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Separation of Variables and Classical PDE’s
Wave Equation

Laplace’s Equation
Summary

In this lecture, we focus on solving some classical partial differential
equations in boundary-value problems.
Instead of solving the general solutions, we are only interested in finding
useful particular solutions.
We focus on linear second order PDE: (A, · · · ,G: functions of x, y)

Auxx + Buxy + Cuyy + Dux + Euy + Fu = G.

notation: for example, uxy := ∂2u
∂x ∂y .

Method: Separation of variables – convert a PDE into two ODE’s
Types of Equations:

Heat Equation
Wave Equation
Laplace Equation
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Classification of Linear Second Order PDE

Auxx + Buxy + Cuyy + Dux + Euy + Fu = G.

notation: for example, uxy := ∂2u
∂x ∂y .

1 Homogeneous vs. Nonhomogeneous

Homogeneous ⇐⇒ G = 0

Nonhomogeneous ⇐⇒ G ̸= 0.

2 Hyperbolic, Parabolic, and Elliptic: A,B,C, · · · ,G: constants,

Hyperbolic ⇐⇒ B2 − 4AC > 0

Parabolic ⇐⇒ B2 − 4AC = 0

Elliptic ⇐⇒ B2 − 4AC < 0
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Superposition Principle

Theorem
If u1(x, y), u2(x, y), . . . , uk(x, y) are solutions of a homogeneous linear
PDE, then a linear combination

u(x, y) :=
k∑

n=1

cnun(x, y)

is also a solution.

Note: We shall assume without rigorous argument that the linear
combination can be an infinite series

u(x, y) :=
∞∑

n=1

cnun(x, y)
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1 Separation of Variables and Classical PDE’s

2 Wave Equation

3 Laplace’s Equation

4 Summary
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Separation of Variables

To find a particular solution of an PDE, one method is separation of
variables, that is, assume that the solution u(x, y) takes the form of a
product of a x-function and a y-function:

u(x, y) = X(x)Y(y).

Then, with the following, sometimes the PDE can be converted into an
ODE of X and an ODE of Y:

ux =
dX
dx Y = X ′Y, uy = XdY

dy = XY ′

uxx =
d2X
dx2 Y = X ′′Y, uyy = Xd2Y

dy2 = XY ′′, uxy = X ′Y ′

Note: Derivatives are with respect to different independent variables.
For example, X ′ :=

dX
dx .
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Convert a PDE into Two ODE’s

Example
Use separation of variables to convert the PDE below into two ODE’s.

x2uxx + (x + 1)uy + (x + xy)u = 0

With u(x, y) = X(x)Y(y), the original PDE becomes

x2X ′′Y + (x + 1)XY ′ + (x + 1)yXY = 0

=⇒ x2X ′′Y = −(x + 1)X(Y ′ + yY)

=⇒ x2X ′′

(x + 1)X = −Y ′

Y − y = λ separation constant

Left-hand side is a function of x, independent of y; Right-hand side is a
function of y, independent of x. Hence, the above is equal to something
independent of x and y
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Convert a PDE into Two ODE’s

Example
Use separation of variables to convert the PDE below into two ODE’s.

x2uxx + (x + 1)uy + (x + xy)u = 0

With u(x, y) = X(x)Y(y), the original PDE becomes

x2X ′′Y + (x + 1)XY ′ + (x + 1)yXY = 0

=⇒ x2X ′′Y = −(x + 1)X(Y ′ + yY)

=⇒ x2X ′′

(x + 1)X = −Y ′

Y − y = λ separation constant

=⇒
{

x2X ′′(x)− λ(x + 1)X(x) = 0

Y ′(y) + (y + λ)Y(y) = 0
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Some Remarks

1 The method of separation of variables can only solve for some linear
second order PDE’s, not all of them.

2 For the PDE’s considered in this lecture, the method works.

3 The method may work for both homogeneous (G = 0) and
nonhomogeneous (G ̸= 0) PDE’s

Auxx + Buxy + Cuyy + Dux + Euy + Fu = G.
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Three Classical PDE’s

In this lecture we focus on solving boundary-value problems of the
following three classical PDE’s that arise frequently in physics,
mechanics, and engineering:

1 (One-Dimensional) Heat Equation/Diffusion Equation

kuxx = ut, k > 0

2 (One-Dimensional) Wave Equation/Telegraph Equation

a2uxx = utt

3 (Two-Dimensional) Laplace Equation

uxx + uyy = 0
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Heat Transfer within a Thin Rod: Heat Equation

variables. If you compare (1)–(3) with the linear form in Theorem 12.1.1 (with t play-
ing the part of the symbol y), observe that the heat equation (1) is parabolic, the wave
equation (2) is hyperbolic, and Laplace’s equation is elliptic. This observation will be
important in Chapter 15.

Heat Equation Equation (1) occurs in the theory of heat flow—that is, heat
transferred by conduction in a rod or in a thin wire. The function u(x, t) represents
temperature at a point x along the rod at some time t. Problems in mechanical vibra-
tions often lead to the wave equation (2). For purposes of discussion, a solution
u(x, t) of (2) will represent the displacement of an idealized string. Finally, a solution
u(x, y) of Laplace’s equation (3) can be interpreted as the steady-state (that is, time-
independent) temperature distribution throughout a thin, two-dimensional plate.

Even though we have to make many simplifying assumptions, it is worthwhile
to see how equations such as (1) and (2) arise.

Suppose a thin circular rod of length L has a cross-sectional area A and coin-
cides with the x-axis on the interval [0, L]. See Figure 12.2.1. Let us suppose the
following:

• The flow of heat within the rod takes place only in the x-direction.
• The lateral, or curved, surface of the rod is insulated; that is, no heat

escapes from this surface.
• No heat is being generated within the rod.
• The rod is homogeneous; that is, its mass per unit volume r is a constant.
• The specific heat g and thermal conductivity K of the material of the rod are

constants.

To derive the partial differential equation satisfied by the temperature u(x, t), we
need two empirical laws of heat conduction:

(i) The quantity of heat Q in an element of mass m is

, (4)

where u is the temperature of the element.

(ii) The rate of heat flow Qt through the cross-section indicated in
Figure 12.2.1 is proportional to the area A of the cross section and
the partial derivative with respect to x of the temperature:

. (5)

Since heat flows in the direction of decreasing temperature, the minus sign in (5) is
used to ensure that Qt is positive for ux ! 0 (heat flow to the right) and negative for
ux " 0 (heat flow to the left). If the circular slice of the rod shown in Figure 12.2.1
between x and x # $x is very thin, then u(x, t) can be taken as the approximate tem-
perature at each point in the interval. Now the mass of the slice is m % r(A $x), and
so it follows from (4) that the quantity of heat in it is

. (6)

Furthermore, when heat flows in the positive x-direction, we see from (5) that heat
builds up in the slice at the net rate

. (7)

By differentiating (6) with respect to t, we see that this net rate is also given by

. (8)

Equating (7) and (8) gives

. (9)
K
&'

 
ux(x # $x, t) ( ux(x, t)

$x
% ut

Qt % &'A $x ut

(KAux(x, t) ( [(KAux(x # $x, t)] % KA [ux(x # $x, t) ( ux(x, t)]

Q % &'A $x u

Qt % (KAux

Q % &mu

12.2 CLASSICAL PDEs AND BOUNDARY-VALUE PROBLEMS ! 461

x0        x     x + ∆x        L

Cross section of area A 

FIGURE 12.2.1 One-dimensional
flow of heat

92467_12_ch12_p455-492.qxd  2/16/12  11:41 AM  Page 461

Assumptions:
Heat only flows in x-direction.
No heat escapes from the surface.
No heat is generated in the rod.
Rod is homogeneous with density ρ.

