Chapter 12: Boundary-Value Problems in Rectangular Coordinates

王奕翔

Department of Electrical Engineering National Taiwan University

ihwang@ntu.edu.tw

December 21, 2013

In this lecture, we focus on solving some *classical* partial differential equations in **boundary-value problems**.

Instead of solving the general solutions, we are only interested in finding *useful* particular solutions.

We focus on linear second order PDE: (A, \dots, G) : functions of x, y

$$Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = G.$$

notation: for example, $u_{xy} := \frac{\partial^2 u}{\partial x \partial y}$.

Method: Separation of variables - convert a PDE into two ODE's

Types of Equations:

- Heat Equation
- Wave Equation
- Laplace Equation

Classification of Linear Second Order PDE

$$Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = G.$$

notation: for example, $u_{xy} := \frac{\partial^2 u}{\partial x \partial y}$.

1 Homogeneous vs. Nonhomogeneous

Homogeneous	\iff	G = 0
Nonhomogeneous	\iff	$G \neq 0.$

2 Hyperbolic, Parabolic, and Elliptic: A, B, C, \dots, G : constants,

Hyperbolic	$\iff B^2 - 4AC > 0$
Parabolic	$\iff B^2 - 4AC = 0$
Elliptic	$\iff B^2 - 4AC < 0$

Superposition Principle

Theorem

If $u_1(x, y), u_2(x, y), \ldots, u_k(x, y)$ are solutions of a homogeneous linear PDE, then a linear combination

$$u(x,y) := \sum_{n=1}^{k} c_n u_n(x,y)$$

is also a solution.

Note: We shall assume without rigorous argument that the linear combination can be an infinite series

$$u(x,y) := \sum_{n=1}^{\infty} c_n u_n(x,y)$$

1 Separation of Variables and Classical PDE's

2 Wave Equation

3 Laplace's Equation

Separation of Variables

To find a particular solution of an PDE, one method is **separation of** variables, that is, assume that the solution u(x, y) takes the form of a product of a *x*-function and a *y*-function:

$$u(x, y) = X(x) Y(y).$$

Then, with the following, *sometimes* the PDE can be converted into an ODE of X and an ODE of Y:

$$u_x = \frac{dX}{dx}Y = X'Y, \qquad u_y = X\frac{dY}{dy} = XY'$$
$$u_{xx} = \frac{d^2X}{dx^2}Y = X''Y, \qquad u_{yy} = X\frac{d^2Y}{dy^2} = XY'', \qquad u_{xy} = X'Y'$$

Note: Derivatives are with respect to different independent variables. For example, $X' := \frac{dX}{dx}$.

Convert a PDE into Two ODE's

Example

Use separation of variables to convert the PDE below into two ODE's.

$$x^{2}u_{xx} + (x+1)u_{y} + (x+xy)u = 0$$

With u(x, y) = X(x) Y(y), the original PDE becomes

$$\begin{aligned} x^2 X'' Y + (x+1)XY' + (x+1)yXY &= 0 \\ \implies x^2 X'' Y &= -(x+1)X(Y'+yY) \\ \implies \frac{x^2 X''}{(x+1)X} &= -\frac{Y'}{Y} - y \quad = \lambda \end{aligned}$$
 separation constant

Left-hand side is a function of x, independent of y; Right-hand side is a function of y, independent of x. Hence, the above is equal to something independent of x and y

Convert a PDE into Two ODE's

Example

Use separation of variables to convert the PDE below into two ODE's.

$$x^{2}u_{xx} + (x+1)u_{y} + (x+xy)u = 0$$

With u(x, y) = X(x) Y(y), the original PDE becomes

$$\begin{aligned} x^2 X'' Y + (x+1)XY' + (x+1)yXY &= 0 \\ \Longrightarrow x^2 X'' Y &= -(x+1)X(Y'+yY) \\ \Longrightarrow \frac{x^2 X''}{(x+1)X} &= -\frac{Y'}{Y} - y \quad = \lambda \\ \Rightarrow \begin{cases} x^2 X''(x) - \lambda(x+1)X(x) &= 0 \\ Y'(y) + (y+\lambda)Y(y) &= 0 \end{cases} \end{aligned}$$

