)$ is so small that we ignore it.)



Equivalent discrete-time Model (after LTI + sampling)



(1)

We want to transform the problem as a discrete-time model, such as

$$y[n] = (x * h)[n] + z[n]$$
(2)

But how can it be transformed? How can we get

 $\{h_l\} \stackrel{?}{\leftrightarrow} h(\tau)$

As we know that

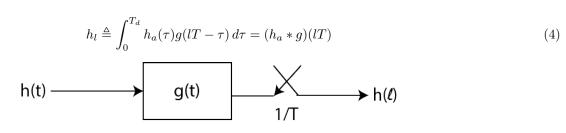
$$\tilde{x}(t) = \sum_{k=1}^{\infty} x[k]g(t - kT), \quad g(t) \triangleq (p * q)(t)$$

so that

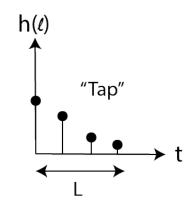
$$y[n] = (y * q)(nT)$$

= $\int_{0}^{T_{d}} \tilde{x}(nT - \tau)h(\tau) d\tau + z(t)$
= $\sum_{k=1}^{\infty} x[k] \int_{0}^{T_{d}} h_{a}(\tau)g((n - k)T - \tau) d\tau + z[n]$
= $\sum_{k=1}^{\infty} h_{n-k} \cdot x[k] + z[n]$
= $(x * h)[n] + z[n]$ (3)

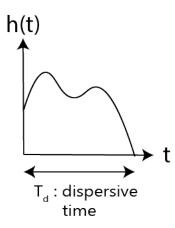
where

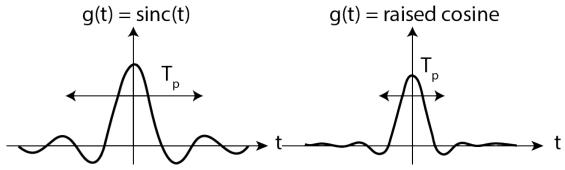


Hence, the equivalent digital filter $\{h_l\}$ is just the convolution of $h(\tau)$ and pulse $g(\tau)$ sampled at rate $\frac{1}{T}$. The following figure is an L-"Tap" Channel, where L is the range of index l where h_l is nonzero.



- The relation among L (number of non-zero taps in h_l)
 - T_d (dispersion of $h_a(\tau)$)
 - $-T_p$ (dispersion of $g(\tau)$)
 - -T (symbol time)





Approximation Assumption: $g(t) \ll 1$ for $|\tau| > T_p$ The T_p of raised cosine is much less than sinc function.

As we know,

$$y[n] = \sum_{k=1}^{\infty} h_{n-k} \cdot x[k] + z[n]$$
(5)

where

$$h_l = \int_0^{T_d} h_a(\tau) g(lT - \tau) \, d\tau$$

How can we find out the number of taps? Let's look at the upper and lower bound of l. For lower bound of l:

$$lT - \tau \ge -\frac{T_p}{2} \implies l \ge \frac{\tau - \frac{T_p}{2}}{T}$$
$$l_{min} = \frac{0 - \frac{T_p}{2}}{T} = -\frac{T_p}{2T}$$
(6)

For upper bound of l:

$$lT - \tau \ge \frac{T_p}{2} \implies l \ge \frac{\tau + \frac{T_p}{2}}{T}$$

$$l_{max} = \frac{T_d + \frac{T_p}{2}}{T} = -\frac{2T_d + T_p}{2T}$$
(7)

We can easily find out

$$y[n] = \sum_{k=1}^{\infty} h_{n-k} \cdot x[k] + z[n] = \sum_{l=\infty}^{\infty} h_l \cdot x[n-l] + z[n] \approx \sum_{l=-\frac{-T_p}{2T}}^{\frac{T_d + \frac{L}{2}}{2T}} h_l \cdot x[n-l] + z[n] = \sum_{l=0}^{L} h_l \cdot x[n-l] + z[n]$$

In summary,

$$y[n] \approx \sum_{l=0}^{L-1} h_l \cdot x[n-l] + z[n]$$

$$L \approx \frac{T_d + T_p}{T}$$
(8)

 h_l depends on

- 1. Symbol Time T $(T = \frac{1}{2W}, W \leq B_b, \text{ Sampling rate} = \frac{1}{T})$
- 2. Pulse shaping g(t)
- 3. Channel impulse response $h_a(t)$

In practice, $\{h_l\}_{l=0}^{L-1}$ are measured directly by sending a known sequence $\{p[n]\}$ called "pilot". This procedure is called "training", enable R_x to learn the channel taps.

