Chapter 12：Boundary－Value Problems in Rectangular Coordinates

\author{
王奕翔
 Department of Electrical Engineering
 National Taiwan University
 ```
ihwang@ntu.edu.tw

```
}

December 18， 2013

In this lecture，we focus on solving some classical partial differential equations in boundary－value problems．

Instead of solving the general solutions，we are only interested in finding useful particular solutions．

We focus on linear second order PDE：\((A, \cdots, G\) ：functions of \(x, y)\)
\[
A u_{x x}+B u_{x y}+C u_{y y}+D u_{x}+E u_{y}+F u=G .
\] notation：for example，\(u_{x y}:=\frac{\partial^{2} u}{\partial x \partial y}\) ．
Method：Separation of variables－convert a PDE into two ODE＇s
Types of Equations：
－Heat Equation
－Wave Equation
－Laplace Equation

\section*{Classification of Linear Second Order PDE}
\[
A u_{x x}+B u_{x y}+C u_{y y}+D u_{x}+E u_{y}+F u=G
\]
\[
\text { notation: for example, } u_{x y}:=\frac{\partial^{2} u}{\partial x \partial y} \text {. }
\]

1 Homogeneous vs．Nonhomogeneous

Homogeneous
\(\Longleftrightarrow G=0\)
Nonhomogeneous

2 Hyperbolic，Parabolic，and Elliptic：\(A, B, C, \cdots, G\) ：constants，
Hyperbolic \(\Longleftrightarrow B^{2}-4 A C>0\)

Parabolic \(\Longleftrightarrow B^{2}-4 A C=0\)

Elliptic \(\Longleftrightarrow B^{2}-4 A C<0\)

\section*{Superposition Principle}

\section*{Theorem}

If \(u_{1}(x, y), u_{2}(x, y), \ldots, u_{k}(x, y)\) are solutions of a homogeneous linear PDE，then a linear combination
\[
u(x, y):=\sum_{n=1}^{k} c_{n} u_{n}(x, y)
\]
is also a solution．
Note：We shall assume without rigorous argument that the linear combination can be an infinite series
\[
u(x, y):=\sum_{n=1}^{\infty} c_{n} u_{n}(x, y)
\]

\section*{1 Separation of Variables and Classical PDE＇s}

\section*{2 Wave Equation}

3 Laplace＇s Equation

\section*{Separation of Variables}

To find a particular solution of an PDE，one method is separation of variables，that is，assume that the solution \(u(x, y)\) takes the form of a product of a \(x\)－function and a \(y\)－function：
\[
u(x, y)=X(x) Y(y) .
\]

Then，with the following，sometimes the PDE can be converted into an ODE of \(X\) and an ODE of \(Y\) ：
\[
\begin{aligned}
u_{x} & =\frac{d X}{d x} Y=X^{\prime} Y, \quad u_{y}=X \frac{d Y}{d y}=X Y^{\prime} \\
u_{x x} & =\frac{d^{2} X}{d x^{2}} Y=X^{\prime \prime} Y, \quad u_{y y}=X \frac{d^{2} Y}{d y^{2}}=X Y^{\prime \prime}, \quad u_{x y}=X^{\prime} Y^{\prime}
\end{aligned}
\]

Note：Derivatives are with respect to different independent variables． For example，\(X^{\prime}:=\frac{d X}{d x}\) ．

\section*{Convert a PDE into Two ODE＇s}

\section*{Example}

Use separation of variables to convert the PDE below into two ODE＇s．
\[
x^{2} u_{x x}+(x+1) u_{y}+(x+x y) u=0
\]

With \(u(x, y)=X(x) Y(y)\) ，the original PDE becomes
\[
\begin{aligned}
& x^{2} X^{\prime \prime} Y+(x+1) X Y^{\prime}+(x+1) y X Y=0 \\
\Longrightarrow & x^{2} X^{\prime \prime} Y=-(x+1) X\left(Y^{\prime}+y Y\right) \\
\Longrightarrow & \frac{x^{2} X^{\prime \prime}}{(x+1) X}=-\frac{Y^{\prime}}{Y}-y \quad=\lambda \quad \text { separation constant }
\end{aligned}
\]