Let u(x, t) denote the temperature of the rod at location x at time t.

Consider the quantity of heat with [x, x + dx]: (γ : 比熱)

dQ = γ (ρAdx) u =⇒ Qx = γρAu =⇒ Qxt = γρAut

Heat transfer rate through the cross section = −KAux, and hence the net heat
rate inside [x, x + dx] is dQt = −KAux(x, t)− (−KAux(x + dx, t))

dQt = KAu (ux(x + dx, t)− ux(x, t)) = KAuxxdx
=⇒ Qtx = KAuxx
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variables. If you compare (1)–(3) with the linear form in Theorem 12.1.1 (with t play-
ing the part of the symbol y), observe that the heat equation (1) is parabolic, the wave
equation (2) is hyperbolic, and Laplace’s equation is elliptic. This observation will be
important in Chapter 15.

Heat Equation Equation (1) occurs in the theory of heat flow—that is, heat
transferred by conduction in a rod or in a thin wire. The function u(x, t) represents
temperature at a point x along the rod at some time t. Problems in mechanical vibra-
tions often lead to the wave equation (2). For purposes of discussion, a solution
u(x, t) of (2) will represent the displacement of an idealized string. Finally, a solution
u(x, y) of Laplace’s equation (3) can be interpreted as the steady-state (that is, time-
independent) temperature distribution throughout a thin, two-dimensional plate.

Even though we have to make many simplifying assumptions, it is worthwhile
to see how equations such as (1) and (2) arise.

Suppose a thin circular rod of length L has a cross-sectional area A and coin-
cides with the x-axis on the interval [0, L]. See Figure 12.2.1. Let us suppose the
following:

• The flow of heat within the rod takes place only in the x-direction.
• The lateral, or curved, surface of the rod is insulated; that is, no heat

escapes from this surface.
• No heat is being generated within the rod.
• The rod is homogeneous; that is, its mass per unit volume r is a constant.
• The specific heat g and thermal conductivity K of the material of the rod are

constants.

To derive the partial differential equation satisfied by the temperature u(x, t), we
need two empirical laws of heat conduction:

(i) The quantity of heat Q in an element of mass m is

, (4)

where u is the temperature of the element.

(ii) The rate of heat flow Qt through the cross-section indicated in
Figure 12.2.1 is proportional to the area A of the cross section and
the partial derivative with respect to x of the temperature:

. (5)

Since heat flows in the direction of decreasing temperature, the minus sign in (5) is
used to ensure that Qt is positive for ux ! 0 (heat flow to the right) and negative for
ux " 0 (heat flow to the left). If the circular slice of the rod shown in Figure 12.2.1
between x and x # $x is very thin, then u(x, t) can be taken as the approximate tem-
perature at each point in the interval. Now the mass of the slice is m % r(A $x), and
so it follows from (4) that the quantity of heat in it is

. (6)

Furthermore, when heat flows in the positive x-direction, we see from (5) that heat
builds up in the slice at the net rate

. (7)

By differentiating (6) with respect to t, we see that this net rate is also given by

. (8)

Equating (7) and (8) gives

. (9)
K
&'

 
ux(x # $x, t) ( ux(x, t)

$x
% ut

Qt % &'A $x ut

(KAux(x, t) ( [(KAux(x # $x, t)] % KA [ux(x # $x, t) ( ux(x, t)]

Q % &'A $x u

Qt % (KAux

Q % &mu
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x0        x     x + ∆x        L

Cross section of area A 

FIGURE 12.2.1 One-dimensional
flow of heat
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Assumptions:
Heat only flows in x-direction.
No heat escapes from the surface.
No heat is generated in the rod.
Rod is homogeneous with density ρ.

Let u(x, t) denote the temperature of the rod at location x at time t.

Hence, {
Qxt = γρAut

Qtx = KAuxx
=⇒ γρ�Aut = K�Auxx =⇒

(
K
γρ

)
uxx = ut

=⇒ kuxx = ut, k > 0
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Heat Equation: Initial and Boundary Conditions

variables. If you compare (1)–(3) with the linear form in Theorem 12.1.1 (with t play-
ing the part of the symbol y), observe that the heat equation (1) is parabolic, the wave
equation (2) is hyperbolic, and Laplace’s equation is elliptic. This observation will be
important in Chapter 15.

Heat Equation Equation (1) occurs in the theory of heat flow—that is, heat
transferred by conduction in a rod or in a thin wire. The function u(x, t) represents
temperature at a point x along the rod at some time t. Problems in mechanical vibra-
tions often lead to the wave equation (2). For purposes of discussion, a solution
u(x, t) of (2) will represent the displacement of an idealized string. Finally, a solution
u(x, y) of Laplace’s equation (3) can be interpreted as the steady-state (that is, time-
independent) temperature distribution throughout a thin, two-dimensional plate.

Even though we have to make many simplifying assumptions, it is worthwhile
to see how equations such as (1) and (2) arise.

Suppose a thin circular rod of length L has a cross-sectional area A and coin-
cides with the x-axis on the interval [0, L]. See Figure 12.2.1. Let us suppose the
following:

• The flow of heat within the rod takes place only in the x-direction.
• The lateral, or curved, surface of the rod is insulated; that is, no heat

escapes from this surface.
• No heat is being generated within the rod.
• The rod is homogeneous; that is, its mass per unit volume r is a constant.
• The specific heat g and thermal conductivity K of the material of the rod are

constants.

To derive the partial differential equation satisfied by the temperature u(x, t), we
need two empirical laws of heat conduction:

(i) The quantity of heat Q in an element of mass m is

, (4)

where u is the temperature of the element.

(ii) The rate of heat flow Qt through the cross-section indicated in
Figure 12.2.1 is proportional to the area A of the cross section and
the partial derivative with respect to x of the temperature:

. (5)

Since heat flows in the direction of decreasing temperature, the minus sign in (5) is
used to ensure that Qt is positive for ux ! 0 (heat flow to the right) and negative for
ux " 0 (heat flow to the left). If the circular slice of the rod shown in Figure 12.2.1
between x and x # $x is very thin, then u(x, t) can be taken as the approximate tem-
perature at each point in the interval. Now the mass of the slice is m % r(A $x), and
so it follows from (4) that the quantity of heat in it is

. (6)

Furthermore, when heat flows in the positive x-direction, we see from (5) that heat
builds up in the slice at the net rate

. (7)

By differentiating (6) with respect to t, we see that this net rate is also given by

. (8)

Equating (7) and (8) gives

. (9)
K
&'

 
ux(x # $x, t) ( ux(x, t)

$x
% ut

Qt % &'A $x ut

(KAux(x, t) ( [(KAux(x # $x, t)] % KA [ux(x # $x, t) ( ux(x, t)]

Q % &'A $x u

Qt % (KAux

Q % &mu
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x0        x     x + ∆x        L

Cross section of area A 

FIGURE 12.2.1 One-dimensional
flow of heat
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Initial Condition:
Provides the spatial distribution of the
temperature at time t = 0.

u(x, 0) = f(x), 0 < x < L

Boundary Conditions:
At the end points x = 0 and x = L, give the constraints on

u: (Dirchlet condition), for example, (u0: constant)
u(L, t) = u0 Temperature at the right end is held at constant.

ux: (Neumann condition), for example,
ux(L, t) = 0 The right end is insulated.

ux + hu: (Robin condition), for example, (h > 0, um: constants)
ux(L, t) = −h {u(L, t)− um} Heat is lost from the right end.
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variables. If you compare (1)–(3) with the linear form in Theorem 12.1.1 (with t play-
ing the part of the symbol y), observe that the heat equation (1) is parabolic, the wave
equation (2) is hyperbolic, and Laplace’s equation is elliptic. This observation will be
important in Chapter 15.

