
!"#$%&"'(
)*&"+",,'-./00"+

I-Hsiang Wang
ihwang@ntu.edu.tw

2/20, 2014

mailto:ihwang@ntu.edu.tw
mailto:ihwang@ntu.edu.tw


!"#$%$&&'()*++$%&',*#-'*.'./0'&(*%$&

¥ Large-scale fading: path loss, shadowing, etc.

¥ Small-scale fading: constructive/destructive interference
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11 2.1 Physical modeling for wireless channels

Figure 2.1Channel quality
varies over multiple
time-scales. At a slow scale,
channel varies due to
large-scale fading effects. At a
fast scale, channel varies due
to multipath effects.

Time

Channel quality

electromagnetic field impinging on the receiver antenna. This would have to
be done taking into account the obstructions caused by ground, buildings,
vehicles, etc. in the vicinity of this electromagnetic wave.1

Cellular communication in the USA is limited by the Federal Commu-
nication Commission (FCC), and by similar authorities in other countries,
to one of three frequency bands, one around 0.9 GHz, one around 1.9 GHz,
and one around 5.8 GHz. The wavelength! of electromagnetic radiation at
any given frequencyf is given by ! = c/f , wherec = 3! 108 m/ s is the
speed of light. The wavelength in these cellular bands is thus a fraction of a
meter, so to calculate the electromagnetic field at a receiver, the locations of
the receiver and the obstructions would have to be known within sub-meter
accuracies. The electromagnetic field equations are therefore too complex to
solve, especially on the fly for mobile users. Thus, we have to ask what we
really need to know about these channels, and what approximations might be
reasonable.

One of the important questions is where to choose to place the base-stations,
and what range of power levels are then necessary on the downlink and uplink
channels. To some extent this question must be answered experimentally, but
it certainly helps to have a sense of what types of phenomena to expect.
Another major question is what types of modulation and detection techniques
look promising. Here again, we need a sense of what types of phenomena to
expect. To address this, we will construct stochastic models of the channel,
assuming that different channel behaviors appear with different probabilities,
and change over time (with specific stochastic properties). We will return to
the question of why such stochastic models are appropriate, but for now we
simply want to explore the gross characteristics of these channels. Let us start
by looking at several over-idealized examples.

1 By obstructions, we mean not only objects in the line-of-sight between transmitter and
receiver, but also objects in locations that cause non-negligible changes in the electro-
magnetic field at the receiver; we shall see examples of such obstructions later.
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¥ Path loss and Shadowing
- In free space, received power 

- With reßections and obstacles, can attenuate faster than 

¥ Variation over time: very slow, order of seconds

¥ Critical for coverage and cell-cite planning
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¥ Multipath fading: due to constructive and destructive 
interference of the waves

¥ Channel varies when the mobile moves a distance of the 
order of the carrier wavelength 
- Typical carrier frequency ~ 1GHz 

¥ Variation over time: order of hundreds of microseconds

¥ Critical for design of communication systems

:

!
=! ! " c/f = 0.3m
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¥ Understand how physical parameters impact a wireless 
channel from the communication system point of view. 
Physical parameters such as
- Carrier frequency
- Mobile speed
- Bandwidth
- Delay spread
- etc.

¥ Start with deterministic physical models

¥ Progress towards statistical models

<
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¥ Physical modeling of wireless channels

¥ Deterministic Input-output model

¥ Time and frequency coherence

¥ Statistical models

¥ READING: [TV] Chapter 2

?
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¥ Delay spread!   : difference between delays of paths

¥ If frequency f change by!! ! ! , then the combined 
received sinusoid move from peak to valley

¥ Therefore, the frequency-variation scale is of the order of

¥ Coherence bandwidth

EK
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Difference of the Doppler shifts of 
the two paths, cause this variation 
over time. 
Time-variation scale:! !   (ms)
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17 2.1 Physical modeling for wireless channels

Figure 2.5The received
waveform oscillating at
frequencyf with a slowly
varying envelope at frequency
Ds/ 2.

t

Er (t)

interference pattern and at its narrowest when the mobile is at a valley. Thus,
the Doppler spread determines the rate of traversal across the interference
pattern and is inversely proportional to the coherence time of the channel.

