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Fourier Series is invented by Joseph Fourier, which basically asserts that
most periodic functions can be represented by infinite sums of sine and
cosine functions.

Jean Baptiste Joseph Fourier, (1768 - 1830).
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Fourier's Motivation: Solving the Heat Equation

0? 0
Solve u(z, 1) : kﬁi:tg:&i;a O<z<L, t>0
subject to:  w(0,t) =0, wu(L,t)=0, t>0 Boundary
U(:C, 0) = f(x)7 O0<z<L Icr:)iﬁidailtion

The above is called the Heat Equation, which can
be derived from heat transfer theory.

Prior to Fourier, there is no known solution to the (‘) {‘)

BVP if flz) (initial temperature distribution over 0 L X
the space) is general.

Below, let's try to follow Fourier’s steps in solving this problem and see
how Fourier Series is motivated.
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Fourier's Motivation: Solving the Heat Equation

0? 0
Solve u(z, 1) : kﬁi:tg:&i;a O<z<L, t>0
subject to:  w(0,t) =0, wu(L,t)=0, t>0 Boundary
U(:C, 0) = f(x)7 O0<z<L Icr:)iﬁidailtion

Step 1: Assume that the solution takes the form ’ uw(z, t) = X(z) T(1) ‘
(This approach was also taken by other predecessors like D. Bernoulli.)

Step 2: Convert the original PDE into the following:

X" T X"4+AX =0
EX'"T=XT = —=—=-)\ =
X kT { T + XkT =0.
Boundary condition becomes X(0) 7(¢) = X(L)T(t) = 0.

Since we want non-trivial solutions, 7(t) # 0 = X(0) = X(L) = 0.
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Fourier's Motivation: Solving the Heat Equation

X"+ XX =0
Sol 1) = X(x)T(¢) :
olve u(z,t) = X(z) T(?) {T,Jr)\kT _o
subject to:  X(0) = X(L) =0, ot
U(I, 0) = f(l’), 0<z<lL l:ryﬁic?iltion

Step 3: )\ remains to be determined. What values should A take?
A=0 X(z)=c1+ cz. X(0)=X(L)=0 = ¢; =c3=0.
A=—a? <0: X(2) = c1e7 9% + cpe™®.

Plug in X(0) = X(L) =0, we get ¢; = ¢, =0.
A=a?>0: X(z) = ¢ cos(az) + ¢ sin(ax).

Plug in X(0) = X(L) =0, we get ¢; =0, and ¢y sin(aL) = 0.
Hence, ¢3 # 0 only if oLl = nm.

To obtain a non-trivial solution, pick | A= ——, n=1,2,...|
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Fourier's Motivation: Solving the Heat Equation

X"+AX =0
Solve 1) = X(x)T(¢) :
ve wz, 1) = Xa)T(1) {T’+)\kT 0.
subject to:  X(0) = X(L) =0, ot
U(I, 0) = f(l’), 0<z<L l:ryﬁic?iltion
Step 4: Once we fix A\ = ”QLQ’Z, n=1,2,..., we obtain

2 2
X(z) = cosin (n—g:r) . T(t) = czexp (—knL;Tt)

TL27T

2
= uy(z,t) = A, sin (%x) exp (—kL2t> , (A = cac3)

Step 5: Plug in the initial condition = f(z) = A, sin (n—g )

not true for general f(z)!
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Fourier's Motivation: Solving the Heat Equation

X"+ XX =0
Sol 1) = X(x) T(¢) -
olve u(z,t) = X(z) T(?) {T,Jr)\kT _o
subject to:  X(0) = X(L) =0, ot
U(I, 0) = f(l’), 0<z<lL l:ryﬁic?iltion

Step 6: By the superposition principle, below satisfies the PDE.

Al nw n*m?
Z A, sin (Tx> exp (k 7 t> for any N
n=1
al nw
The question is, can it satisfy u(z,0) = Z A, sin (— ) = flx)?
n=1 L

Not likely
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Key Observation: f(z) is arbitrary and hence not necessarily a finite sum
of sine functions.