Heat Equation Equation (1) occurs in the theory of heat flow—that is, heat
transferred by conduction in a rod or in a thin wire. The function u(x, t) represents
temperature at a point x along the rod at some time t. Problems in mechanical vibra-
tions often lead to the wave equation (2). For purposes of discussion, a solution
u(x, t) of (2) will represent the displacement of an idealized string. Finally, a solution
u(x, y) of Laplace’s equation (3) can be interpreted as the steady-state (that is, time-
independent) temperature distribution throughout a thin, two-dimensional plate.

Even though we have to make many simplifying assumptions, it is worthwhile
to see how equations such as (1) and (2) arise.

Suppose a thin circular rod of length L has a cross-sectional area A and coin-
cides with the x-axis on the interval [0, L]. See Figure 12.2.1. Let us suppose the
following:

• The flow of heat within the rod takes place only in the x-direction.
• The lateral, or curved, surface of the rod is insulated; that is, no heat

escapes from this surface.
• No heat is being generated within the rod.
• The rod is homogeneous; that is, its mass per unit volume r is a constant.
• The specific heat g and thermal conductivity K of the material of the rod are

constants.

To derive the partial differential equation satisfied by the temperature u(x, t), we
need two empirical laws of heat conduction:

(i) The quantity of heat Q in an element of mass m is

, (4)

where u is the temperature of the element.

(ii) The rate of heat flow Qt through the cross-section indicated in
Figure 12.2.1 is proportional to the area A of the cross section and
the partial derivative with respect to x of the temperature:

. (5)

Since heat flows in the direction of decreasing temperature, the minus sign in (5) is
used to ensure that Qt is positive for ux ! 0 (heat flow to the right) and negative for
ux " 0 (heat flow to the left). If the circular slice of the rod shown in Figure 12.2.1
between x and x # $x is very thin, then u(x, t) can be taken as the approximate tem-
perature at each point in the interval. Now the mass of the slice is m % r(A $x), and
so it follows from (4) that the quantity of heat in it is

. (6)

Furthermore, when heat flows in the positive x-direction, we see from (5) that heat
builds up in the slice at the net rate

. (7)

By differentiating (6) with respect to t, we see that this net rate is also given by

. (8)

Equating (7) and (8) gives

. (9)
K
&'

 
ux(x # $x, t) ( ux(x, t)

$x
% ut

Qt % &'A $x ut

(KAux(x, t) ( [(KAux(x # $x, t)] % KA [ux(x # $x, t) ( ux(x, t)]

Q % &'A $x u

Qt % (KAux

Q % &mu
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A problem involving both initial and
boundary conditions is called a
boundary-value problem
At the two boundaries x − 0 and x = L,
one can use different kinds of conditions.

Examples:

kuxx = ut, 0 < x < L, t > 0 Heat
equation

u(0, t) = u0, ux(L, t) = −h {u(L, t)− um} , t > 0 Boundary
condition

u(x, 0) = f(x), 0 < x < L Initial
condition

kuxx = ut, 0 < x < L, t > 0 Heat
equation

ux(0, t) = 0, u(L, t) = 0, t > 0 Boundary
condition

u(x, 0) = f(x), 0 < x < L Initial
condition
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Dynamics of a String Fixed at Two Ends: Wave Equation462 ! CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

Finally, by taking the limit of (9) as we obtain (1) in the form*

(K!gr)uxx ! ut. It is customary to let k ! K!gr and call this positive constant the
thermal diffusivity.

Wave Equation Consider a string of length L, such as a guitar string,
stretched taut between two points on the x-axis—say, x ! 0 and x ! L. When the
string starts to vibrate, assume that the motion takes place in the xu-plane in such
a manner that each point on the string moves in a direction perpendicular to the x-axis
(transverse vibrations). As is shown in Figure 12.2.2(a), let u(x, t) denote the vertical
displacement of any point on the string measured from the x-axis for t " 0. We fur-
ther assume the following:

• The string is perfectly flexible.
• The string is homogeneous; that is, its mass per unit length r is a

constant.
• The displacements u are small in comparison to the length of the string.
• The slope of the curve is small at all points.
• The tension T acts tangent to the string, and its magnitude T is the same at

all points.
• The tension is large compared with the force of gravity.
• No other external forces act on the string.

Now in Figure 12.2.2(b) the tensions T1 and T2 are tangent to the ends of the
curve on the interval [x, x # $x]. For small u1 and u2 the net vertical force acting on
the corresponding element $s of the string is then

where T ! "T1 " ! "T2 ". Now r $s # r $x is the mass of the string on [x, x # $x],
so Newton’s second law gives

or

If the limit is taken as the last equation becomes uxx ! (r!T)utt. This of
course is (2) with a2 ! T!r.

Laplace’s Equation Although we shall not present its derivation, Laplace’s
equation in two and three dimensions occurs in time-independent problems involv-
ing potentials such as electrostatic, gravitational, and velocity in fluid mechanics.
Moreover, a solution of Laplace’s equation can also be interpreted as a steady-state
temperature distribution. As illustrated in Figure 12.2.3, a solution u(x, y) of (3)
could represent the temperature that varies from point to point—but not with time—
of a rectangular plate. Laplace’s equation in two dimensions and in three dimensions
is abbreviated as %2u ! 0, where

are called the two-dimensional Laplacian and the three-dimensional Laplacian,
respectively, of a function u.

%2u !
&2u
&x2 #

&2u
&y2    and    %2u !

&2u
&x2 #

&2u
&y2 #

&2u
&z2

$x : 0,

 
ux(x # $x, t) ' ux(x, t)

$x
!

(

T
 ut t.

 T [ux(x # $x, t) ' ux(x, t)] ! ( $x ut t

 ! T [ux(x # $x, t) ' ux(x, t)],†
 T sin )2 ' T sin )1 # T tan )2 ' T tan )1

$x : 0,

u

∆s
u(x, t)

0 x   x  + ∆x L x

x

u

∆s

x + ∆xx

θ1

θ 2

T1

T2

(a) Segment of string

(b) Enlargement of segment

FIGURE 12.2.2 Flexible string
anchored at x ! 0 and x ! L
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FIGURE 12.2.3 Steady-state
temperatures in a rectangular plate

*The definition of the second partial derivative is 
†tan u2 ! ux(x # $x, t) and tan u1 ! ux(x, t) are equivalent expressions for slope.

uxx ! lim
$x : 0

ux(x # $x, t) ' ux(x, t)
$x

.