Some Remarks

- The method of separation of variables can only solve for some linear second order PDE's, not all of them.
- 2 For the PDE's considered in this lecture, the method works.
- 3 The method may work for both homogeneous (G = 0) and nonhomogeneous ($G \neq 0$) PDE's

$$Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = G.$$

Three Classical PDE's

In this lecture we focus on solving boundary-value problems of the following three classical PDE's that arise frequently in physics, mechanics, and engineering:

1 (One-Dimensional) Heat Equation/Diffusion Equation

$$ku_{xx} = u_t, \ k > 0$$

2 (One-Dimensional) Wave Equation/Telegraph Equation

$$a^2 u_{xx} = u_{tt}$$

3 (Two-Dimensional) Laplace Equation

$$u_{xx} + u_{yy} = 0$$

Heat Transfer within a Thin Rod: Heat Equation

Assumptions:

- Heat only flows in *x*-direction.
- No heat escapes from the surface.
- No heat is generated in the rod.
- **Rod** is homogeneous with density ρ .

Let u(x, t) denote the temperature of the rod at location x at time t. Consider the quantity of heat with [x, x + dx]: (γ : 比熱)

$$dQ = \gamma \left(\rho A dx\right) u \implies Q_x = \gamma \rho A u \implies Q_{xt} = \gamma \rho A u_t$$

Heat transfer rate through the cross section $= -KAu_x$, and hence the net heat rate inside [x, x + dx] is $dQ_t = -KAu_x(x, t) - (-KAu_x(x + dx, t))$

$$dQ_t = KAu(u_x(x + dx, t) - u_x(x, t)) = KAu_{xx}dx$$
$$\implies Q_{tx} = KAu_{xx}$$

Heat Transfer within a Thin Rod: Heat Equation

Assumptions:

- Heat only flows in *x*-direction.
- No heat escapes from the surface.
- No heat is generated in the rod.
- **Rod** is homogeneous with density ρ .

Let u(x, t) denote the temperature of the rod at location x at time t.

Hence,

$$\begin{cases} Q_{xt} = \gamma \rho A u_t \\ Q_{tx} = K A u_{xx} \end{cases} \implies \gamma \rho A u_t = K A u_{xx} \implies \left(\frac{K}{\gamma \rho}\right) u_{xx} = u_t \\ \implies \boxed{k u_{xx} = u_t, \ k > 0} \end{cases}$$

Heat Equation: Initial and Boundary Conditions

Initial Condition:

Provides the spatial distribution of the temperature at time t = 0.

$$u(x,0) = f(x), \ 0 < x < L$$

Boundary Conditions:

At the end points x = 0 and x = L, give the constraints on

■ *u*: (Dirchlet condition), for example, (*u*₀: constant)

 $u(L, t) = u_0$ Temperature at the right end is held at constant.

■ *u_x*: (Neumann condition), for example,

 $u_x(L, t) = 0$ The right end is insulated.

• $u_x + hu$: (Robin condition), for example, ($h > 0, u_m$: constants)

 $u_x(L,t) = -h \{ u(L,t) - u_m \}$ Heat is lost from the right end.

Heat Equation: Boundary-Value Problems

- A problem involving both initial and boundary conditions is called a boundary-value problem
- At the two boundaries x − 0 and x = L, one can use different kinds of conditions.

Examples:

$ku_{xx} = u_t,$	0 < x < L, t > 0		Heat equation
$u(0,t)=u_0,$	$u_x(L, t) = -h \{ u(L, t) - u_m \},$	t > 0	Boundary condition
u(x,0) = f(x),	0 < x < L		Initial condition

$ku_{xx} = u_t,$	0 < x < L,	t > 0	Heat equation
$u_x(0,t)=0,$	u(L,t)=0,	t > 0	Boundary condition
u(x,0) = f(x)	, 0 < x < L		Initial condition

Dynamics of a String Fixed at Two Ends: Wave Equation

Assumptions:

- No external force.
- Tension force is large compared to gravity and is the same at all points.
- Slope of the curve is very small at all points.
- Vertical displacement \ll string length.
- String has mass per unit length ρ.

Let u(x, t) denote the vertical position (displacement) of the string at location x at time t.