Left－hand side is a function of \(x\) ，independent of \(y\) ；Right－hand side is a function of \(y\) ，independent of \(x\) ．Hence，the above is equal to something independent of \(x\) and \(y\)

\section*{Convert a PDE into Two ODE＇s}

\section*{Example}

Use separation of variables to convert the PDE below into two ODE＇s．
\[
x^{2} u_{x x}+(x+1) u_{y}+(x+x y) u=0
\]

With \(u(x, y)=X(x) Y(y)\) ，the original PDE becomes
\[
\begin{aligned}
& x^{2} X^{\prime \prime} Y+(x+1) X Y^{\prime}+(x+1) y X Y=0 \\
\Longrightarrow & x^{2} X^{\prime \prime} Y=-(x+1) X\left(Y^{\prime}+y Y\right) \\
\Longrightarrow & \frac{x^{2} X^{\prime \prime}}{(x+1) X}=-\frac{Y^{\prime}}{Y}-y \quad=\lambda \quad \text { separation constant } \\
\Longrightarrow & \left\{\begin{array}{l}
x^{2} X^{\prime \prime}(x)-\lambda(x+1) X(x)=0 \\
Y^{\prime}(y)+(y+\lambda) Y(y)=0
\end{array}\right.
\end{aligned}
\]

\section*{Some Remarks}

1 The method of separation of variables can only solve for some linear second order PDE＇s，not all of them．

2 For the PDE＇s considered in this lecture，the method works．
3 The method may work for both homogeneous \((G=0)\) and nonhomogeneous（ \(G \neq 0\) ）PDE＇s
\[
A u_{x x}+B u_{x y}+C u_{y y}+D u_{x}+E u_{y}+F u=G .
\]

\section*{Three Classical PDE＇s}

In this lecture we focus on solving boundary－value problems of the following three classical PDE＇s that arise frequently in physics， mechanics，and engineering：

1 （One－Dimensional）Heat Equation／Diffusion Equation
\[
k u_{x x}=u_{t}, k>0
\]

2 （One－Dimensional）Wave Equation／Telegraph Equation
\[
a^{2} u_{x x}=u_{t t}
\]

3 （Two－Dimensional）Laplace Equation
\[
u_{x x}+u_{y y}=0
\]

\section*{Heat Transfer within a Thin Rod：Heat Equation}

\section*{Assumptions：}

Cross section of area \(A\)

－Heat only flows in \(x\)－direction．
－No heat escapes from the surface．
－No heat is generated in the rod．
■ Rod is homogeneous with density \(\rho\) ．

Let \(u(x, t)\) denote the temperature of the rod at location \(x\) at time \(t\) ．
Consider the quantity of heat with \([x, x+d x]:(\gamma\) ：比熱）
\[
d Q=\gamma(\rho A d x) u \Longrightarrow Q_{x}=\gamma \rho A u \Longrightarrow Q_{x t}=\gamma \rho A u_{t}
\]

Heat transfer rate through the cross section \(=-K A u_{x}\) ，and hence the net heat rate inside \([x, x+d x]\) is \(d Q_{t}=-K A u_{x}(x, t)-\left(-K A u_{x}(x+d x, t)\right)\)
\[
\begin{aligned}
d Q_{t} & =K A u\left(u_{x}(x+d x, t)-u_{x}(x, t)\right)=K A u_{x x} d x \\
& \Longrightarrow Q_{t x}=K A u_{x x}
\end{aligned}
\]

\section*{Heat Transfer within a Thin Rod：Heat Equation}

\section*{Assumptions：}

Cross section of area \(A\)

－Heat only flows in \(x\)－direction．
－No heat escapes from the surface．
－No heat is generated in the rod．
■ Rod is homogeneous with density \(\rho\) ．

Let \(u(x, t)\) denote the temperature of the rod at location \(x\) at time \(t\) ．
Hence，
\[
\begin{aligned}
\begin{cases}Q_{x t}=\gamma \rho A u_{t} \\
Q_{t x}=K A u_{x x}\end{cases} & \Longrightarrow \gamma \rho A u_{t}=K A u_{x x} \Longrightarrow\left(\frac{K}{\gamma \rho}\right) u_{x x}=u_{t} \\
& \Longrightarrow k u_{x x}=u_{t}, k>0
\end{aligned}
\]