92467_12_ch12_p455-492.qxd  2/16/12  11:41 AM  Page 462

Assumptions:
No external force.
Tension force is large compared to gravity and is
the same at all points.
Slope of the curve is very small at all points.
Vertical displacement ≪ string length.
String has mass per unit length ρ.

Let u(x, t) denote the vertical position (displacement)
of the string at location x at time t.

Consider the string in [x, x + dx]. Net vertical force is

T (sin θ2 − sin θ1) ≈ T (tan θ2 − tan θ1)

= T {ux(x + dx, t)− ux(x, t)}
= Tuxxdx
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Dynamics of a String Fixed at Two Ends: Wave Equation462 ! CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

Finally, by taking the limit of (9) as we obtain (1) in the form*

(K!gr)uxx ! ut. It is customary to let k ! K!gr and call this positive constant the
thermal diffusivity.

Wave Equation Consider a string of length L, such as a guitar string,
stretched taut between two points on the x-axis—say, x ! 0 and x ! L. When the
string starts to vibrate, assume that the motion takes place in the xu-plane in such
a manner that each point on the string moves in a direction perpendicular to the x-axis
(transverse vibrations). As is shown in Figure 12.2.2(a), let u(x, t) denote the vertical
displacement of any point on the string measured from the x-axis for t " 0. We fur-
ther assume the following:

• The string is perfectly flexible.
• The string is homogeneous; that is, its mass per unit length r is a

constant.
• The displacements u are small in comparison to the length of the string.
• The slope of the curve is small at all points.
• The tension T acts tangent to the string, and its magnitude T is the same at

all points.
• The tension is large compared with the force of gravity.
• No other external forces act on the string.

Now in Figure 12.2.2(b) the tensions T1 and T2 are tangent to the ends of the
curve on the interval [x, x # $x]. For small u1 and u2 the net vertical force acting on
the corresponding element $s of the string is then

where T ! "T1 " ! "T2 ". Now r $s # r $x is the mass of the string on [x, x # $x],
so Newton’s second law gives

or

If the limit is taken as the last equation becomes uxx ! (r!T)utt. This of
course is (2) with a2 ! T!r.

Laplace’s Equation Although we shall not present its derivation, Laplace’s
equation in two and three dimensions occurs in time-independent problems involv-
ing potentials such as electrostatic, gravitational, and velocity in fluid mechanics.
Moreover, a solution of Laplace’s equation can also be interpreted as a steady-state
temperature distribution. As illustrated in Figure 12.2.3, a solution u(x, y) of (3)
could represent the temperature that varies from point to point—but not with time—
of a rectangular plate. Laplace’s equation in two dimensions and in three dimensions
is abbreviated as %2u ! 0, where

are called the two-dimensional Laplacian and the three-dimensional Laplacian,
respectively, of a function u.
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FIGURE 12.2.3 Steady-state
temperatures in a rectangular plate

*The definition of the second partial derivative is 
†tan u2 ! ux(x # $x, t) and tan u1 ! ux(x, t) are equivalent expressions for slope.

uxx ! lim
$x : 0

ux(x # $x, t) ' ux(x, t)
$x

.
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Assumptions:
No external force.
Tension force is large compared to gravity and is
the same at all points.
Slope of the curve is very small at all points.
Vertical displacement ≪ string length.
String has mass per unit length ρ.

Let u(x, t) denote the vertical position (displacement)
of the string at location x at time t.

Since the slope is small, the mass ≈ ρdx. Hence

Tuxx��dx = (ρ��dx) utt =⇒ T
ρ

uxx = utt

=⇒ a2uxx = utt
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Finally, by taking the limit of (9) as we obtain (1) in the form*

(K!gr)uxx ! ut. It is customary to let k ! K!gr and call this positive constant the
thermal diffusivity.

Wave Equation Consider a string of length L, such as a guitar string,
stretched taut between two points on the x-axis—say, x ! 0 and x ! L. When the
string starts to vibrate, assume that the motion takes place in the xu-plane in such
a manner that each point on the string moves in a direction perpendicular to the x-axis
(transverse vibrations). As is shown in Figure 12.2.2(a), let u(x, t) denote the vertical
displacement of any point on the string measured from the x-axis for t " 0. We fur-
ther assume the following:

• The string is perfectly flexible.
• The string is homogeneous; that is, its mass per unit length r is a

constant.
• The displacements u are small in comparison to the length of the string.
• The slope of the curve is small at all points.
• The tension T acts tangent to the string, and its magnitude T is the same at

all points.
• The tension is large compared with the force of gravity.
• No other external forces act on the string.

Now in Figure 12.2.2(b) the tensions T1 and T2 are tangent to the ends of the
curve on the interval [x, x # $x]. For small u1 and u2 the net vertical force acting on
the corresponding element $s of the string is then

where T ! "T1 " ! "T2 ". Now r $s # r $x is the mass of the string on [x, x # $x],
so Newton’s second law gives

or

If the limit is taken as the last equation becomes uxx ! (r!T)utt. This of
course is (2) with a2 ! T!r.

Laplace’s Equation Although we shall not present its derivation, Laplace’s
equation in two and three dimensions occurs in time-independent problems involv-
ing potentials such as electrostatic, gravitational, and velocity in fluid mechanics.
Moreover, a solution of Laplace’s equation can also be interpreted as a steady-state
temperature distribution. As illustrated in Figure 12.2.3, a solution u(x, y) of (3)
could represent the temperature that varies from point to point—but not with time—
of a rectangular plate. Laplace’s equation in two dimensions and in three dimensions
is abbreviated as %2u ! 0, where

are called the two-dimensional Laplacian and the three-dimensional Laplacian,
respectively, of a function u.
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*The definition of the second partial derivative is 
†tan u2 ! ux(x # $x, t) and tan u1 ! ux(x, t) are equivalent expressions for slope.

uxx ! lim
$x : 0

ux(x # $x, t) ' ux(x, t)
$x

.
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Initial Conditions:
Provide the initial displacement u and velocity ut at
time t = 0.

u(x, 0) = f(x), ut(x, 0) = g(x), 0 < x < L

Boundary Conditions:
At the end points x = 0 and x = L, give the constraints
on u, ux, or ux + hu. Usually in the scenario of strings,
the boundary conditions are

u(0, t) = 0, u(0,L) = 0, t > 0 Both ends are fixed.

ux(0, t) = 0, ux(0,L) = 0, t > 0 Free-ends condition
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Wave Equation: Boundary-Value Problems462 ! CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

Finally, by taking the limit of (9) as we obtain (1) in the form*

(K!gr)uxx ! ut. It is customary to let k ! K!gr and call this positive constant the
thermal diffusivity.

