Chapter 14: Fourier Transforms and Boundary Value Problems in an Unbounded Region ### 王奕翔 Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 25, 2013 1 / 27 王奕翔 DE Lecture 15 So far we have seen how to solve boundary-value problems within a bounded region, where the boundary conditions are given at finite boundaries, e.g., - (one-dimensional) heat equation, wave equation: $x \in [0, L]$ - (two-dimensional) Laplace's equation: $(x, y) \in [0, a] \times [0, b]$ **Exception**: a BVP on semi-finite plate **Note**: we are able to solve this via Fourier series because the homogeneous boundary conditions are still at finite boundaries x = 0, a. From the homogeneous boundary conditions, we can conclude that the solution u(x,t) is a **Fourier** cosine/sine series in x. What if the homogeneous boundary conditions are given at infinite boundaries, i.e., $\pm \infty$? Separation of variables: unable to use the homogeneous boundary conditions to find the possible values of the separation constant λ . We introduce Fourier Transforms to deal with this issue. 1 Fourier Transforms 2 BVP's in an Unbounded Region # From Fourier Series to Fourier Integral **Recall**: For a function f(x) defined on (-p, p), its Fourier series is $$\sum_{n=-\infty}^{\infty} \left(\frac{1}{2p} \int_{-p}^{p} f(x) e^{-i\frac{n\pi}{p}x} dx \right) e^{i\frac{n\pi}{p}x}$$ Let $$\alpha_n := \frac{n\pi}{p}$$ and $\Delta \alpha := \alpha_{n+1} - \alpha_n = \frac{\pi}{p}$. Taking $p \to \infty$, $\Delta \alpha \to 0$, and the Fourier series becomes $$\frac{1}{2\pi} \lim_{p \to \infty} \sum_{n = -\infty}^{\infty} \widehat{\left(\int_{-p}^{p} f(x) e^{-i\alpha_n x} \, dx \right)} e^{i\alpha_n x} \Delta \alpha$$ $$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \left\{ \lim_{p \to \infty} F_p(\alpha) \right\} e^{i\alpha x} \, d\alpha \quad \Delta \alpha = \frac{\pi}{p} \to 0 \text{ when } p \to \infty$$ $$= \boxed{\frac{1}{2\pi} \int_{-\infty}^{\infty} \left\{ \int_{-\infty}^{\infty} f(x) e^{-i\alpha x} \, dx \right\} e^{i\alpha x} \, d\alpha}$$ 6 / 27 王奕翔 DE Lecture 15 # Fourier Integral and Fourier Transform ### Definition (Fourier Integral and Fourier Transform) The **Fourier integral** of a function f(x) defined on $(-\infty, \infty)$ is $$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\alpha) e^{i\alpha x} d\alpha, \quad \text{where } F(\alpha) = \int_{-\infty}^{\infty} f(x) e^{-i\alpha x} dx.$$ The **Fourier transform** of f(x) is $$\mathscr{F}\left\{f(x)\right\} = \int_{-\infty}^{\infty} f(x)e^{-i\alpha x} dx := F(\alpha).$$ The **inverse Fourier transform** of a function $F(\alpha)$ is $$\mathscr{F}^{-1}\left\{F(\alpha)\right\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\alpha) e^{i\alpha x} d\alpha := f(x).