\section*{Heat Equation：Initial and Boundary Conditions}

\section*{Initial Condition：}

Provides the spatial distribution of the temperature at time \(t=0\) ．
\[
u(x, 0)=f(x), 0<x<L
\]

\section*{Boundary Conditions：}

At the end points \(x=0\) and \(x=L\) ，give the constraints on
－\(u\) ：（Dirchlet condition），for example，（ \(u_{0}\) ：constant） \(u(L, t)=u_{0} \quad\) Temperature at the right end is held at constant．
－\(u_{x}\) ：（Neumann condition），for example，
\[
u_{x}(L, t)=0 \quad \text { The right end is insulated. }
\]
－\(u_{x}+h u\) ：（Robin condition），for example，（ \(h>0, u_{m}\) ：constants）
\[
u_{x}(L, t)=-h\left\{u(L, t)-u_{m}\right\} \quad \text { Heat is lost from the right end. }
\]

\section*{Heat Equation：Boundary－Value Problems}
－A problem involving both initial and boundary conditions is called a boundary－value problem
－At the two boundaries \(x-0\) and \(x=L\) ， one can use different kinds of conditions．

\section*{Examples：}

Cross section of area \(A\)

\[
\begin{aligned}
k u_{x x} & =u_{t}, \quad 0<x<L, \quad t>0 \\
u_{x}(0, t) & =0, \quad u(L, t)=0, \quad t>0 \\
u(x, 0) & =f(x), \quad 0<x<L
\end{aligned}
\]

Heat equation
Boundary condition

\section*{Dynamics of a String Fixed at Two Ends：Wave Equation}

\section*{Assumptions：}
－No external force．
－Tension force is large compared to gravity and is the same at all points．
－Slope of the curve is very small at all points．
■ Vertical displacement＜＜string length．
■ String has mass per unit length \(\rho\) ．
Let \(u(x, t)\) denote the vertical position（displacement） of the string at location \(x\) at time \(t\) ．

Consider the string in \([x, x+d x]\) ．Net vertical force is
\[
\begin{aligned}
T\left(\sin \theta_{2}-\sin \theta_{1}\right) & \approx T\left(\tan \theta_{2}-\tan \theta_{1}\right) \\
& =T\left\{u_{x}(x+d x, t)-u_{x}(x, t)\right\} \\
& =T u_{x x} d x
\end{aligned}
\]

\section*{Dynamics of a String Fixed at Two Ends：Wave Equation}

\section*{Assumptions：}
－No external force．
－Tension force is large compared to gravity and is the same at all points．
－Slope of the curve is very small at all points．
■ Vertical displacement＜＜string length．
■ String has mass per unit length \(\rho\) ．
Let \(u(x, t)\) denote the vertical position（displacement） of the string at location \(x\) at time \(t\) ．

Since the slope is small，the mass \(\approx \rho d x\) ．Hence
\[
\begin{aligned}
T u_{x x} d x=(\rho d x) u_{t t} & \Longrightarrow \frac{T}{\rho} u_{x x}=u_{t t} \\
& \Longrightarrow a^{2} u_{x x}=u_{t t}
\end{aligned}
\]

\section*{Wave Equation：Initial and Boundary Conditions}

\section*{Initial Conditions：}

Provide the initial displacement \(u\) and velocity \(u_{t}\) at time \(t=0\) ．
\[
u(x, 0)=f(x), u_{t}(x, 0)=g(x), 0<x<L
\]

\section*{Boundary Conditions：}

At the end points \(x=0\) and \(x=L\) ，give the constraints on \(u, u_{x}\) ，or \(u_{x}+h u\) ．Usually in the scenario of strings， the boundary conditions are
\[
\begin{aligned}
& u(0, t)=0, u(0, L)=0, t>0 \quad \text { Both ends are fixed. } \\
& u_{x}(0, t)=0, u_{x}(0, L)=0, t>0 \quad \text { Free-ends condition }
\end{aligned}
\]