Wave Equation Consider a string of length L, such as a guitar string,
stretched taut between two points on the x-axis—say, x ! 0 and x ! L. When the
string starts to vibrate, assume that the motion takes place in the xu-plane in such
a manner that each point on the string moves in a direction perpendicular to the x-axis
(transverse vibrations). As is shown in Figure 12.2.2(a), let u(x, t) denote the vertical
displacement of any point on the string measured from the x-axis for t " 0. We fur-
ther assume the following:

• The string is perfectly flexible.
• The string is homogeneous; that is, its mass per unit length r is a

constant.
• The displacements u are small in comparison to the length of the string.
• The slope of the curve is small at all points.
• The tension T acts tangent to the string, and its magnitude T is the same at

all points.
• The tension is large compared with the force of gravity.
• No other external forces act on the string.

Now in Figure 12.2.2(b) the tensions T1 and T2 are tangent to the ends of the
curve on the interval [x, x # $x]. For small u1 and u2 the net vertical force acting on
the corresponding element $s of the string is then

where T ! "T1 " ! "T2 ". Now r $s # r $x is the mass of the string on [x, x # $x],
so Newton’s second law gives

or

If the limit is taken as the last equation becomes uxx ! (r!T)utt. This of
course is (2) with a2 ! T!r.

Laplace’s Equation Although we shall not present its derivation, Laplace’s
equation in two and three dimensions occurs in time-independent problems involv-
ing potentials such as electrostatic, gravitational, and velocity in fluid mechanics.
Moreover, a solution of Laplace’s equation can also be interpreted as a steady-state
temperature distribution. As illustrated in Figure 12.2.3, a solution u(x, y) of (3)
could represent the temperature that varies from point to point—but not with time—
of a rectangular plate. Laplace’s equation in two dimensions and in three dimensions
is abbreviated as %2u ! 0, where

are called the two-dimensional Laplacian and the three-dimensional Laplacian,
respectively, of a function u.
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*The definition of the second partial derivative is 
†tan u2 ! ux(x # $x, t) and tan u1 ! ux(x, t) are equivalent expressions for slope.

uxx ! lim
$x : 0

ux(x # $x, t) ' ux(x, t)
$x

.

92467_12_ch12_p455-492.qxd  2/16/12  11:41 AM  Page 462

Examples:

Both ends are fixed:

a2uxx = utt, 0 < x < L, t > 0 Wave
equation

u(0, t) = 0, u(L, t) = 0, t > 0 Boundary
condition

u(x, 0) = f(x), ut(x, 0) = g(x), 0 < x < L Initial
condition

Free Ends:

a2uxx = utt, 0 < x < L, t > 0 Wave
equation

ux(0, t) = 0, ux(L, t) = 0, t > 0 Boundary
condition

u(x, 0) = f(x), ut(x, 0) = g(x), 0 < x < L Initial
condition
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Laplace’s Equation

462 ! CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

Finally, by taking the limit of (9) as we obtain (1) in the form*

(K!gr)uxx ! ut. It is customary to let k ! K!gr and call this positive constant the
thermal diffusivity.

Wave Equation Consider a string of length L, such as a guitar string,
stretched taut between two points on the x-axis—say, x ! 0 and x ! L. When the
string starts to vibrate, assume that the motion takes place in the xu-plane in such
a manner that each point on the string moves in a direction perpendicular to the x-axis
(transverse vibrations). As is shown in Figure 12.2.2(a), let u(x, t) denote the vertical
displacement of any point on the string measured from the x-axis for t " 0. We fur-
ther assume the following:

• The string is perfectly flexible.
• The string is homogeneous; that is, its mass per unit length r is a

constant.
• The displacements u are small in comparison to the length of the string.
• The slope of the curve is small at all points.
• The tension T acts tangent to the string, and its magnitude T is the same at

all points.
• The tension is large compared with the force of gravity.
• No other external forces act on the string.

Now in Figure 12.2.2(b) the tensions T1 and T2 are tangent to the ends of the
curve on the interval [x, x # $x]. For small u1 and u2 the net vertical force acting on
the corresponding element $s of the string is then

where T ! "T1 " ! "T2 ". Now r $s # r $x is the mass of the string on [x, x # $x],
so Newton’s second law gives

or

If the limit is taken as the last equation becomes uxx ! (r!T)utt. This of
course is (2) with a2 ! T!r.

Laplace’s Equation Although we shall not present its derivation, Laplace’s
equation in two and three dimensions occurs in time-independent problems involv-
ing potentials such as electrostatic, gravitational, and velocity in fluid mechanics.
Moreover, a solution of Laplace’s equation can also be interpreted as a steady-state
temperature distribution. As illustrated in Figure 12.2.3, a solution u(x, y) of (3)
could represent the temperature that varies from point to point—but not with time—
of a rectangular plate. Laplace’s equation in two dimensions and in three dimensions
is abbreviated as %2u ! 0, where

are called the two-dimensional Laplacian and the three-dimensional Laplacian,
respectively, of a function u.
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FIGURE 12.2.3 Steady-state
temperatures in a rectangular plate

*The definition of the second partial derivative is 
†tan u2 ! ux(x # $x, t) and tan u1 ! ux(x, t) are equivalent expressions for slope.

uxx ! lim
$x : 0

ux(x # $x, t) ' ux(x, t)
$x

.
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Laplace’s equation usually occurs in
time-independent problems involving
potentials.

Its solution can also be interpreted as a
steady-state temperature distribution.

Two-dimensional Laplace Equation

∇2u := uxx + uyy = 0

Three-dimensional Laplace Equation

∇2u := uxx + uyy + uzz = 0
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462 ! CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

Finally, by taking the limit of (9) as we obtain (1) in the form*

(K!gr)uxx ! ut. It is customary to let k ! K!gr and call this positive constant the
thermal diffusivity.

Wave Equation Consider a string of length L, such as a guitar string,
stretched taut between two points on the x-axis—say, x ! 0 and x ! L. When the
string starts to vibrate, assume that the motion takes place in the xu-plane in such
a manner that each point on the string moves in a direction perpendicular to the x-axis
(transverse vibrations). As is shown in Figure 12.2.2(a), let u(x, t) denote the vertical
displacement of any point on the string measured from the x-axis for t " 0. We fur-
ther assume the following:

• The string is perfectly flexible.
• The string is homogeneous; that is, its mass per unit length r is a

constant.
• The displacements u are small in comparison to the length of the string.
• The slope of the curve is small at all points.
• The tension T acts tangent to the string, and its magnitude T is the same at

all points.
• The tension is large compared with the force of gravity.
• No other external forces act on the string.

Now in Figure 12.2.2(b) the tensions T1 and T2 are tangent to the ends of the
curve on the interval [x, x # $x]. For small u1 and u2 the net vertical force acting on
the corresponding element $s of the string is then

where T ! "T1 " ! "T2 ". Now r $s # r $x is the mass of the string on [x, x # $x],
so Newton’s second law gives

or

If the limit is taken as the last equation becomes uxx ! (r!T)utt. This of
course is (2) with a2 ! T!r.

