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Outline

• Random Noise

• Basic Principles of Detection

– M -ary detection: MAP, MLE
– Minimum distance (MD) detection for i.i.d. additive Gaussian noise
– Binary Detection in Multi-Dimensional Space

Recap In the last lecture we introduced the basic architecture of digital modulation/demodulation when there is no
noise. The main focus was on how to convert between discrete symbols and waveforms. For most digital communication
systems, it boils down to selecting the right pulse shaper. One standard way is to choose the pulse shaper p(t) and the
corresponding low pass filter q(t) such that |p̂(f)|2 satisfies the Nyquist Criterion (Bandedge Symmerty) and p̂(f) = q̂∗(f).
When p(t) is real, q̂(f) = p̂∗(f) = p̂(−f) and hence q(t) = p(−t) in time domain.

As for the mapping from bits to symbols and the design of constellation set, we simply introduced several standard
ways. It turns out that the design is crucial for the performance of detection when noise is present.

Overview of this lecture In this lecture we introduce basic principles of detection, which is making a decision from
observations drawn from a probabilistic model (statistical decision theory). In the communication problem, the randomness
comes from noise, and the decision making process is called detection. First we introduce the concept of random noise.
Then, we derive the so-called Bayesian optimal detector that minimizes the average probability of error, called the
maximum a posterior (MAP) detector. Then we specialize it to the case when prior distribution is uniform and obtain the
maximum likelihood (ML) detector. Finally under additive Gaussian noise, we show that ML is equivalent to minimum
distance (MD) detector.

1 Random Noise

Figure 1: Basic Diagram of Received Signal

The random perturbation comes mainly from the continuous-time domain, and we model it can a random waveform,
which can be viewed as a continuous-time random process.

Definition 1 (Random Process). A continuous-time random process {Z(t) : t ∈ R} is an uncountable collection of jointly
distributed random variables, indexed by t ∈ R, whose distribution is characterized by the joint distribution of {Z(t) : t ∈ S}
for all finite subset S ⊆ R.

A discrete-time random process is defined similarly except that the index lies in an infinitely countable set, that is,
integer set Z.
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In other words, whenever we sample a random process {Z(t)} at any finite number of time instances, say t1, t2, . . . , tn,
we obtain a collection of jointly distributed random variables Z(t1), Z(t2), . . . , Z(tn). In order to specify the “probability
distribution” of this random process, one needs to specify PZ(t1) ∀t1 ∈ R, PZ(t1)Z(t2) ∀t1, t2 ∈ R, . . ., etc..

Random process is quite general, while for the application in communication system design, the noise waveform usually
has some additional properties. Below we introduce two such properties: stationarity and Gaussianity.

1.1 Gaussian Process
A particular useful random process that we use to model the random noise effect in communication systems is the

Gaussian process, defined below.

Definition 2 (Gaussian Process). A random process {Z(t) : t ∈ R} is Gaussian if for all n ∈ N = {1, 2, 3, . . . } and any
{t1, t2, . . . , tn} ⊆ R, (Z(t1), Z(t2), . . . , Z(tn)) is a multivariate Gaussian random vector (jointly Gaussian).

You can look up the probability density function of a multivariate Gaussian distribution, while the following definition
of joint Gaussianity turns out to be more useful later.

Definition 3 (Joint Gaussianity). (Z1, Z2, . . . , Zn) are jointly Gaussian if and only if there exists m ≤ n i.i.d. standard
normal W1,W2, ......,Wm, constant vector B ∈ Rn, and matrix A ∈ Rn×m such that

Z =

Z1

...
Zn

 = AW +B, where W ≜

W1

...
Wm

. (1)

Remark 我們使用 Gaussian distribution 表示雜訊分布：干擾、熱擾動等各種獨立的雜訊疊加在一起，根據中央極限
定理，總和的效應大略呈 Gaussian distribution。因此，Gaussian process 是通訊系統中最常用的噪音機率模型。

A jointly Gaussian random vector Z follows a multivariate Gaussian distribution, and the probability distribution is
completely determined by the first and the second moment:

First Moment (Mean) m ≜ E[Z] =


E[Z1]

...
E[Zn]



Second Moment (Covariance Matrix) K ≜ E[(Z −m)(Z −m)⊺] =


Var[Z1] Cov(Z1, Z2) · · · Cov(Z1, Zn)

Cov(Z2, Z1) Var[Z1] · · · Cov(Z2, Zn)
... . . . ...