\section*{Wave Equation：Boundary－Value Problems}

\section*{Examples：}

（a）Segment of string


Both ends are fixed：
\[
\begin{array}{rll}
a^{2} u_{x x} & =u_{t t}, \quad 0<x<L, \quad t>0 & \begin{array}{l}
\text { Wave } \\
\text { equation } \\
u(0, t)
\end{array}=0, \quad u(L, t)=0, \quad t>0 \\
\text { Boundary } \\
u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x), \quad 0<x<L & \begin{array}{l}
\text { condition } \\
\text { Initial } \\
\text { condition }
\end{array}
\end{array}
\]

\section*{Free Ends：}
\[
\begin{array}{rlrl}
a^{2} u_{x x} & =u_{t t}, \quad 0<x<L, \quad t>0 & & \begin{array}{l}
\text { Wave } \\
\text { equation } \\
u_{x}(0, t)
\end{array} \\
=0, \quad u_{x}(L, t)=0, \quad t>0 & \begin{array}{l}
\text { Boundary } \\
\text { condition }
\end{array} \\
u(x, 0) & =f(x), \quad u_{t}(x, 0)=g(x), \quad 0<x<L & \begin{array}{l}
\text { Initial } \\
\text { condition }
\end{array}
\end{array}
\]

\section*{Laplace＇s Equation}

Temperature as a function of position

Thermometer

－Laplace＇s equation usually occurs in time－independent problems involving potentials．
－Its solution can also be interpreted as a steady－state temperature distribution．
－Two－dimensional Laplace Equation
\[
\nabla^{2} u:=u_{x x}+u_{y y}=0
\]

■ Three－dimensional Laplace Equation
\[
\nabla^{2} u:=u_{x x}+u_{y y}+u_{z z}=0
\]

\section*{Laplace＇s Equation：Boundary Conditions}

\section*{Boundary Conditions：}

In the \(x\)－direction，at the end points \(x=0\) and \(x=a\) ，give the constraints on \(u, u_{x}\) ，or \(u_{x}+h u\) ．

In the \(y\)－direction，at the end points \(y=0\) and \(y=b\) ，give the constraints on \(u, u_{y}\) ，or \(u_{y}+h u\) ．

\section*{Examples：}
－Both ends in \(x\) are insulated
\[
u_{x}(0, y)=0, \quad u_{x}(a, y)=0
\]
－Temperatures of two ends in \(y\) are held at different distributions
\[
u(x, 0)=f(x), \quad u(x, b)=g(x)
\]

\section*{Laplace＇s Equation：Boundary－Value Problems}

\section*{Example：}
\[
\begin{aligned}
u_{x x}+u_{y y} & =0, \quad 0<x<a, \quad 0<y<b \\
u_{x}(0, y) & =0, \quad u_{x}(a, y)=0, \quad 0<y<b \\
u(x, 0) & =f(x), \quad u(x, b)=g(x), \quad 0<x<a
\end{aligned}
\]

Laplace＇s equation

Boundary condition
Boundary condition

\section*{Modifications of Heat and Wave Equations}

In the derivation of the heat equation and the wave equation，we assume that there is no internal or external influences．For example，no heat escapes from the surface，no heat is generated in the rod，no external force act on the string，etc．

Taking external and internal influences into account，more general forms of the heat equation and the wave equation are the following：
\[
\begin{aligned}
k u_{x x}+G\left(x, t, u, u_{x}\right) & =u_{t} \\
a^{2} u_{x x}+F\left(x, t, u, u_{t}\right) & =u_{t t}
\end{aligned}
\]

Heat Equation
Wave Equation

\section*{Example：}
\[
\begin{aligned}
k u_{x x}-h\left(u-u_{m}\right) & =u_{t} & & \begin{array}{l}
\text { heat transfers from the surface to an environment } \\
\text { with constant temperature } u_{m}
\end{array} \\
a^{2} u_{x x}+f(x, t) & =u_{t t} \quad & & \text { External force } f \text { acts on the string }
\end{aligned}
\]

\section*{Homogeneous vs．Nonhomogeneous Boundary Conditions}

Homogeneous Boundary Condition：
\[
u_{x}(0, y)=0, \quad u_{x}(a, y)=0, \quad u(x, 0)=0, \quad u(0, L)=0
\]