We now see why we have partially ignored the denominator terms in (2.11)
and (2.13). When the difference in the length between two paths changes by
a quarter wavelength, the phase difference between the responses on the two
paths changes by! / 2, which causes a very significant change in the overall
received amplitude. Since the carrier wavelength is very small relative to
the path lengths, the time over which this phase effect causes a significant
change is far smaller than the time over which the denominator terms cause
a significant change. The effect of the phase changes is of the order of
milliseconds, whereas the effect of changes in the denominator is of the order
of seconds or minutes. In terms of modulation and detection, the time-scales
of interest are in the range of milliseconds and less, and the denominators are
effectively constant over these periods.

The reader might notice that we are constantly making approximations in
trying to understand wireless communication, much more so than for wired
communication. This is partly because wired channels are typically time-
invariant over a very long time-scale, while wireless channels are typically
time-varying, and appropriate models depend very much on the time-scales of
interest. For wireless systems, the most important issue is what approximations
to make. Thus, it is important to understand these modeling issues thoroughly.

2.1.5 Reflection from a ground plane

Consider a transmit and a receive antenna, both above a plane surface such
as a road (Figure 2.6). When the horizontal distancer between the antennas
becomes very large relative to their vertical displacements from the ground
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¥ Mobility causes time-varying delays (Doppler shift)

¥ Doppler spread      : difference between Doppler shifts of 
multiple signal paths 

¥ If time t change by!! ! ! , then the combined received 
sinusoidal envelope move from peak to valley

¥ Therefore, the time-variation scale is of the order of

¥ Coherence time

E:

1/ (2Ds)

1
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¥ Delay spread/coherence bandwidth and Doppler spread/
coherence time seem fundamental

¥ However, it is difÞcult to derive the explicit received 
waveform mathematically. 
- Out of scope Ð EM wave theory

¥ Instead, we construct useful input/output models, and 
take measurements to determine the parameters in the 
models

E<
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¥ Wireless channels as linear time-varying systems:

¥  Recall Example 2:
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¥ Wireless channels as linear time-varying systems:

¥  Impulse response:

¥ Frequency response:
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¥ Communications takes place in a passband 
- Carrier frequency 
- Bandwidth 
- Real signal 

EG

23 2.2 Input/output model of the wireless channel

Figure 2.7Illustration of the
relationship between a
passband spectrumS(f ) and
its baseband equivalent Sb(f ).
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Sinces! t" is real, its Fourier transform satisfiesS! f " = S! ! " f ", which means
that sb! t" contains exactly the same information ass! t". The factor of

#
2 is

quite arbitrary but chosen to normalize the energies ofsb! t" and s! t" to be
the same. Note thatsb! t" is band-limited in#" W/2$W/2%. See Figure 2.7.

To reconstructs! t" from sb! t", we observe that

#
2S! f " = Sb! f " f c" + S!

b! " f " f c"& (2.22)

Taking inverse Fourier transforms, we get

s! t" =
1

#
2

!
sb! t"e

j2' f ct + s!
b! t"e" j2' f ct

"
=

#
2$

!
sb! t"e

j2' f ct
"
& (2.23)

In terms of real signals, the relationship betweens! t" and sb! t" is
shown in Figure 2.8. The passband signals! t" is obtained by modulating
$ #sb! t"%by

#
2 cos2' f ct and %#sb! t"%by "

#
2 sin 2' f ct and summing, to

get
#

2$
!
sb! t"e

j2' f ct
"

(up-conversion). The baseband signal$ #sb! t"%(respec-
tively %#sb! t"%) is obtained by modulatings! t" by

#
2 cos2' f ct (respec-

tively "
#

2 sin 2' f ct) followed by ideal low-pass filtering at the baseband
#" W/2$W/2%(down-conversion).