$$ #### Fourier and Inverse Fourier Transforms $$f(x)$$ $$\xrightarrow{\mathscr{F}} F(\alpha) = \int_{-\infty}^{\infty} f(x)e^{-i\alpha x} dx$$ $$F(\alpha)$$ $$\xrightarrow{\mathscr{F}^{-1}} f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\alpha) e^{i\alpha x} d\alpha$$ #### Fourier Coefficients and Fourier Series $$f(x)$$ $$\xrightarrow{\mathcal{FS}} c_n = \frac{1}{2p} \int_{-p}^p f(x) e^{-i\frac{n\pi}{p}x} dx$$ $$c_n \qquad \xrightarrow{\mathcal{FS}^{-1}} \qquad f(x) = \sum_{n=0}^{\infty} c_n e^{i\frac{n\pi}{p}x}$$ 8 / 27 DE Lecture 15 ### Examples #### Example Find the Fourier integral representation and the Fourier transform of the function $f(x) = \begin{cases} 1, & 0 < x < 2 \\ 0, & \text{otherwise} \end{cases}$. The Fourier transform $$F(\alpha) = \mathscr{F}\left\{f(x)\right\} = \int_{-\infty}^{\infty} f(x)e^{-i\alpha x} dx = \int_{0}^{2} e^{-i\alpha x} dx = \frac{1}{-i\alpha} \left(e^{-2i\alpha} - 1\right)$$ The Fourier integral $$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\alpha) e^{i\alpha x} d\alpha = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{i}{\alpha} \left(e^{-2i\alpha} - 1 \right) e^{i\alpha x} d\alpha$$ DE Lecture 15 9 / 27 # Sufficient Condition of Convergence ### Theorem (Convergence of Fourier Integral) Let f and f' be piecewise continuous on every finite interval and let f be absolutely integrable on $(-\infty, \infty)$ (i.e., $\int_{-\infty}^{\infty} |f(x)| dx$ converges). Then, its Fourier integral converges to - \bullet f(x) at a point where f(x) is continuous - $\frac{1}{2}(f(x+)+f(x-))$ at a point where f(x) is discontinuous. # Alternative Form of the Fourier Integral $$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\alpha) e^{i\alpha x} d\alpha = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\alpha) \left(\cos \alpha x + i \sin \alpha x\right) d\alpha$$ $$= \frac{1}{2\pi} \left\{ \int_{0}^{\infty} F(\alpha) \left(\cos \alpha x + i \sin \alpha x\right) d\alpha + \int_{-\infty}^{0} F(\alpha) \left(\cos \alpha x + i \sin \alpha x\right) d\alpha \right\}$$ $$= \frac{1}{2\pi} \left\{ \int_{0}^{\infty} F(\alpha) \left(\cos \alpha x + i \sin \alpha x\right) d\alpha + \int_{0}^{\infty} F(-\alpha) \left(\cos \alpha x - i \sin \alpha x\right) d\alpha \right\}$$ $$= \frac{1}{2\pi} \int_{0}^{\infty} \left\{ \left[F(\alpha) + F(-\alpha) \right] \cos \alpha x + i \left[F(\alpha) - F(-\alpha) \right] \sin \alpha x \right\} d\alpha$$ $$= \frac{1}{\pi} \int_{0}^{\infty} \left\{ \left[\int_{-\infty}^{\infty} f(x) \cos \alpha x dx \right] \cos \alpha x + \left[\int_{-\infty}^{\infty} f(x) \sin \alpha x dx \right] \sin \alpha x \right\} d\alpha$$ $$F(\alpha) + F(-\alpha) = \int_{-\infty}^{\infty} f(x)e^{-i\alpha x} dx + \int_{-\infty}^{\infty} f(x)e^{i\alpha x} dx = 2\int_{-\infty}^{\infty} f(x)\cos\alpha x dx$$ $$F(\alpha) - F(-\alpha) = \int_{-\infty}^{\infty} f(x)e^{-i\alpha x} dx - \int_{-\infty}^{\infty} f(x)e^{i\alpha x} dx = -2i\int_{-\infty}^{\infty} f(x)\sin\alpha x dx$$ # Alternative Form of the Fourier Integral $$f(x) = \frac{1}{\pi} \int_0^\infty \{A(\alpha)\cos\alpha x + B(\alpha)\sin\alpha x\} d\alpha,$$ where $A(\alpha) = \int_{-\infty}^{\infty} f(x) \cos \alpha x \, dx$, $B(\alpha) = \int_{-\infty}^{\infty} f(x) \sin \alpha x \, dx$. #### Fourier