Lecture 5：Reliable Communications

Scribe：蕭晨豪，何星燁
Lecture Date：3／29， 2017
Lecturer：I－Hsiang Wang

Outline

－Energy efficiency reliable communication via Orthogonal Codes
－Rate efficient reliable communication via Linear Block Codes
－Basic Coding Theory

Recap Last time，we introduced repetition code which has vanishing error probability．At the price of：
1．Vanishing Rate（Rate $\rightarrow 0$ as $n \rightarrow \infty$ ）
2．Unbounded energy per bit $\left(E_{b} \rightarrow \infty\right.$ as $\left.n \rightarrow \infty\right)$
Obviously，we can do better because repetition code is too simple minded．

1 Energy Efficient Reliable Communication

1．1 Orthogonal Codes

Select n orthogonal vectors in \mathbb{R}^{n} and use this n vectors $\left\{\underline{a}_{1}, \underline{a}_{2} \ldots \underline{a}_{n}\right\}$ as the constellation set
When the noise is iid Gaussian，WLOG we can choose $\underline{a}_{i}=\underline{e}_{i} \sqrt{E_{s}}$ where \underline{e}_{i} is the $i^{\text {th }}$ standard basis（because rotation doesn＇t effect the performance of the code）

Rate：$R=\frac{\log _{2} n}{n}$（bits／symbol time）$\rightarrow 0$ as $n \rightarrow \infty$
Energy per bit：$E_{b}=\frac{E_{s}}{\log _{2} n}$

1．2 Probability of error（SER）

Because we have the same error event for $i=1 \sim n$ ，

$$
\begin{aligned}
P_{e}^{(n)} & =\operatorname{Pr}\{\hat{i} \neq 1 \mid i=1\}(i \text { is the selected index of the pulse) } \\
& =\operatorname{Pr}\left\{\bigcup_{j=2}^{n}\{\hat{i}=j\} \mid i=1\right\} \\
& \leq \sum_{j=2}^{n} \operatorname{Pr}\{\hat{i}=j \mid i=1\} \text { (union bond, can be improved) } \\
& \left.=\sum_{j=2}^{n} \mathbb{P}_{2}\{1 \rightarrow j\} \text { (binary detection that misclassify } \underline{a}_{1} \text { to } \underline{a}_{j}\right) \\
& =\sum_{j=2}^{n} Q\left(\frac{\left\|\underline{a}_{i}-\underline{a}_{j}\right\|}{2 \sigma}\right) \\
& =(n-1) \cdot Q\left(\frac{\sqrt{2 E_{s}}}{2 \sigma}\right) \\
& =(n-1) \cdot Q\left(\sqrt{\frac{E_{s}}{2 \sigma^{2}}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq(n-1) \exp \left(-\frac{1}{4} \cdot \frac{E_{s}}{\sigma^{2}}\right) \\
& \leq n \cdot \exp \left(-\frac{1}{4} \cdot \frac{E_{s}}{\sigma^{2}}\right) \\
& \leq \exp \left(\ln n-\frac{1}{4} \cdot \frac{E_{s}}{\sigma^{2}}\right)
\end{aligned}
$$

Now we hope to find the relationship between n and E_{s} to have R.C.
$\ln n<\frac{1}{4} \frac{E_{s}}{\sigma^{2}}=\frac{1}{4 \sigma^{2}} E_{b} \cdot \log _{2} n \Leftrightarrow \frac{E_{b}}{\sigma^{2}}>4 \frac{\ln n}{\log _{2} n}=4 \ln 2$
\therefore Energy per bit $E_{b}=\frac{E_{s}}{\log _{2} n}>(4 \ln 2) \sigma^{2}$
Question: Is $4 \ln 2$ the best constant?
Answer: No, using a smarter argument (tighter bound than union bound), we can show that the constant is $2 \ln 2$ for orthogonal code.
Using Shannon's channel coding theorem, we can find that the constant $2 \ln 2$ is optimal for this problem.