Fourier’s Idea: How about an infinite series? If we can represent
arbitrary f(z) by the infinite series (for 0 < z < L)

> nw
=2 Awsin (7).
fz) HZ:l sin { -
and we can find the values of {4,}, the problem is solved.

This motivates the theory of Fourier Series.
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Orthogonal Functions

Orthogonal Functions

# DE Lecture 13



Orthogonal Functions

Functions as Vectors: Inner Product

Definition (Inner Product of Functions)

The inner product of f;(z) and f2(z) on an interval [a, b] is defined as

b
mﬁwa/ﬁwmww

Once inner product is defined, we can accordingly define norm.

Definition (Norm of a Function)

The norm of a function f(x) on an interval [a, b] is

@) = VD = /(%mzw
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Orthogonal Functions

Orthogonality of Functions

Definition (Orthogonal Functions)

fi(z) and fo(z) are orthogonal on an interval [a, 0] if (f1, f2) = 0.

Definition (Orthogonal Set)

{b0(x), p1(),-- -} are orthogonal on an interval [a, b] if

b
<¢mv ¢n> = / ¢m(x)¢n(l') de=0, m#n.

Definition (Orthonormal Set)

{b0(x), p1(x),-- -} are orthonomal on an interval [a, b] if they are
orthogonal and ||¢,,(z)|| = 1 for all n.
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Orthogonal Functions

Examples

Example (Orthogonal or Not Depends on the Inverval)

The functions f(7) = z and fo(z) = 7° are orthogonal on the interval
[a,B], a < b, only if a = —b.

Proof: When a < b,

b b
(x,z’z):/ 23 dr = B:LA] :i(a4fb4):0 & a+b=0
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Orthogonal Functions

Examples

Example (Exponential Functions are Not Orthogonal)

For A1, A2 € R, fi(z) = €7 and fo(z) = €27 are not orthogonal on any
interval [a, b], a < b.

Proof: If \; = —)s,
b
<6)\11, 6)\21> — / e()\1+>\2)z dr=b—a # 0.
If Ay #£ =g,

b )\1+A2 b >\1+A2
(e et :/ ePrA)e gy — ¢ i " #0,
a

A1+ A

since an exponential function is strictly monotone.
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Orthogonal Functions

Examples

The set of functions {sin (“Zz) | n=1,2,...} are orthogonal on [0, L].

Proof: Let ¢,(z) := sin (“Zz). For m # n,
omtn) = [ sn (7)o (')
[ () e (50
m—n)m L
T o <(L)x)]o

- T {Sm <(m+Ln)%)]:

0-0=0.
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Orthogonal Functions

Orthogonal Series Expansion

Question: For a infinite orthogonal set {¢,(z) | n=10,1,...} on some
interval [a, b], can we expand an arbitrary function f(z) as

o0

n=0
If so, how to find the coefficients {¢,}?

We answer the former question later with a particular set of orthogonal
functions.

For the latter, simply take the inner product (f, ¢,,) to find the
coefficient ¢,,!

(fipm) = Z el Dms D) = Coml|Bml|? = m = (f ¢m>_

n=0
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Orthogonal Functions

Coefficients in the Solution of the Heat Equation

Recall in solving the Heat equation, the last step is to determine

{A, | n=1,2,...} such that f(z) ZA sm(—)

Based on the principle developed above, we obtain A4,, = |<|f¢H> where

¢n(z) :=sin (22 7).

o= [ sin () ar= g [ {1 con (30) b aa= £

2 (L . /T
Hence, A, = Z/o f(z) sin (T:z:) dz, and

z,t) = i_o:l A, sin (%x) exp (—kn222t>
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Orthogonal Functions

Remaining question:

flx) = i A, sin (n—;m)

Will the infinite series converge for z € [0, L]?

Does it converge to the function f(x) for z € [0, L]?
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Orthogonal Functions

Complete Set

For an arbitrary (infinite) set of orthogonal functions {¢,(z)}, it is not
true that any function f(z) in a space S of functions, can be truthfully
represented by its orthogonal series expansion.

Only when the set of orthogonal functions is complete in S, the
orthogonal series expansion will (essentially) converge to any f(z) in S.