Nonhomogeneous Boundary Condition：
\[
u_{x}(0, y)=f(y), \quad u_{x}(a, y)=g(y), \quad u(x, L)=u_{m}
\]

Typically，when using separation of variables，start with the independent variable associated with homogeneous boundary conditions．

1 Separation of Variables and Classical PDE＇s

2 Wave Equation

3 Laplace＇s Equation

\section*{Wave Equation：a Boundary－Value Problem}
\[
\begin{aligned}
\text { Solve } u(x, t): \quad a u_{x x} & =u_{t t}, \quad 0<x<L, \quad t>0 \\
\text { subject to : } \quad u(0, t) & =0, \quad u(L, t)=0, \quad t>0 \\
& u(x, 0)
\end{aligned}=f(x), \quad u_{t}(x, 0)=g(x), \quad 0<x<L
\]

We focus on solving the above BVP（both ends are fixed）．
Step 1：Separation of variables：
Assume that the solution \(u(x, t)=X(x) T(t), X, T \neq 0\) ．Then，
\[
\begin{aligned}
& a^{2} u_{x x}=u_{t t} \Longrightarrow a^{2} X^{\prime \prime} T=X T^{\prime \prime} \Longrightarrow \frac{X^{\prime \prime}}{X}=\frac{T^{\prime \prime}}{a^{2} T}=-\lambda \\
& \Longrightarrow \begin{cases}X^{\prime \prime}+\lambda X & =0 \\
T^{\prime \prime}+a^{2} \lambda T & =0\end{cases}
\end{aligned}
\]

The 2 homogeneous boundary conditions become \(X(0)=X(L)=0\) ．

\section*{Solve in the \(x\)－Dimension and Find \(\lambda\)}

Solve：\(\quad X^{\prime \prime}+\lambda X=0, \quad T^{\prime \prime}+a^{2} \lambda T=0\)
subject to ：\(\quad X(0)=0, \quad X(L)=0\)
\[
X(x) T(0)=f(x), \quad X(x) T^{\prime}(0)=g(x), \quad 0<x<L
\]

Step 2：\(\lambda\) remains to be determined．What values should \(\lambda\) take？
■ \(\lambda=0: X(x)=c_{1}+c_{2} x\) ．\(X(0)=X(L)=0 \Longrightarrow c_{1}=c_{2}=0\) ．
2 \(\lambda=-\alpha^{2}<0: X(x)=c_{1} e^{-\alpha x}+c_{2} e^{\alpha x}\) ．
Plug in \(X(0)=X(L)=0\) ，we get \(c_{1}=c_{2}=0\) ．
\(3 \lambda=\alpha^{2}>0: X(x)=c_{1} \cos (\alpha x)+c_{2} \sin (\alpha x)\) ．
Plug in \(X(0)=X(L)=0\) ，we get \(c_{1}=0\) ，and \(c_{2} \sin (\alpha L)=0\) ．Hence， \(c_{2} \neq 0\) only if \(\alpha L=n \pi\) ．
Since \(X \neq 0\) ，pick \(\lambda=\frac{n^{2} \pi^{2}}{L^{2}}, n=1,2, \ldots \Longrightarrow X(x)=c_{2} \sin \frac{n \pi}{L} x\) ．

\section*{Solve in \(t\)－Dimension and Superposition}

Solve：\(\quad X^{\prime \prime}+\lambda X=0, \quad T^{\prime \prime}+a^{2} \lambda T=0\)
subject to ：\(\quad X(0)=0, \quad X(L)=0\)
\[
X(x) T(0)=f(x), \quad X(x) T^{\prime}(0)=g(x), \quad 0<x<L
\]

Step 3：Once we fix \(\lambda=\frac{n^{2} \pi^{2}}{L^{2}}, n=1,2, \ldots\) ，we obtain
\[
\begin{aligned}
& X(x)=c_{2} \sin \left(\frac{n \pi}{L} x\right), \quad T(t)=c_{3} \cos \left(\frac{n \pi a}{L} t\right)+c_{4} \sin \left(\frac{n \pi a}{L} t\right) \\
& \Longrightarrow u_{n}(x, t)=\left\{A_{n} \cos \left(\frac{n \pi a}{L} t\right)+B_{n} \sin \left(\frac{n \pi a}{L} t\right)\right\} \sin \left(\frac{n \pi}{L} x\right), \\
&\left(A_{n}:=c_{2} c_{3}, B_{n}:=c_{2} c_{4}\right)
\end{aligned}
\]
\(\Longrightarrow u(x, t):=\sum_{n=1}^{\infty} u_{n}(x, t)\) is a solution，by the superposition principle．

