Chapter 11：Fourier Series

王奕翔
Department of Electrical Engineering
National Taiwan University
ihwang＠ntu．edu．tw

December 10， 2013

Fourier Series is invented by Joseph Fourier，which basically asserts that most periodic functions can be represented by infinite sums of sine and cosine functions．

Jean Baptiste Joseph Fourier，（1768－1830）．

Fourier＇s Motivation：Solving the Heat Equation

Solve $u(x, t): \quad k \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}, \quad 0<x<L, \quad t>0$
subject to ：$\quad u(0, t)=0, \quad u(L, t)=0, \quad t>0$ $u(x, 0)=f(x), \quad 0<x<L$

Boundary condition

Initial condition

The above is called the Heat Equation，which can be derived from heat transfer theory．

Prior to Fourier，there is no known solution to the BVP if $f(x)$（initial temperature distribution over
 the space）is general．

Below，let＇s try to follow Fourier＇s steps in solving this problem and see how Fourier Series is motivated．

Fourier＇s Motivation：Solving the Heat Equation

Solve $u(x, t): \quad k \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}, \quad 0<x<L, \quad t>0$ subject to ：$\quad u(0, t)=0, \quad u(L, t)=0, \quad t>0$

$$
u(x, 0)=f(x), \quad 0<x<L
$$

Boundary condition
Initial condition

Step 1：Assume that the solution takes the form $u(x, t)=X(x) T(t)$ ．
（This approach was also taken by other predecessors like D．Bernoulli．）
Step 2：Convert the original PDE into the following：

$$
k X^{\prime \prime} T=X T^{\prime} \Longrightarrow \frac{X^{\prime \prime}}{X}=\frac{T^{\prime}}{k T}=-\lambda \Longrightarrow \begin{cases}X^{\prime \prime}+\lambda X & =0 \\ T^{\prime}+\lambda k T & =0\end{cases}
$$

Boundary condition becomes $X(0) T(t)=X(L) T(t)=0$ ．
Since we want non－trivial solutions，$T(t) \neq 0 \Longrightarrow X(0)=X(L)=0$ ．

Fourier＇s Motivation：Solving the Heat Equation

$$
\begin{array}{|lll|}
\hline \text { Solve } u(x, t)=X(x) T(t): & \begin{cases}X^{\prime \prime}+\lambda X & =0 \\
T^{\prime}+\lambda k T & =0\end{cases} \\
\text { subject to : } & X(0)=X(L)=0, & \begin{array}{l}
\text { Boundary } \\
\text { condition }
\end{array} \\
& u(x, 0)=f(x), \quad 0<x<L & \begin{array}{l}
\text { Initial } \\
\text { condition }
\end{array} \\
\hline
\end{array}
$$

Step 3：λ remains to be determined．What values should λ take？
$1 \lambda=0: X(x)=c_{1}+c_{2} x . \quad X(0)=X(L)=0 \Longrightarrow c_{1}=c_{2}=0$ ．
$2 \lambda=-\alpha^{2}<0: X(x)=c_{1} e^{-\alpha x}+c_{2} e^{\alpha x}$ ．
Plug in $X(0)=X(L)=0$ ，we get $c_{1}=c_{2}=0$ ．
$3 \lambda=\alpha^{2}>0: X(x)=c_{1} \cos (\alpha x)+c_{2} \sin (\alpha x)$ ．
Plug in $X(0)=X(L)=0$ ，we get $c_{1}=0$ ，and $c_{2} \sin (\alpha L)=0$ ．
Hence，$c_{2} \neq 0$ only if $\alpha L=n \pi$ ．
To obtain a non－trivial solution，pick $\lambda=\frac{n^{2} \pi^{2}}{L^{2}}, n=1,2, \ldots$