Consider the string in [x, x + dx]. Net vertical force is

$$T(\sin \theta_2 - \sin \theta_1) \approx T(\tan \theta_2 - \tan \theta_1)$$

= $T\{u_x(x + dx, t) - u_x(x, t)\}$
= $Tu_{xx}dx$

Dynamics of a String Fixed at Two Ends: Wave Equation

Assumptions:

- No external force.
- Tension force is large compared to gravity and is the same at all points.
- Slope of the curve is very small at all points.
- Vertical displacement ≪ string length.
- String has mass per unit length ρ .

Let u(x, t) denote the vertical position (displacement) of the string at location x at time t.

Since the slope is small, the mass $\approx \rho \mathit{dx}.$ Hence

$$Tu_{xx} dt = (\rho dt) u_{tt} \implies \frac{T}{\rho} u_{xx} = u_{tt}$$
$$\implies \boxed{a^2 u_{xx} = u_{tt}}$$

Wave Equation: Initial and Boundary Conditions

Initial Conditions:

Provide the initial displacement u and velocity u_t at time t = 0.

$$u(x,0) = f(x), \ u_t(x,0) = g(x), \ 0 < x < L$$

Boundary Conditions:

At the end points x = 0 and x = L, give the constraints on u, u_x , or $u_x + hu$. Usually in the scenario of strings, the boundary conditions are

u(0, t) = 0, u(0, L) = 0, t > 0 Both ends are fixed.

 $u_x(0,t)=0, \ u_x(0,L)=0, \ t>0$ Free-ends condition

Wave Equation: Boundary-Value Problems

(a) Segment of string

Both ends are fixed:

$a^2 u_{xx} = u_{tt}, 0 < x < L, t > 0$	Wave equation
u(0, t) = 0, u(L, t) = 0, t > 0	Boundary condition
$u(x,0) = f(x), u_t(x,0) = g(x), 0 < x < L$	Initial condition

Free Ends:

$a^2 u_{xx} =$	$u_{tt},$	0 < x < L,	t >	0	Wave equation
$u_x(0,t) =$	0,	$u_x(L,t)=0,$	t >	0	Boundary condition
$\omega(m,0)$	f(m)	(m, 0)	~(~)	0 < m < I	Initial

 $u(x,0) = f(x), \quad u_t(x,0) = g(x), \quad 0 < x < L$ Initial condition

Laplace's Equation

- Laplace's equation usually occurs in time-independent problems involving potentials.
- Its solution can also be interpreted as a steady-state temperature distribution.
- Two-dimensional Laplace Equation

$$\nabla^2 u := u_{xx} + u_{yy} = 0$$

Three-dimensional Laplace Equation

$$\nabla^2 u := u_{xx} + u_{yy} + u_{zz} = 0$$

Laplace's Equation: Boundary Conditions

Boundary Conditions:

In the x-direction, at the end points x = 0 and x = a, give the constraints on u, u_x , or $u_x + hu$.

In the y-direction, at the end points y = 0 and y = b, give the constraints on u, u_y , or $u_y + hu$.

Examples:

Both ends in x are insulated

$$u_x(0, y) = 0, \quad u_x(a, y) = 0$$

Temperatures of two ends in y are held at different distributions

$$u(x, 0) = f(x), \quad u(x, b) = g(x)$$

Laplace's Equation: Boundary-Value Problems

Example:

21 / 50

$$\begin{split} & u_{xx} + u_{yy} = 0, \quad 0 < x < a, \quad 0 < y < b \\ & u_x(0, y) = 0, \quad u_x(a, y) = 0, \quad 0 < y < b \\ & u(x, 0) = f(x), \quad u(x, b) = g(x), \quad 0 < x < a \end{split}$$

Modifications of Heat and Wave Equations

In the derivation of the heat equation and the wave equation, we assume that there is no internal or external influences. For example, *no heat escapes from the surface, no heat is generated in the rod, no external force act on the string, etc.*

Taking external and internal influences into account, more general forms of the heat equation and the wave equation are the following:

$$ku_{xx} + G(x, t, u, u_x) = u_t$$
 Heat Equation
 $a^2u_{xx} + F(x, t, u, u_t) = u_{tt}$ Wave Equation

Example:

 $\begin{array}{ll} ku_{xx}-h(u-u_m)=u_t & \quad \mbox{heat transfers from the surface to an environment} \\ a^2u_{xx}+f(x,t)=u_{tt} & \quad \mbox{External force } f \mbox{ acts on the string} \end{array}$

Homogeneous vs. Nonhomogeneous Boundary Conditions

Homogeneous Boundary Condition:

$$u_x(0, y) = 0, \quad u_x(a, y) = 0, \quad u(x, 0) = 0, \quad u(0, L) = 0$$

Nonhomogeneous Boundary Condition:

$$u_x(0, y) = f(y), \quad u_x(a, y) = g(y), \quad u(x, L) = u_m$$

Typically, when using separation of variables, start with the independent variable associated with homogeneous boundary conditions, to determine the value of the **separation constant**.