Cov(Zn, Z1) · · · Var[Zn]


Hence, for a Gaussian process, its probability distribution is completely characterized by the following two functions.

• Mean function: mZ(t) ≜ E[Z(t)]

• Autocovariance function: KZ(t1, t2) ≜ Cov(Z(t1), Z(t2)).
Or, Autocorrelation function: RZ(t1, t2) ≜ E[Z(t1)Z(t2)] = KZ(t1, t2) +mZ(t1)mZ(t2).

1.2 Stationary Random Process
Stationarity refers to the time-invariance of probability distribution of a random process. Roughly speaking, no matter

when you observe the random waveform, its probabilistic characteristics remain the same. The following definition makes
this argument rigorous.

Definition 4 (Stationary Process). A random process {Z(t)} is stationary if and only if for any finite sampling
{t1, t2, . . . , tn} and time shift τ ∈ R,

PZ(t1),Z(t2),...,Z(tn) ≡ PZ(t1+τ),Z(t2+τ),...,Z(tn+τ).

The above is also called strict-sense stationary in the literature. On the other hand, for a Gaussian process, since the
distribution is completely characterized by the first and the second moments, for it to be stationary it suffices to satisfy
the following wide-sense stationary property:
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Definition 5 (Wide-Sense Stationarity). A random process {Z(t)} is wide-sense stationary (WSS) if and only if the
following two hold:

• Mean function is fixed: mZ(t) = m for all t.

• Autocorrelation function is only a function of time difference: RZ(t, t+ τ) = RZ(τ) for all t and τ .

Hence, a Gaussian process is stationary if and only if it is WSS.

1.3 Filtering and Sampling a Random Process
As illustrated in Figure 1, the noise process will be filtered and sampled prior to reaching the detector. Hence, the

random waveform should also be converted into two streams of noisy symbols {Z(I)
m } and {Z(Q)

m }, which correspond to
two discrete-time random processes.

We will introduce a useful noise model for {Z(t)}, called White Gaussian Noise (WGN) process. It turns out that
when the noise random waveform {Z(t)} is a WGN process, the two streams of discrete-time random processes{Z(I)

m }
and {Z(Q)

m } are i.i.d. Gaussian random variables. This gives the basic probabilistic framework of detecting transmitted
symbols from noisy observations.

We first discuss about the spectral property of a random process, before and after filtering. To talk about the “spectral”
(frequency-domain) properties of a random process, the following definition is useful.

Definition 6 (Power Spectral Density). For a WSS random process {Z(t)} with autocorrelation function RZ(τ), its power
spectral density (PSD) is defined as the Fourier transform of RZ(τ):

SZ(f) ≜
∫ ∞

−∞
RZ(τ)e

−j2πfτ dτ. (2)

The following useful property about the PSD of a LTI-filtered random process is particularly useful (proof can be
found in standard textbooks on statistical signal processing/digital communications).

Claim 7. For a WSS random process {X(t)} with PSD SX(f) and a linear time invariant (LTI) filter with impulse
response h(τ) and frequency response ĥ(f), let Y (t) = (X ∗ h)(t). Then, {Y (t)} is also WSS and its PSD is

SY (f) = |ĥ(f)|2SX(f). (3)

The white noise model is a useful model because it can simulate WSS processes with any PSD by passing a WGN
through a LTI filter to create the target PSD.

Definition 8 (White Gaussian Noise). A WSS Gaussian process is called white if and only if it is zero mean with
autocorrelation function RZ(τ) =

N0

2 δ(τ), that is, its PSD SZ(f) =
N0

2 .

In words, in the PSD of a WGN, all frequency components have the same amount of contribution in terms of energy,
and hence it is called “white”.

The following fact is given without proof (can be found in standard digital communication textbook).