Integral of an Even Function $$f(x) = \frac{1}{\pi} \int_0^\infty \left\{ A(\alpha) \cos \alpha x + B(\alpha) \sin \alpha x \right\} d\alpha,$$ where $A(\alpha) = 2 \int_0^\infty f(x) \cos \alpha x \, dx$, $B(\alpha) = \int_{-\infty}^\infty f(x) \sin \alpha x \, dx = 0$. #### Fourier Integral of an Odd Function $$f(x) = \frac{1}{\pi} \int_0^\infty \left\{ \underline{A(\alpha) \cos \alpha x} + B(\alpha) \sin \alpha x \right\} d\alpha,$$ where $A(\alpha) = \int_{-\infty}^{\infty} f(x) \cos \alpha x \, dx = 0$, $B(\alpha) = 2 \int_{0}^{\infty} f(x) \sin \alpha x \, dx$. ### Fourier Cosine Integral and Fourier Cosine Transform ### Definition (Fourier Cosine Integral and Fourier Cosine Transform) The **Fourier cosine integral** of a function f(x) defined on $(0, \infty)$ is $$\mathit{f}(x) = \frac{2}{\pi} \int_0^\infty \mathit{F}(\alpha) \cos \alpha x \, d\alpha, \quad \text{where } \mathit{F}(\alpha) = \int_0^\infty \mathit{f}(x) \cos \alpha x \, dx.$$ The **Fourier cosine transform** of f(x) is $$\mathscr{F}_c \{f(x)\} = \int_0^\infty f(x) \cos \alpha x \, dx = F(\alpha).$$ The **inverse Fourier cosine transform** of a function $F(\alpha)$ is $$\mathscr{F}_c^{-1}\left\{F(\alpha)\right\} = \frac{2}{\pi} \int_0^\infty F(\alpha) \cos \alpha x \, d\alpha = f(x).$$ # Fourier Sine Integral and Fourier Sine Transform ### Definition (Fourier Sine Integral and Fourier Sine Transform) The **Fourier sine integral** of a function f(x) defined on $(0, \infty)$ is $$f(x) = \frac{2}{\pi} \int_0^\infty F(\alpha) \sin \alpha x \, d\alpha, \quad \text{where } F(\alpha) = \int_0^\infty f(x) \sin \alpha x \, dx.$$ The **Fourier sine transform** of f(x) is $$\mathscr{F}_s \{f(x)\} = \int_0^\infty f(x) \sin \alpha x \, dx = F(\alpha).$$ The **inverse Fourier sine transform** of a function $F(\alpha)$ is $$\mathscr{F}_s^{-1}\left\{F(\alpha)\right\} = \frac{2}{\pi} \int_0^\infty F(\alpha) \sin \alpha x \, d\alpha = f(x).$$ # **Examples** #### Example Find the Fourier integral representation of the function $$f(x) = \begin{cases} 1, & -a < x < a \\ 0, & \text{otherwise} \end{cases}.$$ f(x) is an even function. Hence, its Fourier integral is a cosine integral $$f(x) = \frac{2}{\pi} \int_0^\infty \left\{ \int_0^\infty f(x) \cos \alpha x \, dx \right\} \cos \alpha x \, d\alpha$$ $$= \frac{2}{\pi} \int_0^\infty \left\{ \int_0^a \cos \alpha x \, dx \right\} \cos \alpha x \, d\alpha$$ $$= \frac{2}{\pi} \int_0^\infty \frac{\sin \alpha a \cos \alpha x}{\alpha} \, d\alpha$$ # Examples #### Example On $(0,\infty)$, represent $f(x)=e^{-x}$ (a) by a Fourier cosine integral, and (b) by a Fourier sine integral. (a) $$f(x) = \frac{2}{\pi} \int_0^\infty \left\{ \int_0^\infty e^{-x} \cos \alpha x \, dx \right\} \cos \alpha x \, d\alpha = \frac{2}{\pi} \int_0^\infty \frac{1}{1 + \alpha^2} \cos \alpha x \, d\alpha$$ (b) $$f(x) = \frac{2}{\pi} \int_0^\infty \left\{ \int_0^\infty e^{-x} \sin \alpha x \, dx \right\} \sin \alpha x \, d\alpha = \frac{2}{\pi} \int_0^\infty \frac{\alpha}{1 + \alpha^2} \sin \alpha x \, d\alpha$$ 王奕翔 DE Lecture 15 ### Fourier Transforms of Derivatives The Fourier transform has many operational properties, and many of them resemble those of the Laplace transform. In this lecture we only focus on the Fourier transform of derivatives, as it is useful in solving BVP's of PDE's. #### Fact If $$f(x), f'(x) \to 0$$ as $x \to \pm \infty$, then $$\mathscr{F}\left\{f'(x)\right\} = i\alpha\mathscr{F}\left\{f(x)\right\}, \qquad \mathscr{F}\left\{f''(x)\right\} = -\alpha^2\mathscr{F}\left\{f(x)\right\}$$ $$\mathscr{F}_s\left\{f'(x)\right\} = -\alpha \mathscr{F}_c\left\{f(x)\right\}, \qquad \mathscr{F}_s\left\{f''(x)\right\} = -\alpha^2 \mathscr{F}_s\left\{f(x)\right\} + \alpha f(0)$$ $$\mathscr{F}_c\{f'(x)\} = \alpha \mathscr{F}_s\{f(x)\} - f(0), \quad \mathscr{F}_c\{f''(x)\} = -\alpha^2 \mathscr{F}_c\{f(x)\} - f'(0)$$ $$\mathscr{F}\left\{f'(x)\right\} = \int_{-\infty}^{\infty} f'(x)e^{-i\alpha x} dx = \int_{-\infty}^{\infty} e^{-i\alpha x} d\left(f(x)\right)$$ $$= \left[f(x)e^{-i\alpha x}\right]_{-\infty}^{\infty} + i\alpha \int_{-\infty}^{\infty} f(x)e^{-i\alpha x} dx$$ $$= i\alpha \mathscr{F}\left\{f(x)\right\} \qquad f(x) \to 0 \text{ as } x \to \pm \infty$$ $$\mathscr{F}_s\left\{f'(x)\right\} = \int_0^{\infty} f'(x)\sin\alpha x dx = \int_0^{\infty} \sin\alpha x d\left(f(x)\right)$$ $$= \left[f(x)\sin\alpha x\right]_0^{\infty} - \alpha \int_0^{\infty} f(x)\cos\alpha x dx$$ $$= -\alpha \mathscr{F}_c\left\{f(x)\right\} \qquad f(x) \to 0 \text{ as } x \to \infty$$ $$\mathscr{F}_s\left\{f'(x)\right\} = \int_0^{\infty} f'(x)\cos\alpha x dx = \int_0^{\infty} \cos\alpha x d\left(f(x)\right)$$ $$= \left[f(x)\cos\alpha x\right]_0^{\infty} + \alpha \int_0^{\infty} f(x)\sin\alpha x dx$$ $$= \alpha \mathscr{F}_s\left\{f(x)\right\} - f(0) \qquad f(x) \to 0 \text{ as } x \to \infty$$ 1 Fourier Transforms 2 BVP's in an Unbounded Region 20 / 27 王奕翔 DE Lecture 15 # Heat Equation in an Infinite Rod Solve $$u(x,t)$$: $ku_{xx}=u_t, \quad -\infty < x < \infty, \quad t>0$ subject to: $u(\pm \infty,t)=0, \quad u_x(\pm \infty,t)=0, \quad t>0$ $u(x,0)=f(x), \quad -\infty < x < \infty$ #### **Step 1**: Take the Fourier transform w.r.t. x: Let $u(x,t) \xrightarrow{\mathscr{F}} U(\alpha,t)$. The original problem becomes $$-k\alpha^2 U(\alpha,t) = \frac{dU}{dt}$$ subject to: $U(\alpha,0) = F(\alpha)$ **Note**: The condition $u(\pm \infty, t) = 0$, $u_x(\pm \infty, t) = 0$ is used to conclude that $u_{rr} \xrightarrow{\mathscr{F}} -\alpha^2 U(\alpha, t)$ 21 / 27 DE Lecture 15 # Heat Equation in an Infinite Rod Solve $$u(x,t): ku_{xx}=u_t, -\infty < x < \infty, t>0$$ subject to : $u(\pm \infty,t)=0, u_x(\pm \infty,t)=0, t>0$ $$u(x,0)=f(x), -\infty < x < \infty$$ ### **Step 2**: Solve $U(\alpha, t)$: $$-k\alpha^2 U(\alpha, t) = \frac{dU}{dt} \implies U(\alpha, t) = C(\alpha)e^{-k\alpha^2 t}.