1.3 Shannon's Capacity Formula

$C=\frac{1}{2} \log \left(1+\frac{P}{\sigma^{2}}\right), P:$ power
If $R<C$, then there exist a code with rate R s.t. $P_{e}^{(n)} \rightarrow 0$ as $n \rightarrow \infty$ (R.C. is possible)
If $R>C$, then for all coding schemes with rate $R, P_{e}^{(n)} \rightarrow 1$ as $n \rightarrow \infty$ (R.C. is impossible)
We can use this result to compute the optimal rate efficiency and energy efficiency:

- Optimal Rate: $C=\frac{1}{2} \log _{2}\left(1+\frac{P}{\sigma^{2}}\right)$
- Optimal (minimum) energy per bit:

$$
\begin{aligned}
& \qquad R<\frac{1}{2} \log _{2}\left(1+\frac{P}{\sigma^{2}}\right) \Rightarrow 1+\frac{P}{\sigma^{2}}>2^{2 R} \Rightarrow P>\left(2^{2 R}-1\right) \sigma^{2} \\
& \text { energy per bit }=\frac{P(\text { energy per symbol time })}{R(\text { bits per symbol time })}=E_{b}(\text { energy per bit }) \\
& \Rightarrow E_{b}=\frac{P}{R}=\frac{1}{R}\left(2^{2 R}-1\right) \cdot \sigma^{2} \\
& \min E_{b}=\lim _{R \rightarrow 0} \frac{1}{R}\left(2^{2 R}-1\right) \sigma^{2}=2 \ln 2 \cdot \sigma^{2}
\end{aligned}
$$

2 Rate Efficient Reliable Communication

2.1 Linear Block Code

We use a simple architecture:

\therefore Rate $R=\frac{m}{n}$
For encoding, we use Linear Block Code: $\underline{c}=\underline{b} \cdot G, G \in\{0,1\}^{m \times n}$, matrix with $\{0,1\}$ entries
(arithmetic in Binary Field $\mathbb{F}_{2}=\{0,1\}$)
For decoding, we use maximum likelihood (ML) rule
$\underline{y}=\underline{u}+\underline{z}$, ML decoding: $\underline{y} \rightarrow$ ML $\rightarrow \underline{z}$, likelihood function: $\operatorname{Pr}\{\underline{y} \mid \underline{b}\}$
\bar{B} elow we show that "most" linear codes guarantees arbitrarily low pe with $R>0$
The goal here is not constructing a explicit linear transformation G, we show the existence of G instead.

2.2 Probability of error analysis

How to pick G ? Total number of possible G is $2^{m n}$
Step1: randomly choose G
$(G)_{i j} \stackrel{\text { iid. }}{\sim} \operatorname{Ber}\left(\frac{1}{2}\right), \forall(i, j) \in[m] \times[n]$
Step2: Compute the average-over-random- G performance
Consider a particular realization of $\mathbb{G}, G, \varepsilon$: error event
Probability of error when the codebook is $G: \operatorname{Pr}\{\varepsilon \mid \mathbb{G}=G\}$
Let's compute the expected Prob. of error over random \mathbb{G} :

$$
\begin{aligned}
\mathbb{E}_{\mathbb{G}}[\operatorname{Pr}\{\varepsilon \mid \mathbb{G}\}] & =\sum_{G \in\{0,1\}^{m \times n}}\left(\frac{1}{2}\right)^{m n} \operatorname{Pr}\{\varepsilon \mid \mathbb{G}=G\} \\
& =\left(\frac{1}{2}\right)^{m n} \sum_{G \in \mathbb{F}_{2}^{m \times n}}\left\{\sum_{k=1}^{2^{m}} \frac{1}{2^{m}} \operatorname{Pr}\left\{\varepsilon \mid \mathbb{G}=G, \underline{B}=\underline{b}_{k}\right\}\right\} \text { (seperating the cases for different } \underline{b}_{k} \text {) }
\end{aligned}
$$