Claim 9. If {Z(t)} is a WGN with PSD N0/2, then both {Z(I)
m } and {Z(Q)

m } are i.i.d. Gaussian with zero mean and
variance N0/2. Furthermore, {Z(I)

m } and {Z(Q)
m } are independent.

2 Basic Principles of Detection
As shown in Figure 1, the goal of detection is to determine um from Vm = um + Zm for all m, where each um takes

values in a constellation set A and {Zm} are i.i.d Gaussian.
Remark u, V, Z above can either be thought of as complex scalars or real 2-dimensional vectors. Below we will begin
with detection in real scalars, but eventually this will be extended to detection in multi-dimensional space.
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Figure 2: Block diagram of BPSK/Binary PAM

2.1 Motivating Example: Binar Detection in Scalar
Problem Setup

• Model (BPSK/Binary PAM): a bit c ∈ {0, 1} is mapped to x ∈ {±A} (say 0 7→ −A, 1 7→ +A).
The received signal

Y = x+ Z, x ∈ {±A}, Z ∼ N (0, σ2) (4)

• Thinking of the bit c being random, there is a prior distribution PC(·) for the random C, where PC(0) = Pr{C = 0}
and PC(1) = Pr{C = 1}.

• The statistical model relating the observation Y and the hidden bit C is determined by the conditional distribution
(density) fY |C(y|c).

• Goal: Given the prior distribution PC and the statistical model fY |C , we would like to find a rule, ĉ : R → {0, 1},
such that Pe ≜ Pr{C ̸= ĉ(Y )} is minimized.

Analysis of Probability of Error Pe Let’s take a deeper look into Pe and figure out how to find ĉ that minimizes it.

1. First, note that ĉ is a mapping from R to {0, 1} and is equivalent to decision regions D0 and D1 :

• D0 ≜ {y ∈ R : ĉ(y) = 0}
• D1 ≜ {y ∈ R : ĉ(y) = 1}

Finding the best ĉ is equivalent to finding the best partition D0, D1 of R.

2. Probability of success:

Pr{C = ĉ(Y )} =
∑
i=0,1

Pr{c = i and ĉ(Y ) = i}

=
∑
i=0,1

Pr{c = i|Y ∈ Di}Pr{Y ∈ Di} =
∑
i=0,1

∫
Di

PC|Y (i|y) fY (y) dy. (5)

3. Question: Given y, in order to maximize (5), should it belong to D0 or D1?
Answer: If PC|Y (0|y) ≥ PC|Y (1|y), it should belong to D0. Otherwise, it should belong to D1.
Key quantity: PC|Y (i|y). This is called posterior probability (事後機率)

Optimal Detection Rule From the above discussion, we come up with an optimal decision rule that minimizes Pe:

ĉMAP(y) = arg max
i=0,1

PC|Y (i|y). (6)

This is called the maximum a posterior (MAP) detector.

2.2 Optimal Detection
The above principle easily extends to M -ary detection in n-dimensional space.

Theorem 10 (Optimal Bayesian Detection Rule: MAP). For a M -ary detection problem where

• Hidden C ∈M follows prior distribution PC , where |M| = M = 2ℓ

• Input X ∈ A is determined by C in a one-to-one manner, A = {a1, . . . , aM}.
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• Statistical model fY |X which directly gives fY |C .

The optimal rule ĉ : Rn → M that minimizes probability of error Pe = Pr{C ̸= ĉ(Y )} is given by the following
maximum a posterior (MAP) detection rule

ĉMAP(y) = arg max
i∈M

PC|Y (i|y). (7)

事前 vs. 事後機率 The posterior probability PC|Y (c|y) can be viewed as the probability of C after observing Y = y. In
contrast, the prior probability PC(c) is the probability of C before observing Y = y.

Equivalent Forms of MAP Posterior probability is not that easy to compute. However, notice that

PC|Y (i|y) =
fY |C(y|i)PC(i)

fY (y)
∝ fY |C(y|i)PC(i) for fixed y.