Example

{sin(nz) | n=1,2,...} is orthogonal on [—7, 7| but not complete in the
set of all continuous functions defined on [—m, 7].

It is quite straightforward to show that (sin(mz), sin(nz)) = 0 for any
n# mon [—7,7].

To show that it is not complete, note that any even function (like 1, 22,
cos ) cannot be represented by > ¢, sin(nz) when z < 0, because the
series is an odd function.
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Fourier Series

Fourier Series
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Fourier Series

A Orthogonal Set of Functions

The following set of functions are orthogonal on [—p, p] (in fact,

[a, a + 2p] for any a € R).

l,cos(E >,sin<ﬂx> n=12,...p.
p p

If we expand a function using the above orthogonal set of functions, we
obtain the Fourier series of the function.

Later we will see, this set is complete in the set of all continuous
functions with continuous derivatives defined on [a, a + 27].
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Fourier Series

Definition of Fourier Series

Definition

The Fourier series of a function f(z) defined on the interval (—p, p) is

ag > nmw . [ nm
— + apcos | —zx ) + b, sin (—x) } ,
3+ 3 {omon () b (5

1 [P 1 [P nw 1 [P . nmw
a = ;[pf<x> dz, ap = ;/fpf(@ (?) dz, by = ;[pf(w) sin (7) dz.

These coefficients are called Fourier coefficients.

Note: In the textbook, Fourier series is defined over the interval (—p, p).
In fact, we can also define it over the interval (a, a + 2p) for any a € R.

The formulas for the Fourier series and Fourier coefficients are the same
except that the integral is taken from a to a + 2p.
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Fourier Series

Convergence of Fourier Series

Theorem
Let f and f' be piecewise continuous on [—p, p|.

On (—p, p), its Fourier series converges to

m f(z) at a point where f(z) is continuous

[ % (flz+) + f(z—)) where f(z) is discontinuous.

Question:
How about the end Here
points +p ? . .
=1 h —) =1 — h).
fla+) ifgf(wr ), flz—) }}ﬁ}f(x )

Answered later

through periodic

extension. Note: Again, the interval of interest can be
changed from [—p, p] to [a, a + 2p] for any a € R.
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Fourier Series

Periodic Extension

Note that a Fourier series consists of periodic functions:

Function Fundamental Period
(mr ) 2p
cos [ — —=
D n
) <n7r ) 2p
sin [ — =
P n

Hence, if a Fourier series converges for = € [—p, p| (or [a, a + 2p]), it also

converges for any z € R.

Moreover, it is a periodic function with fundamental period 2p (the
largest fundamental period of its components).

What does it converge to? It converges to the 2p-periodic extension of
f(z), except the discontinuities.
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Fourier Series

At x = £p, £3p,+5p, ..., the Foruier series of f(z) converges to

fl=p+) + flp—)

5 . where fl—p) = lim fla), fip-) = lim f(z)
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Fourier Series

\/

Fourier series of f(x)
/ °
* (\g . |

[ )
plp 3p
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Fourier Series

In other words,

The Fourier series of a piecewise continuous periodic function f(z) with
fundamental period 2p that has piecewise continuous f/(z) is

ap > nmw . ([ nm

— + a,cos | —x | + b, sin (m) } ,

2 ;{ ( p ) p
where

ap = ;/I;f(a:) cos <7er) dz, by, = ;/if(x) sin (TZTI> dz,

and on R it converges to

m f(z) at a point where f(x) is continuous

L] % (flz+) + f(z—)) at a point where f(x) is discontinuous.
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Fourier Series

Examples

0, —rT<z<0
T—z, 0<z<m
the Fourier series converge to at =0 and z= 77

Expand f(z) = into a Fourier series. What does
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Fourier Series