Let us now go back to the multipath fading channel (2.14) with impulse
response given by (2.18). Letxb! t" and yb! t" be the complex baseband
equivalents of the transmitted signalx! t" and the received signaly! t",
respectively. Figure 2.9 shows the system diagram fromxb! t" to yb! t". This
implementation of a passband communication system is known asquadrature
amplitude modulation(QAM). The signal$ #xb! t"%is sometimes called the

f c

W < 2f c

s(t)
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22 The wireless channel

depend on timet, and we have the usual linear time-invariant channel with
an impulse response

h!"# =
!

i

ai$!" ! " i#% (2.19)

For the time-varying impulse responseh!"&t#, we can define a time-varying
frequency response

H! f ' t# (=
" "

!"
h!"&t#e! j2) f " d" =

!

i

ai ! t#e
! j2) f " i ! t#% (2.20)

In the special case when the channel is time-invariant, this reduces to the
usual frequency response. One way of interpretingH! f ' t# is to think of the
system as a slowly varying function oft with a frequency responseH! f ' t#
at each fixed timet. Corresponding,h!"&t#can be thought of as the impulse
response of the system at a fixed timet. This is a legitimate and useful
way of thinking about many multipath fading channels, as the time-scale
at which the channel varies is typically much longer than the delay spread
(i.e., the amount of memory) of the impulse response at a fixed time. In the
reflecting wall example in Section 2.1.4, the time taken for the channel to
change significantly is of the order of milliseconds while the delay spread is
of the order of microseconds. Fading channels which have this characteristic
are sometimes calledunderspread channels.

2.2.2 Baseband equivalent model

In typical wireless applications, communication occurs in a passband
*f c ! W/2&f c + W/2+ of bandwidth W around a center frequencyf c, the
spectrum having been specified by regulatory authorities. However, most
of the processing, such as coding/decoding, modulation/demodulation,
synchronization, etc., is actually done at the baseband. At the transmitter, the
last stage of the operation is to Òup-convertÓ the signal to the carrier frequency
and transmit it via the antenna. Similarly, the first step at the receiver is to
Òdown-convertÓ the RF (radio-frequency) signal to the baseband before further
processing. Therefore from a communication system design point of view, it
is most useful to have a baseband equivalent representation of the system.
We first start with defining the baseband equivalent representation of signals.

Consider a real signals! t# with Fourier transformS! f #, band-limited in
*f c ! W/2&f c + W/2+with W < 2f c. Define itscomplex baseband equivalent
sb! t# as the signal having Fourier transform:

Sb! f #=
##

2S! f + f c# f + f c > 0&
0 f + f c $ 0%

(2.21)
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24 The wireless channel

Figure 2.8Illustration of
upconversion from sb(t) to
s(t), followed by
downconversion froms(t)
back to sb(t).
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Figure 2.9System diagram
from the baseband transmitted
signal xb(t) to the baseband
received signal yb(t). X
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in-phase component I and" !xb"t#$the quadrature component Q (rotated
by %/ 2). We now calculate the baseband equivalent channel. Substituting
x"t#=

#
2! !xb"t#e

j2%f ct$andy"t#=
#

2! !yb"t#e
j2%f ct$into (2.14) we get

! !yb"t#e
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i

ai "t#! !xb"t $ &i"t##e j2%f c"t$ &i "t##$

= !

"#
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i
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$

e j2%f ct

%

' (2.24)

Similarly, one can obtain (Exercise 2.13)

" !yb"t#e
j2%f ct$= "

"#
!

i

ai "t#xb"t $ &i"t##e$ j2%f c&i "t#

$

e j2%f ct

%

' (2.25)

Hence, the baseband equivalent channel is

yb"t#=
!

i

ab
i "t#xb"t $ &i"t##( (2.26)
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response given by (2.18). Letxb! t" and yb! t" be the complex baseband
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Ð! 2 sin 2!  fc 
t Ð! 2 sin 2!  fc 

t

! 2 cos 2!  fc 
t! 2 cos 2!  fc 

t

in-phase component I and" !xb"t#$the quadrature component Q (rotated
by %/ 2). We now calculate the baseband equivalent channel. Substituting
x"t#=

#
2! !xb"t#e

j2%f ct$andy"t#=
#

2! !yb"t#e
j2%f ct$into (2.14) we get

! !yb"t#e
j2%f ct$ =

!

i

ai "t#! !xb"t $ &i"t##e j2%f c"t$ &i "t##$

= !