Noticed that

$$
\begin{align*}
\operatorname{Pr}\left\{\varepsilon \mid \mathbb{G}=G, \underline{B}=\underline{b}_{k}\right\} & =\operatorname{Pr}\left\{\bigcup_{j \neq k}\left\{\underline{\hat{B}}=\underline{b}_{j} \mid \underline{B}=\underline{b}_{k}, \mathbb{G}=G\right\}\right\} \\
& \leq \sum_{j \neq k} \operatorname{Pr}\left\{\underline{\hat{B}}=\underline{b}_{j} \mid, \underline{B}=\underline{b}_{k}, \mathbb{G}=G\right\} \text { (union bond) } \\
& =\sum_{j \neq k} \mathbb{P}_{2}\left\{\underline{b}_{k} \rightarrow \underline{b}_{j} \mid \mathbb{G}=G\right\} \\
& =\sum_{j \neq k} Q\left(\frac{\left\|\underline{u}_{k}-\underline{u}_{j}\right\|}{2 \sigma}\right) \\
& =\sum_{j \neq k} Q\left(\frac{\sqrt{d\left(\underline{c}_{k}, \underline{c}_{j}\right) \cdot(2 A)^{2}}}{2 \sigma}\right)\left(d\left(\underline{c}_{k}, \underline{c}_{j}\right) \text { is the Hamming distance between } \underline{c}_{k} \text { and } \underline{c}_{j}\right) \tag{1}\\
& =\sum_{j \neq k} Q\left(\frac{\sqrt{d\left(\underline{c}_{k}, \underline{c}_{j}\right)}}{\sigma} A\right)
\end{align*}
$$

Therefore,

$$
\begin{align*}
\mathbb{E}_{\mathbb{G}}[\operatorname{Pr}\{\varepsilon \mid \mathbb{G}\}] & \left.\leq\left(\frac{1}{2}\right)^{m n}\left(\frac{1}{2}\right)^{m} \sum_{G \in \mathbb{F}_{2}^{m \times n}} \sum_{k=1}^{2^{m}} \sum_{j \neq k} Q\left(\frac{A}{\sigma} \sqrt{d\left(\underline{c}_{k}, \underline{c}_{j}\right)}\right) \quad \text { (implies } \mathbb{G}=G\right) \\
& =\left(\frac{1}{2}\right)^{m} \sum_{k=1}^{2^{m}} \sum_{j \neq k}\left\{\frac{1}{2^{m n}} \sum_{G \in \mathbb{F}_{2}^{m \times n}} Q\left(\frac{A}{\sigma} \sqrt{d\left(\underline{c}_{k}, \underline{c}_{j}\right)}\right)\right\} \tag{2}\\
& =\left(\frac{1}{2}\right)^{m} \sum_{k=1}^{2^{m}} \sum_{j \neq k}\left\{\sum_{d=1}^{n} f(d) Q\left(\frac{A \sqrt{d}}{\sigma}\right)\right\} \tag{3}
\end{align*}
$$

$f(d)$ is the fraction of codebooks such that $d\left(\underline{c}_{j}, \underline{c}_{k}\right)=d\left(\therefore f(d)=\binom{n}{d}\left(\frac{1}{2}\right)^{n}\right)$, so

$$
\begin{align*}
\mathbb{E}_{\mathbb{G}}[\operatorname{Pr}\{\varepsilon \mid \mathbb{G}\}] & =\left(\frac{1}{2}\right)^{m} \sum_{k=1}^{2^{m}} \sum_{j \neq k} \sum_{d=1}^{n}\left(\frac{1}{2}\right)^{n}\binom{n}{d} Q\left(\frac{A \sqrt{d}}{\sigma}\right) \\
& \leq\left(\frac{1}{2}\right)^{m} \sum_{k=1}^{2^{m}} \sum_{j \neq k}\left(\left(\frac{1}{2}\right)^{n} \sum_{d=1}^{n}\binom{n}{d} e^{-\frac{1}{2} \frac{A^{2}}{\sigma^{2}} d}\right) \\
& \leq\left(\frac{1}{2}\right)^{m}\left(\frac{1}{2}\right)^{n} \sum_{k=1}^{2^{m}} \sum_{j \neq k}\left(1+e^{-\frac{1}{2} \frac{A^{2}}{\sigma^{2}}}\right)^{n} \tag{4}\\
& \leq\left(\frac{1}{2}\right)^{m}\left(\frac{1}{2}\right)^{n} 2^{m} \cdot 2^{m}\left(1+e^{-\frac{1}{2} \frac{A^{2}}{\sigma^{2}}}\right)^{n}
\end{align*}
$$