\section*{Plug in Initial Condition，Revoke Fourier Series，and Done}
\[
\left.\begin{array}{rl}
\text { Solve } u(x, t): \quad a u_{x x} & =u_{t t}, \quad 0<x<L, \quad t>0 \\
\text { subject to : } \quad u(0, t) & =0, \quad u(L, t)=0, \quad t>0 \\
& u(x, 0)
\end{array}=f(x), \quad u_{t}(x, 0)=g(x), \quad 0<x<L\right\}
\]

Step 4：Plug in the initial conditions and find \(\left\{A_{n}, B_{n} \mid n=1,2, \ldots\right\}\) ．
\[
\begin{aligned}
& u(x, 0)=f(x), \quad u(x, t)=\sum_{n=1}^{\infty}\left\{A_{n} \cos \left(\frac{n \pi a}{L} t\right)+B_{n} \sin \left(\frac{n \pi a}{L} t\right)\right\} \sin \left(\frac{n \pi}{L} x\right) \\
& \Longrightarrow f(x)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi}{L} x\right), \quad 0<x<L
\end{aligned}
\]

From the Fourier sine series expansion on \((0, L)\) ，we get
\[
A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) d x
\]

\section*{Plug in Initial Condition，Revoke Fourier Series，and Done}
\[
\begin{array}{|lrl}
\text { Solve } u(x, t): & a u_{x x} & =u_{t t}, \quad 0<x<L, \quad t>0 \\
\text { subject to : } & u(0, t) & =0, \quad u(L, t)=0, \quad t>0 \\
& u(x, 0) & =f(x), \quad u_{t}(x, 0)=g(x), \quad 0<x<L
\end{array}
\]

Step 4：Plug in the initial conditions and find \(\left\{A_{n}, B_{n} \mid n=1,2, \ldots\right\}\) ．
\[
\begin{aligned}
& u_{t}(x, 0)=g(x), \quad u(x, t)=\sum_{n=1}^{\infty}\left\{A_{n} \cos \left(\frac{n \pi a}{L} t\right)+B_{n} \sin \left(\frac{n \pi a}{L} t\right)\right\} \sin \left(\frac{n \pi}{L} x\right) \\
& \Longrightarrow g(x)=\sum_{n=1}^{\infty} B_{n} \frac{n \pi a}{L} \sin \left(\frac{n \pi}{L} x\right), \quad 0<x<L
\end{aligned}
\]

From the Fourier sine series expansion on \((0, L)\) ，we get
\[
B_{n} \frac{n \pi a}{L}=\frac{2}{L} \int_{0}^{L} g(x) \sin \left(\frac{n \pi}{L} x\right) d x . \Longrightarrow B_{n}=\frac{2}{n \pi a} \int_{0}^{L} g(x) \sin \left(\frac{n \pi}{L} x\right) d x
\]

\section*{Final Solution}
\[
\left.\begin{array}{rl}
\text { Solve } u(x, t): \quad a u_{x x} & =u_{t t}, \quad 0<x<L, \quad t>0 \\
\text { subject to : } \quad u(0, t) & =0, \quad u(L, t)=0, \quad t>0 \\
& u(x, 0)
\end{array}=f(x), \quad u_{t}(x, 0)=g(x), \quad 0<x<L\right\}
\]

Step 5：The final solution is
\[
\begin{aligned}
u(x, t) & =\sum_{n=1}^{\infty}\left\{A_{n} \cos \left(\frac{n \pi a}{L} t\right)+B_{n} \sin \left(\frac{n \pi a}{L} t\right)\right\} \sin \left(\frac{n \pi}{L} x\right) \\
& =\sum_{n=1}^{\infty} C_{n} \sin \left(\frac{n \pi a}{L} t+\phi_{n}\right) \sin \left(\frac{n \pi}{L} x\right) \\
A_{n} & =\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) d x, \quad B_{n}=\frac{2}{n \pi a} \int_{0}^{L} g(x) \sin \left(\frac{n \pi}{L} x\right) d x \\
C_{n} & =\sqrt{A_{n}^{2}+B_{n}^{2}}, \quad \sin \phi_{n}=\frac{A_{n}}{C_{n}}, \cos \phi_{n}=\frac{B_{n}}{C_{n}}
\end{aligned}
\]