Complex Form

For a Fourier series % + Z {ancos (mrx) + b, sin (mrm) } since
p p

n=1

cos [ g = 1 (ei%z + eii%m) , sin M) = l (ei%m - eﬂ%z)
P 2 P 27

it can be rewritten as follows:

ag + i 1 ( z—"m + 71Mm) + b 1 ( PSR 72'Mz>

— — P — P — P

5 2 an2 e o e e
Z n z ry  Op+ zb —inm

inm ap Gy — by, ap, + by,
Cn —_— = ——

er , C=—, Ch=

n—=-—oo
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Fourier Series

Complex Form

From the fact that g = %, ¢, = @5 ¢, = Sutibs and

1 a+2p 1 a+2p
ap, = 7/ f(z) cos (mm) dz, b, = f/ fz) sin (mr > dz,
bJa p DJa p

one can verify that the Fourier series of a function f(z) can be
represented in the complex form

o0

inm inm

+2
z - e AP
cper ¥, where ¢, = — fz)e” v *|
2p Ja

n—=—oo
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Fourier Series

Complex Form

On the other hand, if we extend the definition of inner product to
complex-valued functions:

Definition (Inner Product of Complex-Valued Functions)

The inner product of f;(z) and f2(z) on an interval [a, b] is defined as

b
i fo) = / A@f(a) do

Then, it is easy to verify that {e%m | ne Z} is an orthogonal set on

any [a, a + 2p|, and the coefficients in the expansion are exactly the same
as above.
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Fourier Series

Even and Odd Functions

m f(z) is an Odd Function if f(z) = —f(—z).
m f(z) is an Even Function if f(z) = f{—x).

m Both fi(z) and f5(z) are even (odd) = fi(z)fa(2) is even.
m fi(z) is odd but fg( z) is even = fi(z)fo(z) is odd.
m Both fi(z) and f5(z) are even (odd) = fi(z) £ fo(z) is even (odd).

= xlseven:[af dx—Q/f

m f(z) is odd = [ flz) de =




Fourier Series

Fourier Series of Even and Odd Functions

Recall: Fourier series of a function f{z) on (—p, p) is

o0
ag nm . nm
Ty —z)+b —
5 {a,mos(px) nsm(px)},

n=1

with Fourier coefficients

_ 17 _Jo fis odd
ag = D _pf(l') dz - {i fopf(x) dm fIS even
1 [P nm 0 fis odd
ap = 5 7pf(:E) cos ( ’ :z:> dr = {?) opf(x) oS (n?ﬁx) dz [is even
b= [ s (5) as = {’% J fwysin () do fis odd
PJ-p p 0 fis even

DE Lecture 13



Fourier Series

Fourier Series of Even and Odd Functions

Fourier Series of an Even Function f(z) on (—p, p):

o0
ao nm 2/” (mr)
——&—g apcos | —z), ap=-— flr)cos | —=x | dx
2 = (p ) »Jo (@) p

Constant + a Series of Cosine Functions

Fourier Series of an Odd Function f(z) on (—p, p):

Z by, sin (mr$> , bp= 7/ f(z) sin <mx) dzx
1 p b Jo p

a Series of Sine Functions
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Fourier Series

Fourier Cosine and Sine Series

The Fourier cosine series of a function f(z) defined on (0, p) is

- nw 2/” (nﬂ' )
— | apcos | —z |, a,=-— flz)cos | —=x | dux.
2 n; <p ) P Jo (@) P

The Fourier sine series of a function f(z) defined on (0, p) is

Z by, sin (mx> , bp= 7/ f(z) sin <mx> dz.
1 p P Jo p
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Fourier Series

Half-Range Expansions

3 options to expand a function f{z) defined on the interval (0, L):
Fourier Cosine Series: Take p := L, and expand it as

+Zancos( /f cos —1:) dx.

Fourier Sine Series: Take p := L, and expand it as

Zb sm( / f(z) sin —x) dx.

Fourier Series: Take a:= 0, 2p:= L, and expand it as

o0
- 2nT 2n7r
E e L% where ¢, = / fzx)

n——oo
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Fourier

\/
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Fourier Series

Expansion in Fourier cosine series

-~ ~ -~ -~ ~
P N\ /7 \:/ N\ | \ /7 ~

| \/
: \'
|

\/
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Fourier Series

Expansion in Fourier sine series
A
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/
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Fourier Series

FExpansion in Fourier series
A

7S 75 1 7S 7 7S
i/ W/ /
/ / / / /

| |

—L L

\/
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