Fourier＇s Motivation：Solving the Heat Equation

$$
\begin{array}{|rll|}
\hline \text { Solve } u(x, t)=X(x) T(t): & \begin{cases}X^{\prime \prime}+\lambda X=0 \\
T^{\prime}+\lambda k T=0 .\end{cases} \\
\text { subject to : } & X(0)=X(L)=0, & \begin{array}{l}
\text { Boundary } \\
\text { condition }
\end{array} \\
& u(x, 0)=f(x), \quad 0<x<L & \begin{array}{l}
\text { Initial } \\
\text { condition }
\end{array} \\
\hline
\end{array}
$$

Step 4：Once we fix $\lambda=\frac{n^{2} \pi^{2}}{L^{2}}, n=1,2, \ldots$ ，we obtain

$$
\begin{aligned}
X(x) & =c_{2} \sin \left(\frac{n \pi}{L} x\right), \quad T(t)=c_{3} \exp \left(-k \frac{n^{2} \pi^{2}}{L^{2}} t\right) \\
\Longrightarrow u_{n}(x, t) & =A_{n} \sin \left(\frac{n \pi}{L} x\right) \exp \left(-k \frac{n^{2} \pi^{2}}{L^{2}} t\right), \quad\left(A_{n}:=c_{2} c_{3}\right)
\end{aligned}
$$

Step 5：Plug in the initial condition $\Longrightarrow f(x)=A_{n} \sin \left(\frac{n \pi}{L} x\right)$ not true for general $f(x)$ ！

Fourier＇s Motivation：Solving the Heat Equation

$$
\begin{array}{|rll|}
\hline \text { Solve } u(x, t)=X(x) T(t): & \begin{cases}X^{\prime \prime}+\lambda X=0 \\
T^{\prime}+\lambda k T=0 .\end{cases} \\
\text { subject to : } & X(0)=X(L)=0, & \begin{array}{l}
\text { Boundary } \\
\text { condition }
\end{array} \\
& u(x, 0)=f(x), \quad 0<x<L & \begin{array}{l}
\text { Initial } \\
\text { condition }
\end{array} \\
\hline
\end{array}
$$

Step 6：By the superposition principle，below satisfies the PDE．

$$
\sum_{n=1}^{N} A_{n} \sin \left(\frac{n \pi}{L} x\right) \exp \left(-k \frac{n^{2} \pi^{2}}{L^{2}} t\right) \text { for any } N
$$

The question is，can it satisfy $u(x, 0)=\sum_{n=1}^{N} A_{n} \sin \left(\frac{n \pi}{L} x\right)=f(x)$ ？
Not likely

Key Observation：$f(x)$ is arbitrary and hence not necessarily a finite sum of sine functions．

Fourier＇s Idea：How about an infinite series？If we can represent arbitrary $f(x)$ by the infinite series（for $0<x<L$ ）

$$
f(x)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi}{L} x\right),
$$

and we can find the values of $\left\{A_{n}\right\}$ ，the problem is solved．
This motivates the theory of Fourier Series．

1 Orthogonal Functions

2 Fourier Series

Functions as Vectors：Inner Product

Definition（Inner Product of Functions）

The inner product of $f_{1}(x)$ and $f_{2}(x)$ on an interval $[a, b]$ is defined as

$$
\left\langle f_{1}, f_{2}\right\rangle:=\int_{a}^{b} f_{1}(x) f_{2}(x) d x
$$

Once inner product is defined，we can accordingly define norm．

Definition（Norm of a Function）

The norm of a function $f(x)$ on an interval $[a, b]$ is

$$
\|f(x)\|:=\sqrt{\langle f, f\rangle}=\sqrt{\int_{a}^{b}(f(x))^{2} d x}
$$

Orthogonality of Functions

Definition（Orthogonal Functions）

$f_{1}(x)$ and $f_{2}(x)$ are orthogonal on an interval $[a, b]$ if $\left\langle f_{1}, f_{2}\right\rangle=0$ ．

Definition（Orthogonal Set）

$\left\{\phi_{0}(x), \phi_{1}(x), \cdots\right\}$ are orthogonal on an interval $[a, b]$ if

$$
\left\langle\phi_{m}, \phi_{n}\right\rangle=\int_{a}^{b} \phi_{m}(x) \phi_{n}(x) d x=0, \quad m \neq n
$$