$$ Plug in $$U(\alpha,0)=F(\alpha)$$, we get $C(\alpha)=F(\alpha)$. Hence, $$U(\alpha, t) = F(\alpha)e^{-k\alpha^2t}$$. # Heat Equation in an Infinite Rod Solve $$u(x,t)$$: $ku_{xx}=u_t, \quad -\infty < x < \infty, \quad t>0$ subject to: $u(\pm \infty,t)=0, \quad u_x(\pm \infty,t)=0, \quad t>0$ $$u(x,0)=f(x), \quad -\infty < x < \infty$$ ### **Step 3**: Take inverse Fourier transform to find u(x, t): $$u(x,t) = \mathscr{F}^{-1} \left\{ U(\alpha,t) \right\} = \mathscr{F}^{-1} \left\{ F(\alpha) e^{-k\alpha^2 t} \right\}$$ $$= \boxed{\frac{1}{2\pi} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(x) e^{-i\alpha x} \, dx \right) e^{i\alpha x} e^{-k\alpha^2 t} \, d\alpha}$$ # Laplace's Equation in a Semi-Infinite Plate #### **Step 1**: Take the Fourier **cosine** transform w.r.t. *y*: Let $u(x,y) \xrightarrow{\mathscr{F}_c} U(x,\alpha)$. The original problem becomes $$\frac{d^2\,U}{dx^2}-\alpha^2\,U(x,\alpha)-\,u_y(x,0)=0\quad\text{s.t. }U(0,\alpha)=F(\alpha),\ U(a,\alpha)=G(\alpha)$$ **Note**: The condition $u(x,\infty)=u_y(x,\infty)=0$ is used to conclude that $u_{yy}\xrightarrow{\mathscr{F}_c}-\alpha^2\,U(x,\alpha)-u_y(x,0)$ 24 / 27 王奕翔 DE Lecture 15 # Laplace's Equation in a Semi-Infinite Plate ### **Step 2**: Solve $U(x,\alpha)$: $$\frac{d^2 U}{dx^2} - \alpha^2 U(x, \alpha) = 0 \implies U(x, \alpha) = C_1(\alpha) \cosh \alpha x + C_2(\alpha) \sinh \alpha x.$$ Plug in $$U(0,\alpha)=F(\alpha),\ U(a,\alpha)=G(\alpha)$$, we get $$C_1(\alpha) = F(\alpha), \quad C_2(\alpha) = \frac{G(\alpha) - F(\alpha) \cosh \alpha a}{\sinh \alpha a}.$$ $$\implies U(x, \alpha) = F(\alpha) \cosh \alpha x + \left(\frac{G(\alpha)}{\sinh \alpha a} - \frac{F(\alpha)}{\tanh \alpha a}\right) \sinh \alpha x.$$ # Laplace's Equation in a Semi-Infinite Plate ### **Step 3**: Take inverse Fourier cosine transform to find u(x, y): $$\begin{split} u(x,y) &= \mathscr{F}_c^{-1} \left\{ U(x,\alpha) \right\} \\ &= \mathscr{F}_c^{-1} \left\{ F(\alpha) \cosh \alpha x + \left(\frac{G(\alpha)}{\sinh \alpha a} - \frac{F(\alpha)}{\tanh \alpha a} \right) \sinh \alpha x \right\} \\ &= \left[\frac{1}{2\pi} \int_0^\infty \left\{ F(\alpha) \cosh \alpha x + \left(\frac{G(\alpha)}{\sinh \alpha a} - \frac{F(\alpha)}{\tanh \alpha a} \right) \sinh \alpha x \right\} \cos \alpha y \, d\alpha \right] \end{split}$$ where $F(\alpha) = \mathscr{F}_c \{f(y)\}$, and $G(\alpha) = \mathscr{F}_c \{g(y)\}$. 26 / 27 王奕翔 DE Lecture 15 ### Remarks - **1** Boundary conditions at $\pm \infty$, such as $u(\pm \infty, t) = u_x(\pm \infty, t) = 0$ and $u(x,\infty)=u_u(x,\infty)=0$, are used to guarantee that the Fourier transforms of the second-order partial derivates exist. - **2** Which transform to use? Suppose the unbounded range is on x. - If the range is $(-\infty, \infty)$, use Fourier transform. - If the range is $(0, \infty)$ and at 0 the given condition is on u, use Fourier sine transform. (Because $$\mathscr{F}_s \{f''(x)\} = -\alpha^2 \mathscr{F}_s \{f(x)\} + \alpha f(0)!$$) ■ If the range is $(0, \infty)$ and at 0 the given condition is on u_x , use Fourier sine transform. (Because $$\mathscr{F}_c \{ f''(x) \} = -\alpha^2 \mathscr{F}_c \{ f(x) \} - f'(0)!$$)