"#
!

i

ai "t#xb"t $ &i"t##e$ j2%f c&i "t#

$

e j2%f ct

%

' (2.24)

Similarly, one can obtain (Exercise 2.13)

" !yb"t#e
j2%f ct$= "

"#
!

i

ai "t#xb"t $ &i"t##e$ j2%f c&i "t#

$

e j2%f ct

%

' (2.25)

Hence, the baseband equivalent channel is

yb"t#=
!

i

ab
i "t#xb"t $ &i"t##( (2.26)

yb(t) =
!

i

ab
i (t)xb (t ! ! i (t)) ,

where ab
i (t) := ai (t)e! j 2! f c " i ( t )
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¥ Complex baseband equivalent channel:

¥ Frequency response: shifted from passband to baseband

¥ Each path is associated with a delay and a complex gain

18

xb(t) hb (! , t) yb(t) =
X

i

a

b
i (t)xb (t� ⌧i(t))

hb(⌧, t) =
X

i

abi (t)� (⌧ � ⌧i(t)) ,

where abi (t) := ai(t)e
�j2⇡fc ⌧i (t)

Hb(f ; t) = H (f + f c; t)
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¥ Modern communication systems are digitized, (partially) 
thanks to sampling theorem

¥ Our baseband signal can be represented as follows:

1:

xb(t) =
!

n

x[n]sinc(Wt� n),

x[n] := xn(n/W ), sinc(t) :=
sin⇡t
⇡t
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28 The wireless channel

X X

XX
![x[m]]

sinc (Wt – n)

"[x[m]]
sinc (Wt – n)

h(τ, t)

1

–W W

–W W

1

+

![xb(t)]

"[y[m]]

 ![y[m]]![yb(t)]

"[yb(t)]

y(t)x(t)

"[xb(t)]

2 2

22

–! 2 sin 2π fc 
t –! 2 sin 2π fc 

t

! 2 cos 2π fc 
t! 2 cos 2π fc 

t

The number of taps would be almost doubled because of the reduced sampleFigure 2.11System diagram
from the baseband transmitted
symbolx[m] to the baseband
sampled received signaly[m].

interval, but it would typically be somewhat less than doubled since the
representation would not spread the path delays so much.

Discussion 2.1 Degrees of freedom

The symbolx!m" is the mth sample of the transmitted signal; there are
W samples per second. Each symbol is a complex number; we say that it
represents one (complex)dimensionor degree of freedom. The continuous-
time signalx#t$of duration one second corresponds toW discrete symbols;
thus we could say that the band-limited, continuous-time signal hasW
degrees of freedom, per second.

The mathematical justification for this interpretation comes from the
following important result in communication theory: the signal space of
complex continuous-time signals of durationT which have most of their
energy within the frequency band!−W/2%W/2" has dimension approx-
imately WT. (A precise statement of this result is in standard com-
munication theory text/books; see Section 5.3 of [148] for example.)
This result reinforces our interpretation that a continuous-time signal
with bandwidthW can be represented byW complex dimensions per
second.

The received signaly#t$ is also band-limited to approximatelyW (due
to the Doppler spread, the bandwidth is slightly larger thanW) and hasW
complex dimensions per second. From the point of view of communication
over the channel, thereceivedsignal space is what matters because it
dictates the number of different signals which can be reliably distinguished
at the receiver. Thus, we define thedegrees of freedom of the channel
to be the dimension of the received signal space, and whenever we refer
to the signal space, we implicitly mean the received signal space unless
stated otherwise.

y[m] =
!

l

hl [m]x[m ! l ],

where hl [m] :=
!

i

ab
i (m/W )sinc [l ! ! i (m/W )W ]
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¥ Discrete-time channel model

¥ Note: the l-th tap hl contains contributions mostly for the 
paths that have delays that lie inside the bin (roughly)

¥ System resolves the multipaths up to delays of 

1?

y[m] =
X

l

hl [m]x[m ! l ]hl [m]x[m]

hl [m] :=
!

i

ab
i (m/W )sinc [l ! ! i (m/W )W ]

1
W

!
l

W
!