$$
\begin{aligned}
& =\left(\frac{1}{2}\right)^{n-m}\left(1+e^{-\frac{1}{2} \frac{A^{2}}{\sigma^{2}}}\right)^{n} \\
& =2^{n\left(\log _{2}\left(1+e^{-\frac{1}{2} \frac{A^{2}}{\sigma^{2}}}\right)-1+R\right)}
\end{aligned}
$$

A sufficient condition for $E_{\mathbb{G}}[\operatorname{Pr}\{\varepsilon \mid \mathbb{G}=G\}] \rightarrow 0$ as $n \rightarrow \infty$ is :

$$
\begin{aligned}
& R-1+\log _{2}\left(1+e^{-\frac{1}{2} \frac{A^{2}}{\sigma^{2}}}\right)<0 \\
\Leftrightarrow & R<1-\log _{2}\left(1+e^{-\frac{1}{2} \frac{A^{2}}{\sigma^{2}}}\right)\left(\text { assume }=R^{*}\right) \\
& R^{*}>0 \Rightarrow R^{*} \in(0,1)
\end{aligned}
$$

(1) is because \underline{u}_{i} is the modulated symbol (Binary-PAM here) of coded bits \underline{c}_{i}, so $\underline{u}_{i} \in\{A,-A\}$
(2) is by changing the order of summation

You can obtain (3) by separating the cases of different $d\left(\underline{c}_{k}, \underline{c}_{j}\right)$ in the curly brackets in (2)
(4) is due to the Binomial theorem, we add the $d=0$ term in it so it's an inequality

2.3 Conclusion

When we choose G randomly, we show that "on-average" $P_{e} \rightarrow 0$ as $n \rightarrow \infty$ as long as $R<R^{*}$ So when $R<R^{*}$, there must exist a particular G s.t. $P_{e} \rightarrow 0$ as $n \rightarrow \infty$ Now we find a coding scheme that satisfy:

1. Rate efficient: any $R<R^{*}$ is OK
2. Energy efficient: $E_{b}=\frac{A^{2}}{R^{*}}$ finite $\Rightarrow E_{b} \geq \lim _{A \rightarrow 0} \frac{A^{2}}{1-\log _{2}\left(1+\exp \left(-\frac{1}{2} \frac{A^{2}}{\sigma^{2}}\right)\right)}=(4 \ln 2) \sigma^{2}$

3 Hard Decision v.s. Soft Decision

So far, we see that linear block codes combined with very simple modulation(binary - PAM) is able to attain rate efficient and energy efficient reliable communication.
But issues are :

1. No explicit construction for G
2. Use ML rule for decoding is too costly in complexity $\left(\Theta\left(e^{n}\right)\right)$

Actually, we need to have "structured" encoding and codebook so that low-complexity decoding is possible.

Can we do better if we first convert the received code symbols back to group of bits?

Hard Decision:

Soft Decision:

Recall the channel coding diagram:

Here is a equivalent channel:

In Lab 2, we have to characterize the end-to-end bit error rate p of this black box:

ML decoding under hard decision

Likelihood function:

$$
\operatorname{Pr}\{\underline{d} \mid \underline{c}\}=(1-p)^{n-d(\underline{c}, \underline{d})} p^{d_{H}(\underline{c}, \underline{d})}=(1-p)^{n}\left(\frac{p}{1-p}\right)^{d_{H}(\underline{c}, \underline{d})}
$$

ML rule:

$$
\underline{\hat{c}}=\underset{\underline{c} \in C}{\arg \max }\left(\frac{p}{1-p}\right)^{d_{H}(\underline{c}, \underline{d})}=\underset{\underline{c} \in C}{\arg \min } d_{H}(\underline{c}, \underline{d})
$$

Still, the decoding complexity is exponential.