Typical number of taps for different medium:

- 1. Voiceband/Dial-up modem $L \thickapprox 1$ to 20
- 2. DSL modem $L \approx 100$ to 200
- 3. Optical fiber $L \approx 200$ to 300

Inter-Symbol Interference(ISI)

$$y[n] = h_0 x[n] + h_1 x[n-1] + h_2 x[n-2] + \dots + h_{L-1} x[n-L+1] + z[n]$$

= $h_0 x[n] + I[n] + z[n]$ (9)
 $I[n] \triangleq h_1 x[n-1] + h_2 x[n-2] + \dots + h_{L-1} x[n-L+1]$

where I[n] is Inter-Symbol Interference

Let's take a look at a pretty easy example. Suppose that L = 3:

$$\underline{h} = [h_0 \ h_1 \ h_2]$$

$$y[0] = h_0 \cdot x[1] + z[1]$$

$$y[1] = h_0 \cdot x[2] + h_1 \cdot x[1] + z[2]$$

$$y[2] = h_0 \cdot x[3] + h_1 \cdot x[2] + h_2 \cdot x[1] + z[3]$$

$$y[3] = h_0 \cdot x[4] + h_1 \cdot x[3] + h_2 \cdot x[2] + z[4]$$

$$\vdots = \vdots$$

$$y[n] = h_0 \cdot x[n] + I[n] + z[n] \quad \text{where } I[n] = \sum_{l=1}^{L-1} h_l \cdot x[n-l]$$

- Naive Idea
 - Sequential Detection
 - * First, detect $\hat{x}[1]$ from y[1]
 - * Second, subtract $h_1 \hat{x}[1]$ from y[2] and get $\hat{y}[2] = h_1 x[2] + z[2] + h_1 (x[1] \hat{x}[1])$
 - The issue is "error propagation".

- Therefore, ISI is indeed a new challenge we need to deal with designing wide-band system.

- Methods
 - 1. Rx methods

(a) Linear Equalization + SSC(successive interference cancellation)

$$\begin{split} \tilde{y}[k] &= \underline{v_k}^T \cdot \underline{y} \\ \\ \underline{\tilde{y}} &= V \cdot \underline{y} = V \cdot H \cdot \underline{x} + V \cdot \underline{z} \end{split}$$

- i. Zero-Forcing
- ii. Matched filter
- iii. Minimum Mean Square Error (MMSE)
 - Equivalent matrix vector form

$$\underline{y} = [y[1] \ y[2] \ \cdots \ y[n]]^T$$
$$\underline{x} = [x[1] \ x[2] \ \cdots \ x[n]]^T$$
$$\underline{z} = [z[1] \ z[2] \ \cdots \ z[n]]^T$$
$$\underline{y} = H \cdot \underline{x} + \underline{z}$$

(10)

if we take the previous example for
$$L = 3$$
,

	I =						
	h_0	0	0		0	0	0]
then we can represent $H =$	h_1	h_0	0	• • •	0	0	0
	h_2	h_1	h_0		0	0	0
	0	h_2	h_1		0	0	0
	:	:	:	•	:	:	:
				•	$\frac{1}{h_{c}}$		0
		0	0		$h_1^{n_0}$	h_0	0
	0	0	0		h_2	h_1	$\stackrel{\circ}{h_0}$
	L				-	-	° _

(b) Maximum Likelihood Sequence Detection (MLSD)

- Viterbi Algorithm can "optimally" solve the problem

- * Computation Complexity $\approx 2^L$, complicated when L is large
- * intensible for wideband system
- 2. Tx method
 - (a) Tomlinson-Harashima Precoding
 - (b) Dirty-Paper Coding (DPC)
 - A technique for efficient transmission of digital data through a channel subjected to some interference known to the transmitter
 - Consisting of precoding the data in order to cancel the effect caused by the interference
- 3. Tx + Rx Method
 - Orthogonal Frequency Division Multiplexing (OFDM)