1
2W

,
l

W
+

1
2W

"
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¥ sinc(t) vanish quickly outside of 
the interval [-0.5, 0.5] (roughly)

¥ The peak of the i-th translated 
sinc lies at

¥ To contribute signiÞcantly to hl, 
the delay must fall inside 

1P

27 2.2 Input/output model of the wireless channel

Figure 2.10Due to the decay
of the sinc function, theith
path contributes most
significantly to the! th tap if
its delay falls in the window
"! /W ! 1/ #2W$%!/W +
1/ #2W$&.

1
W

Main contribution  l = 0

Main contribution  l = 0

Main contribution  l = 1

Main contribution  l = 2

Main contribution  l = 2

i = 0

i = 1

i = 2

i = 3

i = 4 

0 1 2
l

at the output of the low-pass filter. Figure 2.11 shows the complete system.
In practice, other transmit pulses, such as the raised cosine pulse, are often
used in place of the sinc pulse, which has rather poor time-decay property
and tends to be more susceptible to timing errors. This necessitates sampling
at the Nyquist sampling rate, but does not alter the essential nature of the
model. Hence we will confine to Nyquist sampling.

Due to the Doppler spread, the bandwidth of the outputyb! t" is generally
slightly larger than the bandwidthW/2 of the inputxb! t", and thus the output
samples#y$m%&do not fully represent the output waveform. This problem is
usually ignored in practice, since the Doppler spread is small (of the order
of tens to hundreds of Hz) compared to the bandwidthW. Also, it is very
convenient for the sampling rate of the input and output to be the same.
Alternatively, it would be possible to sample the output at twice the rate of
the input. This would recapture all the information in the received waveform.

hl [m] :=
!

i

ab
i (m/W )sinc [l ! ! i (m/W )W ]

! i

!
l

W
!

1
2W

,
l

W
+

1
2W

"
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¥ The discrete-time baseband channel model is the 
equivalent one in designing communication systems

¥ It only matters how the taps hl[m] vary over time m and 
carrier frequency fc 

¥ l-th tap of the discrete-time baseband channel model

1G

hl [m] :=
!

i

ab
i (m/W )sinc [l ! ⌧i (m/W )W ]

=
!

i

ai (tm ) e! j 2! f c " i (t m )sinc [l ! ⌧i (tm )W ] tm := m
W

!
!

i ! l -th delay bin

ai (tm ) e" j 2! f c " i ( t m )

Difference in phases (over the paths that 
contribute signiÞcantly to the tap), causes 
variation of the tap gain
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¥ Delay Spread 

¥ Coherence Bandwidth

¥ For a system with bandwidth W

8K

hl [m] !
!

i ! l -th delay bin

ai (tm ) e" j 2! f c " i ( t m )

Td := max
i,j

|! i (t) ! ! j (t)|

Wc :=
1
Td

Wc ! W =" single tap, ßat fading

Wc < W =" multiple taps, frequency-selective fading
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¥ Effective channel depends on both physical environment 
(Wc) and operation bandwidth (W)

8E

33 2.3 Time and frequency coherence
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phase causes selective fading in frequency. This says thatEr! f " t# changesFigure 2.13(a) A channel over
200MHz is frequency-selective,
and the impulse response has
many taps. (b) The spectral
content of the same channel.
(c) The same channel over
40MHz is flatter, and has for
fewer taps. (d) The spectral
contents of the same channel,
limited to 40MHz bandwidth.
At larger bandwidths, the same
physical paths are resolved into
a finer resolution.

significantly, not only whent changes by 1/ !4Ds#, but also whenf changes
by 1/ !2Td#. This argument extends to an arbitrary number of paths, so the
coherence bandwidth, Wc, is given by

Wc =
1

2Td

$ (2.47)