Laplace’s Equation Although we shall not present its derivation, Laplace’s
equation in two and three dimensions occurs in time-independent problems involv-
ing potentials such as electrostatic, gravitational, and velocity in fluid mechanics.
Moreover, a solution of Laplace’s equation can also be interpreted as a steady-state
temperature distribution. As illustrated in Figure 12.2.3, a solution u(x, y) of (3)
could represent the temperature that varies from point to point—but not with time—
of a rectangular plate. Laplace’s equation in two dimensions and in three dimensions
is abbreviated as %2u ! 0, where

are called the two-dimensional Laplacian and the three-dimensional Laplacian,
respectively, of a function u.
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FIGURE 12.2.3 Steady-state
temperatures in a rectangular plate

*The definition of the second partial derivative is 
†tan u2 ! ux(x # $x, t) and tan u1 ! ux(x, t) are equivalent expressions for slope.

uxx ! lim
$x : 0

ux(x # $x, t) ' ux(x, t)
$x

.
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Boundary Conditions:
In the x-direction, at the end points x = 0 and
x = a, give the constraints on u, ux, or ux + hu.

In the y-direction, at the end points y = 0 and
y = b, give the constraints on u, uy, or uy + hu.

Examples:
Both ends in x are insulated

ux(0, y) = 0, ux(a, y) = 0

Temperatures of two ends in y are held at
different distributions

u(x, 0) = f(x), u(x, b) = g(x)
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Laplace’s Equation: Boundary-Value Problems

Example:

uxx + uyy = 0, 0 < x < a, 0 < y < b Laplace’s
equation

ux(0, y) = 0, ux(a, y) = 0, 0 < y < b Boundary
condition

u(x, 0) = f(x), u(x, b) = g(x), 0 < x < a Boundary
condition
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Modifications of Heat and Wave Equations

In the derivation of the heat equation and the wave equation, we assume
that there is no internal or external influences. For example, no heat
escapes from the surface, no heat is generated in the rod, no external
force act on the string, etc.
Taking external and internal influences into account, more general forms
of the heat equation and the wave equation are the following:

kuxx + G(x, t, u, ux) = ut Heat Equation
a2uxx + F(x, t, u, ut) = utt Wave Equation

Example:

kuxx − h(u − um) = ut
heat transfers from the surface to an environment
with constant temperature um

a2uxx + f(x, t) = utt External force f acts on the string
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Homogeneous vs. Nonhomogeneous Boundary Conditions

Homogeneous Boundary Condition:

ux(0, y) = 0, ux(a, y) = 0, u(x, 0) = 0, u(0,L) = 0

Nonhomogeneous Boundary Condition:

ux(0, y) = f(y), ux(a, y) = g(y), u(x,L) = um

Typically, when using separation of variables, start with the independent
variable associated with homogeneous boundary conditions, to determine

the value of the separation constant.
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1 Separation of Variables and Classical PDE’s

2 Wave Equation

3 Laplace’s Equation

4 Summary
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Wave Equation: a Boundary-Value Problem

Solve u(x, t) : auxx = utt, 0 < x < L, t > 0

subject to : u(0, t) = 0, u(L, t) = 0, t > 0

u(x, 0) = f(x), ut(x, 0) = g(x), 0 < x < L

We focus on solving the above BVP (both ends are fixed).

Step 1: Separation of variables:
Assume that the solution u(x, t) = X(x)T(t), X,T ̸= 0. Then,

a2uxx = utt =⇒ a2X ′′T = XT ′′ =⇒ X ′′

X =
T ′′

a2T = −λ

=⇒
{

X ′′ + λX = 0

T ′′ + a2λT = 0

The 2 homogeneous boundary conditions become X(0) = X(L) = 0.
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Solve in the x-Dimension and Find λ

Solve : X ′′ + λX = 0, T ′′ + a2λT = 0

subject to : X(0) = 0, X(L) = 0

X(x)T(0) = f(x), X(x)T ′(0) = g(x), 0 < x < L

Step 2: λ remains to be determined. What values should λ take?
1 λ = 0: X(x) = c1 + c2x. X(0) = X(L) = 0 =⇒ c1 = c2 = 0.

2 λ = −α2 < 0: X(x) = c1e−αx + c2eαx.
Plug in X(0) = X(L) = 0, we get c1 = c2 = 0.

3 λ = α2 > 0: X(x) = c1 cos(αx) + c2 sin(αx).
Plug in X(0) = X(L) = 0, we get c1 = 0, and c2 sin(αL) = 0. Hence,
c2 ̸= 0 only if αL = nπ.

Since X ̸= 0, pick λ =
n2π2

L2
, n = 1, 2, . . . =⇒ X(x) = c2 sin nπ

L x.
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Solve in t-Dimension and Superposition

Solve : X ′′ + λX = 0, T ′′ + a2λT = 0

subject to : X(0) = 0, X(L) = 0

X(x)T(0) = f(x), X(x)T ′(0) = g(x), 0 < x < L

Step 3: Once we fix λ = n2π2

L2 , n = 1, 2, . . ., we obtain

X(x) = c2 sin
(nπ

L x
)
, T(t) = c3 cos

(nπa
L t

)
+ c4 sin

(nπa
L t

)
=⇒ un(x, t) =

{
An cos

(nπa
L t

)
+ Bn sin

(nπa
L t

)}
sin

(nπ
L x

)
,

(An := c2c3, Bn := c2c4)

=⇒ u(x, t) :=
∞∑

n=1

un(x, t) is a solution, by the superposition principle.
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Plug in Initial Condition, Revoke Fourier Series, and Done

Solve u(x, t) : auxx = utt, 0 < x < L, t > 0

subject to : u(0, t) = 0, u(L, t) = 0, t > 0

u(x, 0) = f(x), ut(x, 0) = g(x), 0 < x < L

Step 4: Plug in the initial conditions and find {An,Bn | n = 1, 2, . . .}.

u(x, 0) = f(x), u(x, t) =
∞∑

n=1

{
An cos

(nπa
L t

)
+ Bn sin

(nπa
L t

)}
sin

(nπ
L x

)
=⇒ f(x) =

∞∑
n=1

An sin
(nπ

L x
)
, 0 < x < L

From the Fourier sine series expansion on (0,L), we get

An =
2

L

∫ L

0

f(x) sin
(nπ

L x
)

dx.
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Plug in Initial Condition, Revoke Fourier Series, and Done

Solve u(x, t) : auxx = utt, 0 < x < L, t > 0

subject to : u(0, t) = 0, u(L, t) = 0, t > 0

u(x, 0) = f(x), ut(x, 0) = g(x), 0 < x < L

Step 4: Plug in the initial conditions and find {An,Bn | n = 1, 2, . . .}.

ut(x, 0) = g(x), u(x, t) =
∞∑

n=1

{
An cos

(nπa
L t

)
+ Bn sin

(nπa
L t

)}
sin

(nπ
L x

)
=⇒ g(x) =

∞∑
n=1

Bn
nπa
L sin

(nπ
L x

)
, 0 < x < L

From the Fourier sine series expansion on (0,L), we get

Bn
nπa
L =

2

L

∫ L

0

g(x) sin
(nπ

L x
)

dx. =⇒ Bn =
2

nπa

∫ L

0

g(x) sin
(nπ

L x
)

dx.
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Final Solution

Solve u(x, t) : auxx = utt, 0 < x < L, t > 0

subject to : u(0, t) = 0, u(L, t) = 0, t > 0

u(x, 0) = f(x), ut(x, 0) = g(x), 0 < x < L

Step 5: The final solution is

u(x, t) =
∞∑

n=1

{
An cos

(nπa
L t

)
+ Bn sin

(nπa
L t

)}
sin

(nπ
L x

)
=

∞∑
n=1

Cn sin
(nπa

L t + ϕn

)
sin

(nπ
L x

)
An =

2

L

∫ L

0

f(x) sin
(nπ

L x
)

dx, Bn =
2

nπa

∫ L

0

g(x) sin
(nπ

L x
)

dx

Cn =
√

A2n + B2n, sinϕn =
An

Cn
, cosϕn =

Bn

Cn
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Standing Waves

The final solution

u(x, t) =
∞∑

n=1

Cn sin
(nπa

L t + ϕn

)
sin

(nπ
L x

)
is a linear combination of standing waves or normal modes

un(x, t) = Cn sin
(nπa

L t + ϕn

)
sin

(nπ
L x

)
, n = 1, 2, . . .