\section*{Standing Waves}

The final solution
\[
u(x, t)=\sum_{n=1}^{\infty} C_{n} \sin \left(\frac{n \pi a}{L} t+\phi_{n}\right) \sin \left(\frac{n \pi}{L} x\right)
\]
is a linear combination of standing waves or normal modes
\[
u_{n}(x, t)=C_{n} \sin \left(\frac{n \pi a}{L} t+\phi_{n}\right) \sin \left(\frac{n \pi}{L} x\right), n=1,2, \ldots
\]

For a normal mode \(n\) ，at a fixed location \(x\) ，the string moves with
－time－varying amplitude \(C_{n} \sin \left(\frac{n \pi}{L} x\right)\)
－frequency \(f_{n}:=\frac{n \pi a / L}{2 \pi}=\frac{n a}{2 L}\)
Fundamental Frequency：\(f_{1}:=\frac{\pi a / L}{2 \pi}=\frac{a}{2 L}\)

（a）First standing wave

（b）Second standing wave

\section*{1 Separation of Variables and Classical PDE＇s}

\section*{2 Wave Equation}

3 Laplace＇s Equation

\section*{Laplace＇s Equation：a Boundary－Value Problem}

Solve \(u(x, y): \quad u_{x x}+u_{y y}=0, \quad 0<x<a, \quad 0<y<b\) subject to ：\(\quad u_{x}(0, y)=0, \quad u_{x}(a, y)=0, \quad 0<y<b\) \(u(x, 0)=0, \quad u(x, b)=f(x), \quad 0<x<a\)

We focus on solving the above BVP（both ends \(x=0\) and \(x=a\) are insulated）．

Step 1：Separation of variables：
Assume that the solution \(u(x, y)=X(x) Y(y), X, Y \neq 0\) ．Then，
\[
\begin{aligned}
u_{x x}+u_{y y}=0 & \Longrightarrow X^{\prime \prime} Y+X Y^{\prime \prime}=0 \Longrightarrow \frac{X^{\prime \prime}}{X}=-\frac{Y^{\prime \prime}}{Y}=-\lambda \\
& \Longrightarrow\left\{\begin{array}{c}
X^{\prime \prime}+\lambda X=0 \\
Y^{\prime \prime}-\lambda Y=0
\end{array}\right.
\end{aligned}
\]

The 3 homogeneous boundary conditions become \(X^{\prime}(0)=X^{\prime}(a)=Y(0)=0\) ．

\section*{Solve in the \(x\)－Dimension and Find \(\lambda\)}

Solve ：\(\quad X^{\prime \prime}+\lambda X=0, \quad Y^{\prime \prime}-\lambda Y=0\)
subject to ：\(\quad X^{\prime}(0)=0, \quad X^{\prime}(a)=0\)
\[
Y(0)=0, \quad X(x) Y(b)=f(x), \quad 0<x<a
\]

Step 2：\(\lambda\) remains to be determined．What values should \(\lambda\) take？
1 \(\lambda=0: X(x)=c_{1}+c_{2} x . X^{\prime}(0)=X^{\prime}(a)=0 \Longrightarrow c_{2}=0\) ．
\(2 \lambda=-\alpha^{2}<0: X(x)=c_{1} e^{-\alpha x}+c_{2} e^{\alpha x}\) ．
Plug in \(X^{\prime}(0)=X^{\prime}(a)=0\) ，we get \(c_{1}=c_{2}=0\) ．
\(3 \lambda=\alpha^{2}>0\) ：\(X(x)=c_{1} \cos (\alpha x)+c_{2} \sin (\alpha x)\) ．
Plug in \(X^{\prime}(0)=X^{\prime}(a)=0\) ，we get \(c_{2}=0\) ，and \(c_{1} \alpha \sin (\alpha a)=0\) ．
Hence，\(c_{1} \neq 0\) only if \(\alpha a=n \pi\) ．
Since \(X \neq 0\) ，pick \(\lambda=\frac{n^{2} \pi^{2}}{a^{2}}, n=0,1,2, \ldots \Longrightarrow X(x)=c_{1} \cos \left(\frac{n \pi}{a} x\right)\) ．