This relationship, like (2.44), is intended as an order of magnitude relation,
essentially pointing out that the coherence bandwidth is reciprocal to the
multipath spread. When the bandwidth of the input is considerably less than
Wc, the channel is usually referred to asflat fading. In this case, the delay
spreadTd is much less than the symbol time 1/W , and a single channel
filter tap is sufficient to represent the channel. When the bandwidth is much
larger thanWc, the channel is said to befrequency-selective, and it has to
be represented by multiple taps. Note that flat or frequency-selective fading
is not a property of the channel alone, but of the relationship between the
bandwidthW and the coherence bandwidthTd (Figure 2.13).

The physical parameters and the time-scale of change of key parameters of
the discrete-time baseband channel model are summarized in Table 2.1. The
different types of channels are summarized in Table 2.2.

Larger bandwidth, more paths can be resolved
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¥ Doppler Spread 

¥ Coherence Time

¥ For a system with delay requirement (application 
dependent) T

81

hl [m] !
!

i ! l -th delay bin

ai (tm ) e" j 2! f c " i ( t m )

Ds := max
i,j

f c|! i ! (t) ! ! j ! (t)|

Tc :=
1

Ds

Tc ! T =" slow fading

Tc < T =" fast fading
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34 The wireless channel

Table 2.1A summary of the physical parameters of the channel and the
time-scale of change of the key parameters in its discrete-time baseband
model.

Key channel parameters and time-scales Symbol Representative values

Carrier frequency f c 1 GHz
Communication bandwidth W 1 MHz
Distance between transmitter and receiverd 1 km
Velocity of mobile v 64 km/h
Doppler shift for a path D = f cv/c 50 Hz
Doppler spread of paths corresponding to

a tap Ds 100 Hz
Time-scale for change of path amplitude d/v 1 minute
Time-scale for change of path phase 1/ !4D" 5 ms
Time-scale for a path to move over a tap c/ !vW" 20 s
Coherence time Tc = 1/ !4Ds" 2.5 ms
Delay spread Td 1#s
Coherence bandwidth Wc = 1/ !2Td" 500 kHz

Table 2.2A summary of the types of wireless
channels and their defining characteristics.

Types of channel Defining characteristic

Fast fading Tc ! delay requirement
Slow fading Tc " delay requirement
Flat fading W ! Wc

Frequency-selective fading W " Wc

Underspread Td ! Tc

2.4 Statistical channel models

2.4.1 Modeling philosophy

We defined Doppler spread and multipath spread in the previous section as
quantities associated with a given receiver at a given location, velocity, and
time. However, we are interested in a characterization that is valid over some
range of conditions. That is, we recognize that the channel filter taps {h$%m&}
must be measured, but we want a statistical characterization of how many
taps are necessary, how quickly they change and how much they vary.

Such a characterization requires a probabilistic model of the channel tap
values, perhaps gathered by statistical measurements of the channel. We are
familiar with describing additive noise by such a probabilistic model (as
a Gaussian random variable). We are also familiar with evaluating error
probability while communicating over a channel using such models. These
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¥ Typical channels are underspread

¥ Coherence time Tc depends on carrier frequency and 
mobile speed, of the order of ms or more

¥ Delay spread Td depends on distance to scatters and cell 
size, of the order of ns (indoor) to µs (outdoor)

8:

34 The wireless channel
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Slow fading Tc " delay requirement
Flat fading W ! Wc
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2.4 Statistical channel models

2.4.1 Modeling philosophy

We defined Doppler spread and multipath spread in the previous section as
quantities associated with a given receiver at a given location, velocity, and
time. However, we are interested in a characterization that is valid over some
range of conditions. That is, we recognize that the channel filter taps {h$%m&}
must be measured, but we want a statistical characterization of how many
taps are necessary, how quickly they change and how much they vary.

Such a characterization requires a probabilistic model of the channel tap
values, perhaps gathered by statistical measurements of the channel. We are
familiar with describing additive noise by such a probabilistic model (as
a Gaussian random variable). We are also familiar with evaluating error
probability while communicating over a channel using such models. These
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