For a normal mode n, at a fixed location x, the string moves with
time-varying amplitude Cn sin

(nπ
L x

)
frequency fn := nπa/L

2π = na
2L

Fundamental Frequency: f1 := πa/L
2π = a

2L
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is called the first standing wave, the first normal mode, or the fundamental
mode of vibration. The first three standing waves, or normal modes, are shown in
Figure 12.4.2. The dashed graphs represent the standing waves at various values of
time. The points in the interval (0, L), for which sin(np!L)x ! 0, correspond to
points on a standing wave where there is no motion. These points are called nodes.
For example, in Figures 12.4.2(b) and 12.4.2(c) we see that the second standing
wave has one node at L!2 and the third standing wave has two nodes at L!3 and
2L!3. In general, the nth normal mode of vibration has n " 1 nodes.

The frequency

of the first normal mode is called the fundamental frequency or first harmonic and
is directly related to the pitch produced by a stringed instrument. It is apparent that
the greater the tension on the string, the higher the pitch of the sound. The
frequencies fn of the other normal modes, which are integer multiples of the funda-
mental frequency, are called overtones. The second harmonic is the first overtone,
and so on.

f1 !
a

2L
!

1
2L

 BT
#

12.4 WAVE EQUATION ! 471

0 L

(a) First standing wave

(b) Second standing wave

(c) Third standing wave

Node

0 LL
2

Nodes

0 LL
3

2L
3

x

x

x

FIGURE 12.4.2 First three standing
waves

FIGURE 12.4.4 Initial displacement in Problem 3

LL/3 2L/3

f (x)

x

1

3. u(0, t) ! 0, u(L, t) ! 0

u(x, 0) given in Figure 12.4.4,
$u
$t "

t!0
! 0

FIGURE 12.4.3 Vibrating elastic bar in Problem 2

x

0 L

u(x, t)

EXERCISES 12.4 Answers to selected odd-numbered problems begin on page ANS-22.

In Problems 1–8 solve the wave equation (1) subject to the
given conditions.

1.

2.

This problem could describe the longitudinal displace-
ment u(x, t) of a vibrating elastic bar. The boundary
conditions at x ! 0 and x ! L are called free-end
conditions. See Figure 12.4.3.

u(x, 0) ! x, $u
$t "

t!0
! 0

$u
$x "

x!0
! 0, $u

$x "
x!L

! 0

u(x, 0) !
1
4

 x (L " x), $u
$t "

t!0
! 0

u(0, t)  ! 0, u(L, t) ! 0

4.

5.

6.

7. u(0, t) ! 0, u(L, t) ! 0

8. u(0, t) ! 0, u(1, t) ! 0

u(x, 0) ! 0.01 sin 3px,

9. A string is stretched and secured on the x-axis at x ! 0
and x ! p for t % 0. If the transverse vibrations take
place in a medium that imparts a resistance proportional
to the instantaneous velocity, then the wave equation
takes on the form

$2u
$x2 !

$2u
$t2 & 2' 

$u
$t

,  0 ( ' ( 1,  t % 0.

$u
$t "

t!0
! 0

u(x, 0) ! #
2hx
L

,

2h$1 "
x
L%,

0 ( x (
L
2

L
2

) x ( L
, $u

$t "
t!0

! 0

$u
$t "

t!0
 ! 0u(x, 0) ! 1

6 x(*2 " x2),

u(0, t)  ! 0, u(*, t) ! 0

u(x, 0) ! 0, $u
$t "

t!0
 ! sin x

u(0, t) ! 0, u(*, t) ! 0

u(x, 0) ! 0, $u
$t "

t!0
! x (L " x)

u(0, t)  ! 0, u(L, t) ! 0

aaaaaa.qxd  3/2/12  7:57 AM  Page 471
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Laplace’s Equation: a Boundary-Value Problem

Solve u(x, y) : uxx + uyy = 0, 0 < x < a, 0 < y < b
subject to : ux(0, y) = 0, ux(a, y) = 0, 0 < y < b

u(x, 0) = 0, u(x, b) = f(x), 0 < x < a

We focus on solving the above BVP (both ends x = 0 and x = a are insulated).

Step 1: Separation of variables:
Assume that the solution u(x, y) = X(x)Y(y), X,Y ̸= 0. Then,

uxx + uyy = 0 =⇒ X ′′Y + XY ′′ = 0 =⇒ X ′′

X = −Y ′′

Y = −λ

=⇒
{

X ′′ + λX = 0

Y ′′ − λY = 0

The 3 homogeneous boundary conditions become X ′(0) = X ′(a) = Y(0) = 0.
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Solve in the x-Dimension and Find λ

Solve : X ′′ + λX = 0, Y ′′ − λY = 0

subject to : X ′(0) = 0, X ′(a) = 0

Y(0) = 0, X(x)Y(b) = f(x), 0 < x < a

Step 2: λ remains to be determined. What values should λ take?
1 λ = 0: X(x) = c1 + c2x. X ′(0) = X ′(a) = 0 =⇒ c2 = 0.

2 λ = −α2 < 0: X(x) = c1e−αx + c2eαx.
Plug in X ′(0) = X ′(a) = 0, we get c1 = c2 = 0.

3 λ = α2 > 0: X(x) = c1 cos(αx) + c2 sin(αx).
Plug in X ′(0) = X ′(a) = 0, we get c2 = 0, and c1α sin(αa) = 0.
Hence, c1 ̸= 0 only if αa = nπ.