1 Separation of Variables and Classical PDE's

2 Wave Equation

3 Laplace's Equation

Wave Equation: a Boundary-Value Problem

$$\begin{array}{lll} \mbox{Solve } u(x,t): & au_{xx} = u_{tt}, & 0 < x < L, & t > 0 \\ \mbox{subject to}: & u(0,t) = 0, & u(L,t) = 0, & t > 0 \\ & u(x,0) = f(x), & u_t(x,0) = g(x), & 0 < x < L \end{array}$$

We focus on solving the above BVP (both ends are fixed).

Step 1: Separation of variables: Assume that the solution u(x, t) = X(x)T(t), $X, T \neq 0$. Then,

$$a^{2}u_{xx} = u_{tt} \implies a^{2}X''T = XT'' \implies \frac{X''}{X} = \frac{T''}{a^{2}T} = -\lambda$$
$$\implies \begin{cases} X'' + \lambda X = 0\\ T'' + a^{2}\lambda T = 0 \end{cases}$$

The 2 homogeneous boundary conditions become X(0) = X(L) = 0.

Solve in the x-Dimension and Find λ

$$\begin{split} \text{Solve}: \quad X'' + \lambda X &= 0, \quad T'' + a^2 \lambda \, T = 0 \\ \text{subject to}: \quad X(0) &= 0, \quad X(L) = 0 \\ \quad X(x) \, T(0) &= f(x), \quad X(x) \, T'(0) = g(x), \quad 0 < x < L \end{split}$$

Step 2: λ remains to be determined. What values should λ take?

1
$$\lambda = 0$$
: $X(x) = c_1 + c_2 x$. $X(0) = X(L) = 0 \implies c_1 = c_2 = 0$.

2
$$\lambda = -\alpha^2 < 0$$
: $X(x) = c_1 e^{-\alpha x} + c_2 e^{\alpha x}$.
Plug in $X(0) = X(L) = 0$, we get $c_1 = c_2 = 0$.
3 $\lambda = \alpha^2 > 0$: $X(x) = c_1 \cos(\alpha x) + c_2 \sin(\alpha x)$.
Plug in $X(0) = X(L) = 0$, we get $c_1 = 0$, and $c_2 \sin(\alpha L) = 0$. Hence, $c_2 \neq 0$ only if $\alpha L = n\pi$.

Since
$$X \neq 0$$
, pick $\lambda = \frac{n^2 \pi^2}{L^2}$, $n = 1, 2, ... \implies X(x) = c_2 \sin \frac{n\pi}{L} x$.

Solve in *t*-Dimension and Superposition

$$\begin{split} \text{Solve}: \quad X'' + \lambda X &= 0, \quad T'' + a^2 \lambda \, T = 0 \\ \text{subject to}: \quad X(0) &= 0, \quad X(L) = 0 \\ \quad X(x) \, T(0) &= f(x), \quad X(x) \, T'(0) = g(x), \quad 0 < x < L \end{split}$$

Step 3: Once we fix $\lambda = \frac{n^2 \pi^2}{L^2}$, $n = 1, 2, \ldots$, we obtain

$$X(x) = c_2 \sin\left(\frac{n\pi}{L}x\right), \quad T(t) = c_3 \cos\left(\frac{n\pi a}{L}t\right) + c_4 \sin\left(\frac{n\pi a}{L}t\right)$$
$$\implies u_n(x,t) = \left\{A_n \cos\left(\frac{n\pi a}{L}t\right) + B_n \sin\left(\frac{n\pi a}{L}t\right)\right\} \sin\left(\frac{n\pi}{L}x\right),$$
$$(A_n := c_2 c_3, \ B_n := c_2 c_4)$$
$$\implies u(x,t) := \sum_{n=1}^{\infty} u_n(x,t) \text{ is a solution, by the superposition principle.}$$