\section*{Solve in \(y\)－Dimension and Superposition}

Solve ：\(\quad X^{\prime \prime}+\lambda X=0, \quad Y^{\prime \prime}-\lambda Y=0\)
subject to ：\(\quad X^{\prime}(0)=0, \quad X^{\prime}(a)=0\)
\[
Y(0)=0, \quad X(x) Y(b)=f(x), \quad 0<x<a
\]

Step 3：Once we fix \(\lambda=\frac{n^{2} \pi^{2}}{a^{2}}, n=0,1,2, \ldots\) ，we obtain \(X(x)=c_{1} \cos \left(\frac{n \pi}{a} x\right)\)
\[
\begin{aligned}
Y(y) & =\left\{\begin{array}{ll}
c_{3}+c_{4} y, & n=0 \\
c_{3} \cosh \left(\frac{n \pi}{a} y\right)+c_{4} \sinh \left(\frac{n \pi}{a} y\right), & n \geq 1
\end{array} \quad\left(Y(0)=0 \Longrightarrow c_{3}=0\right)\right. \\
\Longrightarrow u_{n}(x, y) & =\left\{\begin{array}{ll}
A_{0} y, & n=0 \\
A_{n} \cos \left(\frac{n \pi}{a} x\right) \sinh \left(\frac{n \pi}{a} y\right), & n \geq 1
\end{array}, \quad\left(A_{n}:=c_{1} c_{4}\right)\right. \\
\Longrightarrow u(x, y) & :=\sum_{n=0}^{\infty} u_{n}(x, y) \text { is a solution, by the superposition principle. }
\end{aligned}
\]

\section*{Plug in Initial Condition，Revoke Fourier Series，and Done}

Solve \(u(x, y): \quad u_{x x}+u_{y y}=0, \quad 0<x<a, \quad 0<y<b\) subject to ：\(\quad u_{x}(0, y)=0, \quad u_{x}(a, y)=0, \quad 0<y<b\) \(u(x, 0)=0, \quad u(x, b)=f(x), \quad 0<x<a\)

Step 4：Plug in the initial conditions and find \(\left\{A_{n} \mid n=1,2, \ldots\right\}\) ．
\[
\begin{aligned}
& u(x, b)=f(x), \quad u(x, y)=A_{0} y+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi}{a} x\right) \sinh \left(\frac{n \pi}{a} y\right) \\
& \Longrightarrow f(x)=A_{0} b+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi}{a} x\right) \sinh \left(\frac{n \pi}{a} b\right), \quad 0<x<a
\end{aligned}
\]

From the Fourier cosine series expansion on \((0, a)\) ，we get
\[
2 A_{0} b=\frac{2}{a} \int_{0}^{a} f(x) d x, \quad A_{n} \sinh \left(\frac{n \pi}{a} b\right)=\frac{2}{a} \int_{0}^{a} f(x) \cos \left(\frac{n \pi}{a} x\right) d x
\]

\section*{Final Solution}

Solve \(u(x, y): \quad u_{x x}+u_{y y}=0, \quad 0<x<a, \quad 0<y<b\) subject to ：\(\quad u_{x}(0, y)=0, \quad u_{x}(a, y)=0, \quad 0<y<b\) \(u(x, 0)=0, \quad u(x, b)=f(x), \quad 0<x<a\)
Step 5：The final solution is
\[
\begin{aligned}
u(x, y) & =A_{0} y+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi}{a} x\right) \sinh \left(\frac{n \pi}{a} y\right) \\
A_{0} & =\frac{1}{a b} \int_{0}^{a} f(x) d x \\
A_{n} & =\frac{2}{a \sinh \left(\frac{n \pi}{a} b\right)} \int_{0}^{a} f(x) \cos \left(\frac{n \pi}{a} x\right) d x, \quad n \geq 1
\end{aligned}
\]```