Since X ̸= 0, pick λ =
n2π2

a2
, n = 0, 1, 2, . . . =⇒ X(x) = c1 cos

( nπ
a x

)
.
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Solve in y-Dimension and Superposition

Solve : X ′′ + λX = 0, Y ′′ − λY = 0

subject to : X ′(0) = 0, X ′(a) = 0

Y(0) = 0, X(x)Y(b) = f(x), 0 < x < a

Step 3: Once we fix λ = n2π2

a2 , n = 0, 1, 2, . . ., we obtain X(x) = c1 cos
( nπ

a x
)

Y(y) =
{
��c3 + c4y, n = 0

������c3 cosh
( nπ

a y
)
+ c4 sinh

( nπ
a y

)
, n ≥ 1

(Y(0) = 0 =⇒ c3 = 0)

=⇒ un(x, y) =
{

A0y, n = 0

An cos
( nπ

a x
)

sinh
( nπ

a y
)
, n ≥ 1

, (An := c1c4)

=⇒ u(x, y) :=
∞∑

n=0

un(x, y) is a solution, by the superposition principle.
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Plug in Initial Condition, Revoke Fourier Series, and Done

Solve u(x, y) : uxx + uyy = 0, 0 < x < a, 0 < y < b
subject to : ux(0, y) = 0, ux(a, y) = 0, 0 < y < b

u(x, 0) = 0, u(x, b) = f(x), 0 < x < a

Step 4: Plug in the initial conditions and find {An | n = 1, 2, . . .}.

u(x, b) = f(x), u(x, y) = A0y +

∞∑
n=1

An cos
(nπ

a x
)

sinh
(nπ

a y
)

=⇒ f(x) = A0b +

∞∑
n=1

An cos
(nπ

a x
)

sinh
(nπ

a b
)
, 0 < x < a

From the Fourier cosine series expansion on (0, a), we get

2A0b =
2

a

∫ a

0

f(x) dx, An sinh
(nπ

a b
)
=

2

a

∫ a

0

f(x) cos
(nπ

a x
)

dx
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Final Solution

Solve u(x, y) : uxx + uyy = 0, 0 < x < a, 0 < y < b
subject to : ux(0, y) = 0, ux(a, y) = 0, 0 < y < b

u(x, 0) = 0, u(x, b) = f(x), 0 < x < a

Step 5: The final solution is

u(x, y) = A0y +

∞∑
n=1

An cos
(nπ

a x
)

sinh
(nπ

a y
)

A0 =
1

ab

∫ a

0

f(x) dx

An =
2

a sinh
(nπ

a b
) ∫ a

0

f(x) cos
(nπ

a x
)

dx, n ≥ 1
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Superposition Principle

(So far) Key steps in solving a boundary-value problem of a PDE using
separation of variables:

Identify for which “dimension” (independent variable) (in our
previous example, x), the given conditions are all homogeneous.
Translate these homogeneous conditions into conditions on the
single-argument function X(x)).
Solve the associated ODE (X ′′ + λX = 0) under these conditions,
and find the value of the separation constant λ that leads to
non-trivial solutions.

Question: What if all dimensions contain some nonhomogeneous
condition?
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Solve u(x, y) : uxx + uyy = 0, 0 < x < a, 0 < y < b
subject to : u(0, y) = F(y), u(a, y) = G(y), 0 < y < b

u(x, 0) = f(x), u(x, b) = g(x), 0 < x < a

u(·, y) = F (y) u(·, y) = G(y)

u(x, ·) = f(x)

u(x, ·) = g(x)

r2u = 0
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Solve u(x, y) : uxx + uyy = 0, 0 < x < a, 0 < y < b
subject to : u(0, y) = F(y), u(a, y) = G(y), 0 < y < b

u(x, 0) = f(x), u(x, b) = g(x), 0 < x < a

The solution u(x, y) = u1(x, y) + u2(x, y), where u1, u2 are the
solutions of the following 2 BVP’s respectively.

Solve u1(x, y) : uxx + uyy = 0, 0 < x < a, 0 < y < b
subject to : u(0, y) = 0, u(a, y) = 0, 0 < y < b

u(x, 0) = f(x), u(x, b) = g(x), 0 < x < a

Solve u2(x, y) : uxx + uyy = 0, 0 < x < a, 0 < y < b
subject to : u(0, y) = F(y), u(a, y) = G(y), 0 < y < b

u(x, 0) = 0, u(x, b) = 0, 0 < x < a
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Superposition Principle

u(·, y) = F (y) u(·, y) = G(y)

u(x, ·) = f(x)

u(x, ·) = g(x)

u(x, ·) = f(x)

u(x, ·) = g(x)

u(·, y) = 0 u(·, y) = 0

u(·, y) = F (y) u(·, y) = G(y)

u(x, ·) = 0

u(x, ·) = 0

+r2u = 0

r2u1 = 0

r2u2 = 0

=
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Superposition Principle

u(·, y) = 0

uy(·, y) = F (y) u(·, y) = G(y)

u(x, ·) = f(x)

u

x

(x, ·) = g(x)

u(x, ·) = f(x)

u

x

(x, ·) = g(x)

uy(·, y) = 0

uy(·, y) = F (y) u(·, y) = G(y)

u

x

(x, ·) = 0

+r2u = 0

r2u1 = 0

r2u2 = 0

=

u(x, ·) = 0
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Semi-Finte Plate

Solve u(x, y) : uxx + uyy = 0, 0 < x < a, y > 0

subject to : u(0, y) = 0, u(a, y) = 0, y > 0

u(x, 0) = f(x), |u(x,∞)| < ∞, 0 < x < a

x

u = 0

u = f(x)

y

r2u = 0
u = 0
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Semi-Finte Plate

Solve u(x, y) : uxx + uyy = 0, 0 < x < a, y > 0

subject to : u(0, y) = 0, u(a, y) = 0, y > 0

u(x, 0) = f(x), |u(x,∞)| < ∞, 0 < x < a

Following the same steps as before (setting u(x, y) = X(x)Y(y)), we can
convert the original problem into

Solve u(x, y) : X ′′ + λX = 0, Y ′′ − λY = 0

subject to : X(0) = 0, X(a) = 0, y > 0

X(x)Y(0) = f(x), |Y(∞)| < ∞, 0 < x < a

Step 1: First we solve X(x) = c2 sin
(nπ

a x
)

and find the possible
λ = n2π2

a2 , n = 1, 2, . . ..
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Semi-Finte Plate

Solve : X ′′ + λX = 0, Y ′′ − λY = 0

subject to : X(0) = 0, X(a) = 0, y > 0

X(x)Y(0) = f(x), |Y(∞)| < ∞, 0 < x < a

Step 1: First we solve X(x) = c2 sin
(nπ

a x
)

(λ = n2π2

a2 ), n = 1, 2, . . ..

Step 2: Next we solve Y(y) = c3e nπ
a y + c4c3e− nπ

a y.
By the condition |Y(∞)| < ∞, we have c3 = 0.
Hence,

u(x, y) =
∞∑

n=1

An sin
(nπ

a x
)

e− nπ
a y.
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Semi-Finte Plate

Solve u(x, y) : uxx + uyy = 0, 0 < x < a, y > 0

subject to : u(0, y) = 0, u(a, y) = 0, y > 0

u(x, 0) = f(x), |u(x,∞)| < ∞, 0 < x < a

Final Solution:

u(x, y) =
∞∑

n=1

An sin
(nπ

a x
)

e− nπ
a y.

By the condition u(x, 0) = f(x), 0 < x < a, we have

f(x) =
∞∑

n=1

An sin
(nπ

a x
)

=⇒ An =
2

a

∫ a

0

f(x) sin
(nπ

a x
)

dx.
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Short Recap

Method of Separation of Variables: Convert PDE into two ODE’s

Solve the ODE with homogeneous boundary conditions first, to
determine the separation constant

Fourier Series to determine the undetermined coefficients

Heat Equation, Wave Equation, Laplace’s Equation

Superposition Principle
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Self-Practice Exercises

12-1: 9, 15, 17, 22

12-2: 1, 3, 7, 11

12-4: 3, 7, 9, 11, 14

12-5: 5, 7, 12, 15, 19
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