Plug in Initial Condition, Revoke Fourier Series, and Done

$$\begin{aligned} & \text{Solve } u(x,t): \quad a u_{xx} = u_{tt}, \quad 0 < x < L, \quad t > 0 \\ & \text{subject to}: \quad u(0,t) = 0, \quad u(L,t) = 0, \quad t > 0 \\ & u(x,0) = f(x), \quad u_t(x,0) = g(x), \quad 0 < x < L \end{aligned}$$

Step 4: Plug in the initial conditions and find $\{A_n, B_n \mid n = 1, 2, ...\}$.

$$u(x,0) = f(x), \quad u(x,t) = \sum_{n=1}^{\infty} \left\{ A_n \cos\left(\frac{n\pi a}{L}t\right) + B_n \sin\left(\frac{n\pi a}{L}t\right) \right\} \sin\left(\frac{n\pi}{L}x\right)$$
$$\implies f(x) = \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi}{L}x\right), \quad 0 < x < L$$

From the Fourier sine series expansion on (0, L), we get

$$A_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi}{L}x\right) \, dx.$$

Plug in Initial Condition, Revoke Fourier Series, and Done

$$\begin{split} \text{Solve } & u(x,t): \quad a u_{xx} = u_{tt}, \quad 0 < x < L, \quad t > 0 \\ \text{subject to}: \quad u(0,t) = 0, \quad u(L,t) = 0, \quad t > 0 \\ & u(x,0) = f(x), \quad u_t(x,0) = g(x), \quad 0 < x < L \end{split}$$

Step 4: Plug in the initial conditions and find $\{A_n, B_n \mid n = 1, 2, ...\}$.

$$u_t(x,0) = g(x), \quad u(x,t) = \sum_{n=1}^{\infty} \left\{ A_n \cos\left(\frac{n\pi a}{L}t\right) + B_n \sin\left(\frac{n\pi a}{L}t\right) \right\} \sin\left(\frac{n\pi}{L}x\right)$$
$$\implies g(x) = \sum_{n=1}^{\infty} B_n \frac{n\pi a}{L} \sin\left(\frac{n\pi}{L}x\right), \quad 0 < x < L$$

From the Fourier sine series expansion on (0, L), we get

$$B_n \frac{n\pi a}{L} = \frac{2}{L} \int_0^L g(x) \sin\left(\frac{n\pi}{L}x\right) dx \implies B_n = \frac{2}{n\pi a} \int_0^L g(x) \sin\left(\frac{n\pi}{L}x\right) dx.$$

Final Solution

$$\begin{array}{lll} \mbox{Solve } u(x,t): & au_{xx} = u_{tt}, & 0 < x < L, & t > 0 \\ \mbox{subject to}: & u(0,t) = 0, & u(L,t) = 0, & t > 0 \\ & u(x,0) = f(x), & u_t(x,0) = g(x), & 0 < x < L \end{array}$$

Step 5: The final solution is

$$u(x,t) = \sum_{n=1}^{\infty} \left\{ A_n \cos\left(\frac{n\pi a}{L}t\right) + B_n \sin\left(\frac{n\pi a}{L}t\right) \right\} \sin\left(\frac{n\pi}{L}x\right)$$
$$= \sum_{n=1}^{\infty} C_n \sin\left(\frac{n\pi a}{L}t + \phi_n\right) \sin\left(\frac{n\pi}{L}x\right)$$
$$A_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi}{L}x\right) dx, \quad B_n = \frac{2}{n\pi a} \int_0^L g(x) \sin\left(\frac{n\pi}{L}x\right) dx$$
$$C_n = \sqrt{A_n^2 + B_n^2}, \quad \sin\phi_n = \frac{A_n}{C_n}, \ \cos\phi_n = \frac{B_n}{C_n}$$

Standing Waves

The final solution

$$u(x,t) = \sum_{n=1}^{\infty} C_n \sin\left(\frac{n\pi a}{L}t + \phi_n\right) \sin\left(\frac{n\pi}{L}x\right)$$

is a linear combination of standing waves or normal modes

$$u_n(x,t) = C_n \sin\left(\frac{n\pi a}{L}t + \phi_n\right) \sin\left(\frac{n\pi}{L}x\right), \ n = 1, 2, \dots$$