Therefore,
ĉMAP(y) = arg max

i∈M
fY |C(y|i)PC(i). (8)

Moreover, if the prior is uniform, that is, PC(c) = 1/M for all c ∈M, then

ĉMAP(y) ≡ ĉML(y) = arg max
i∈M

fY |C(y|i). (9)

Short Summary

• MAP detection: ĉMAP(y) = arg max
i∈M

fY |C(y|i)PC(i).

• ML detection: ĉML(y) = arg max
i∈M

fY |C(y|i).

• MAP is the optimal detector

• ML ≡ MAP when prior is uniform, i.e., PC(c) =
1
M ∀i ∈M, M = |M|.

2.3 Specialization to the Additive Gaussian Noise Channel
The above principles can be applied to many problems other than communication. For our purpose, let’s specialize

the statistical model fY |X to the additive Gaussian noise model Y = X + Z where Z ∼ N (0, σ2), as follows:

C ∈M←→ X ∈ A = {a1, a2, . . . , aM}, A ⊆ Rn : constellation set, M = 2l

Y = X + Z Z =

Z1

...
Zn

 Z1, Z2, . . . , Zn: iid N (0, σ2)

=⇒ Y |C = i ∼ N (ai, σ
2In)

=⇒ fY |C(y|i) = fY |i(y|i) =
(

1√
2πσ2

)n n∏
k=1

exp
(
−(yk − aik)

2

2σ2

)

=

(
1√
2πσ2

)n

exp
(
−1
2σ2

n∑
k=1

|yk − aik|2
)

=

(
1√
2πσ2

)n

exp
(
−1
2σ2
∥y − ai∥2

)
(If prior is uniform) ĉMAP(y) = ĉML(y) = arg min

i∈M
∥y − ai∥ = Minimum Distance (MD) Detection

Hence, when the additive noises are i.i.d Gaussian, ML ≡MD. Based on this principle, the decision regions of constellation
sets can be drawn, as shown in Figure 6.

2.4 Performance Analysis: Binary PAM
Let’s begin with the simplest example: binary PAM and derive the performance of ML.
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Figure 3: 4-PAM Figure 4: 8-PSK Figure 5: 4QAM

Figure 6: Examples of Decision Regions

Probability of Error Recall the model under binary PAM: Y = X + Z, X ∈ {±d}, Z ∼ N (0, σ2), uniform prior.

Pe = Pr{ĉ(Y ) ̸= C}
= Pr{C = 0}Pr{ĉ(Y ) ̸= 0|C = 0}+ Pr{C = 1}Pr{ĉ(Y ) ̸= 1|C = 1}

Pr{ĉ(Y ) ̸= 0|C = 0} = Pr{Y ∈ D1|C = 0}
= Pr{Y > 0|C = 0}
= Pr{N (−d, σ2) > 0}
= Pr{N (0, σ2) > d}

= Pr
{
N (0, 1) >

d

σ

}
= Q

(
d

σ

)

Pr{ĉ(Y ) ̸= 1|C = 1} = Q

(
d

σ

)
(by symmetry)

Hence, the probability of error for binary-PAM {±d} under Gaussian noise N (0, σ2) is

Pe = Q

(
d

σ

)
. (10)

Definition 11 (Q Function). Q function denotes the tail probability (complementary CDF) of the standard normal:

Q(x) ≜ Pr{N (0, 1) > x} =
∫ ∞

x

1√
2π

e−
1
2 t

2

dt

Claim 12 (Bound on Q Function).
Q(x) ≤ 1

2
e−

1
2x

2

, ∀x ≥ 0.

In fact, lnQ(x) ≍ − 1
2x

2, that is,

lim
x→∞

lnQ(x)

−1
2x

2
= 1.

Signal-to-Noise Ratio
• Noise variance: σ2

• Signal energy: Es =
1
2 |+d|2 + 1

2 |−d|
2 = d2

• SNR ≜ signal energy
noise variance = Es

σ2 = d2

σ2

Hence, we can conclude that Pe = Q(
√

SNR) and lnPe ≍ − 1
2SNR. Pe increases when SNR decreases; Pe decreases

when SNR increases.
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