For a normal mode n, at a fixed location x, the string moves with

• time-varying amplitude $C_n \sin\left(\frac{n\pi}{L}x\right)$

frequency
$$f_n := \frac{n\pi a/L}{2\pi} = \frac{na}{2L}$$

Fundamental Frequency: $f_1 := \frac{\pi a/L}{2\pi} = \frac{a}{2L}$

(a) First standing wave

(b) Second standing wave

1 Separation of Variables and Classical PDE's

2 Wave Equation

3 Laplace's Equation

Laplace's Equation: a Boundary-Value Problem

$$\begin{aligned} & \text{Solve } u(x,y): \quad u_{xx} + u_{yy} = 0, \quad 0 < x < a, \quad 0 < y < b \\ & \text{subject to}: \quad u_x(0,y) = 0, \quad u_x(a,y) = 0, \quad 0 < y < b \\ & u(x,0) = 0, \quad u(x,b) = f(x), \quad 0 < x < a \end{aligned}$$

We focus on solving the above BVP (both ends x = 0 and x = a are insulated).

Step 1: Separation of variables: Assume that the solution u(x, y) = X(x) Y(y), $X, Y \neq 0$. Then,

$$u_{xx} + u_{yy} = 0 \implies X''Y + XY'' = 0 \implies \frac{X''}{X} = -\frac{Y''}{Y} = -\lambda$$
$$\implies \begin{cases} X'' + \lambda X = 0\\ Y'' - \lambda Y = 0 \end{cases}$$

The 3 homogeneous boundary conditions become X'(0) = X'(a) = Y(0) = 0.

Solve in the x-Dimension and Find λ

$$\begin{array}{lll} {\rm Solve}: & X'' + \lambda X = 0, & Y'' - \lambda \, Y = 0 \\ {\rm subject \ to}: & X'(0) = 0, & X'(a) = 0 \\ & Y(0) = 0, & X(x) \, Y(b) = f(x), & 0 < x < a \end{array}$$

Step 2: λ remains to be determined. What values should λ take?

1
$$\lambda = 0$$
: $X(x) = c_1 + c_2 x$. $X'(0) = X'(a) = 0 \implies c_2 = 0$.
2 $\lambda = -\alpha^2 < 0$: $X(x) = c_1 e^{-\alpha x} + c_2 e^{\alpha x}$.
Plug in $X'(0) = X'(a) = 0$, we get $c_1 = c_2 = 0$.
3 $\lambda = \alpha^2 > 0$: $X(x) = c_1 \cos(\alpha x) + c_2 \sin(\alpha x)$.
Plug in $X'(0) = X'(a) = 0$, we get $c_2 = 0$, and $c_1 \alpha \sin(\alpha a) = 0$.
Hence, $c_1 \neq 0$ only if $\alpha a = n\pi$.

Since
$$X \neq 0$$
, pick $\lambda = \frac{n^2 \pi^2}{a^2}$, $n = 0, 1, 2, ... \implies X(x) = c_1 \cos\left(\frac{n\pi}{a}x\right)$.

Solve in *y*-Dimension and Superposition

$$\begin{array}{lll} \mbox{Solve}: & X'' + \lambda X = 0, & Y'' - \lambda \, Y = 0 \\ \mbox{subject to}: & X'(0) = 0, & X'(a) = 0 \\ & Y(0) = 0, & X(x) \, Y(b) = f(x), & 0 < x < a \end{array}$$

Step 3: Once we fix $\lambda = \frac{n^2 \pi^2}{a^2}$, $n = 0, 1, 2, \dots$, we obtain $X(x) = c_1 \cos\left(\frac{n\pi}{a}x\right)$

$$Y(y) = \begin{cases} \varphi + c_4 y, & n = 0\\ c_3 \cosh\left(\frac{n\pi}{a}y\right) + c_4 \sinh\left(\frac{n\pi}{a}y\right), & n \ge 1 \end{cases} \quad (Y(0) = 0 \implies c_3 = 0) \\ \Longrightarrow \ u_n(x, y) = \begin{cases} A_0 y, & n = 0\\ A_n \cos\left(\frac{n\pi}{a}x\right) \sinh\left(\frac{n\pi}{a}y\right), & n \ge 1 \end{cases}, \quad (A_n := c_1 c_4) \\ \Longrightarrow \ u(x, y) := \sum_{n=0}^{\infty} u_n(x, y) \text{ is a solution, by the superposition principle.} \end{cases}$$

Plug in Initial Condition, Revoke Fourier Series, and Done

$$\begin{aligned} & \text{Solve } u(x,y): \quad u_{xx} + u_{yy} = 0, \quad 0 < x < a, \quad 0 < y < b \\ & \text{subject to}: \quad u_x(0,y) = 0, \quad u_x(a,y) = 0, \quad 0 < y < b \\ & u(x,0) = 0, \quad u(x,b) = f(x), \quad 0 < x < a \end{aligned}$$

Step 4: Plug in the initial conditions and find $\{A_n \mid n = 1, 2, ...\}$.

$$u(x,b) = f(x), \quad u(x,y) = A_0 y + \sum_{n=1}^{\infty} A_n \cos\left(\frac{n\pi}{a}x\right) \sinh\left(\frac{n\pi}{a}y\right)$$
$$\implies f(x) = A_0 b + \sum_{n=1}^{\infty} A_n \cos\left(\frac{n\pi}{a}x\right) \sinh\left(\frac{n\pi}{a}b\right), \quad 0 < x < a$$

From the Fourier cosine series expansion on (0, a), we get

$$2A_0 b = \frac{2}{a} \int_0^a f(x) dx, \quad A_n \sinh\left(\frac{n\pi}{a}b\right) = \frac{2}{a} \int_0^a f(x) \cos\left(\frac{n\pi}{a}x\right) dx$$

Final Solution

$$\begin{aligned} & \text{Solve } u(x,y): \quad u_{xx} + u_{yy} = 0, \quad 0 < x < a, \quad 0 < y < b \\ & \text{subject to}: \quad u_x(0,y) = 0, \quad u_x(a,y) = 0, \quad 0 < y < b \\ & u(x,0) = 0, \quad u(x,b) = f(x), \quad 0 < x < a \end{aligned}$$

Step 5: The final solution is

$$u(x, y) = A_0 y + \sum_{n=1}^{\infty} A_n \cos\left(\frac{n\pi}{a}x\right) \sinh\left(\frac{n\pi}{a}y\right)$$
$$A_0 = \frac{1}{ab} \int_0^a f(x) \, dx$$
$$A_n = \frac{2}{a \sinh\left(\frac{n\pi}{a}b\right)} \int_0^a f(x) \cos\left(\frac{n\pi}{a}x\right) \, dx, \quad n \ge 1$$

Superposition Principle

(So far) Key steps in solving a boundary-value problem of a PDE using separation of variables:

- Identify for which "dimension" (independent variable) (in our previous example, x), the given conditions are all homogeneous.
- Translate these homogeneous conditions into conditions on the single-argument function X(x)).
- Solve the associated ODE (X" + λX = 0) under these conditions, and find the value of the separation constant λ that leads to non-trivial solutions.

Question: What if all dimensions contain some nonhomogeneous condition?

$$\begin{array}{lll} \mbox{Solve } u(x,y): & u_{xx} + u_{yy} = 0, & 0 < x < a, & 0 < y < b \\ \mbox{subject to}: & u(0,y) = F(y), & u(a,y) = G(y), & 0 < y < b \\ & u(x,0) = f(x), & u(x,b) = g(x), & 0 < x < a \end{array}$$

$$\begin{aligned} & \text{Solve } u(x,y): \quad u_{xx} + u_{yy} = 0, \quad 0 < x < a, \quad 0 < y < b \\ & \text{subject to}: \quad u(0,y) = F(y), \quad u(a,y) = G(y), \quad 0 < y < b \\ & u(x,0) = f(x), \quad u(x,b) = g(x), \quad 0 < x < a \end{aligned}$$

The solution $u(x, y) = u_1(x, y) + u_2(x, y)$, where u_1, u_2 are the solutions of the following 2 BVP's respectively.

$$\begin{split} \text{Solve } & u_1(x,y): \quad u_{xx} + u_{yy} = 0, \quad 0 < x < a, \quad 0 < y < b \\ \text{subject to}: \quad u(0,y) = 0, \quad u(a,y) = 0, \quad 0 < y < b \\ & u(x,0) = f(x), \quad u(x,b) = g(x), \quad 0 < x < a \end{split}$$

$$\begin{aligned} & \text{Solve } u_2(x,y): \quad u_{xx} + u_{yy} = 0, \quad 0 < x < a, \quad 0 < y < b \\ & \text{subject to}: \quad u(0,y) = F(y), \quad u(a,y) = G(y), \quad 0 < y < b \\ & u(x,0) = 0, \quad u(x,b) = 0, \quad 0 < x < a \end{aligned}$$

Superposition Principle

$$u(x, \cdot) = g(x)$$

$$u(x, \cdot) = g(x)$$

$$u(x, \cdot) = g(x)$$

$$u(\cdot, y) = 0$$

$$\nabla^{2} u_{1} = 0$$

$$u(x, \cdot) = f(x)$$

$$u(x, \cdot) = f(x)$$

$$u(x, \cdot) = f(x)$$

$$u(x, \cdot) = 0$$

$$u(x, \cdot) = f(x)$$

$$u(\cdot, y) = F(y)$$

$$\nabla^{2} u_{2} = 0$$

$$u(\cdot, y) = G(y)$$

$$u(x, \cdot) = 0$$

Superposition Principle

$$u_{x}(x,\cdot) = g(x)$$

$$u_{x}(x,\cdot) = g(x)$$

$$u_{x}(x,\cdot) = g(x)$$

$$u_{x}(x,\cdot) = g(x)$$

$$u_{x}(x,\cdot) = f(x)$$

$$u(x,\cdot) = f(x)$$

$$u(x,\cdot) = f(x)$$

$$u_{x}(x,\cdot) = 0$$

$$u_{y}(\cdot,y) = F(y)$$

$$\nabla^{2} u_{2} = 0$$

$$u(\cdot,y) = G(y)$$

$$u(x,\cdot) = 0$$

Semi-Finte Plate

$$u = 0$$

$$\nabla^{2}u = 0$$

$$u = 0$$

$$u = f(x)$$

Semi-Finte Plate

$$\begin{aligned} & \text{Solve } u(x,y): \quad u_{xx} + u_{yy} = 0, \quad 0 < x < a, \quad y > 0 \\ & \text{subject to}: \quad u(0,y) = 0, \quad u(a,y) = 0, \quad y > 0 \\ & \quad u(x,0) = f(x), \quad |u(x,\infty)| < \infty, \quad 0 < x < a \end{aligned}$$

Following the same steps as before (setting u(x, y) = X(x) Y(y)), we can convert the original problem into

Step 1: First we solve $X(x) = c_2 \sin\left(\frac{n\pi}{a}x\right)$ and find the possible $\lambda = \frac{n^2 \pi^2}{a^2}$, $n = 1, 2, \ldots$

Semi-Finte Plate

Step 1: First we solve $X(x) = c_2 \sin\left(\frac{n\pi}{a}x\right) \left(\lambda = \frac{n^2\pi^2}{a^2}\right), n = 1, 2, \dots$ **Step 2**: Next we solve $Y(y) = c_3 e^{\frac{n\pi}{a}y} + c_4 c_3 e^{-\frac{n\pi}{a}y}$. By the condition $|Y(\infty)| < \infty$, we have $c_3 = 0$. Hence,

$$u(x, y) = \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi}{a}x\right) e^{-\frac{n\pi}{a}y}.$$

Semi-Finte Plate

Final Solution:

$$u(x,y) = \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi}{a}x\right) e^{-\frac{n\pi}{a}y}.$$

By the condition u(x,0) = f(x), 0 < x < a, we have

$$f(x) = \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi}{a}x\right) \implies A_n = \frac{2}{a} \int_0^a f(x) \sin\left(\frac{n\pi}{a}x\right) \, dx.$$

1 Separation of Variables and Classical PDE's

2 Wave Equation

3 Laplace's Equation

48 / 50

Short Recap

- Method of Separation of Variables: Convert PDE into two ODE's
- Solve the ODE with homogeneous boundary conditions first, to determine the separation constant
- Fourier Series to determine the undetermined coefficients
- Heat Equation, Wave Equation, Laplace's Equation
- Superposition Principle

Self-Practice Exercises

12-1: 9, 15, 17, 22

12-2: 1, 3, 7, 11

12-4: 3, 7, 9, 11, 14

12-5: 5, 7, 12, 15, 19