Definition（Orthonormal Set）

$\left\{\phi_{0}(x), \phi_{1}(x), \cdots\right\}$ are orthonomal on an interval $[a, b]$ if they are orthogonal and $\left\|\phi_{n}(x)\right\|=1$ for all n ．

Examples

Example（Orthogonal or Not Depends on the Inverval）

The functions $f_{1}(x)=x$ and $f_{2}(x)=x^{2}$ are orthogonal on the interval $[a, b], a<b$ ，only if $a=-b$ ．

Proof：When $a<b$ ，

$$
\left\langle x, x^{2}\right\rangle=\int_{a}^{b} x^{3} d x=\left[\frac{1}{4} x^{4}\right]_{a}^{b}=\frac{1}{4}\left(a^{4}-b^{4}\right)=0 \Longleftrightarrow a+b=0
$$

Examples

Example（Exponential Functions are Not Orthogonal）

For $\lambda_{1}, \lambda_{2} \in \mathbb{R}, f_{1}(x)=e^{\lambda_{1} x}$ and $f_{2}(x)=e^{\lambda_{2} x}$ are not orthogonal on any interval $[a, b], a<b$ ．

Proof：If $\lambda_{1}=-\lambda_{2}$ ，

$$
\left\langle e^{\lambda_{1} x}, e^{\lambda_{2} x}\right\rangle=\int_{a}^{b} e^{\left(\lambda_{1}+\lambda_{2}\right) x} d x=b-a \neq 0 .
$$

If $\lambda_{1} \neq-\lambda_{2}$ ，

$$
\left\langle e^{\lambda_{1} x}, e^{\lambda_{2} x}\right\rangle=\int_{a}^{b} e^{\left(\lambda_{1}+\lambda_{2}\right) x} d x=\frac{e^{\left(\lambda_{1}+\lambda_{2}\right) b}-e^{\left(\lambda_{1}+\lambda_{2}\right) a}}{\lambda_{1}+\lambda_{2}} \neq 0
$$

since an exponential function is strictly monotone．

Examples

Example

The set of functions $\left\{\left.\sin \left(\frac{n \pi}{L} x\right) \right\rvert\, n=1,2, \ldots\right\}$ are orthogonal on $[0, L]$ ．
Proof：Let $\phi_{n}(x):=\sin \left(\frac{n \pi}{L} x\right)$ ．For $m \neq n$ ，

$$
\begin{aligned}
\left\langle\phi_{m}, \phi_{n}\right\rangle= & \int_{0}^{L} \sin \left(\frac{m \pi}{L} x\right) \sin \left(\frac{n \pi}{L} x\right) d x \\
= & \int_{0}^{L} \frac{1}{2}\left\{\cos \left(\frac{(m-n) \pi}{L} x\right)-\cos \left(\frac{(m+n) \pi}{L} x\right)\right\} d x \\
= & \frac{L}{2(m-n) \pi}\left[\sin \left(\frac{(m-n) \pi}{L} x\right)\right]_{0}^{L} \\
& -\frac{L}{2(m+n) \pi}\left[\sin \left(\frac{(m+n) \pi}{L} x\right)\right]_{0}^{L} \\
= & 0-0=0
\end{aligned}
$$

Orthogonal Series Expansion

Question：For a infinite orthogonal set $\left\{\phi_{n}(x) \mid n=0,1, \ldots\right\}$ on some interval $[a, b]$ ，can we expand an arbitrary function $f(x)$ as

$$
f(x)=\sum_{n=0}^{\infty} c_{n} \phi_{n}(x) ?
$$

If so，how to find the coefficients $\left\{c_{n}\right\}$ ？
We answer the former question later with a particular set of orthogonal functions．

For the latter，simply take the inner product $\left\langle f, \phi_{m}\right\rangle$ to find the coefficient c_{m} ！

$$
\left\langle f, \phi_{m}\right\rangle=\sum_{n=0}^{\infty} c_{n}\left\langle\phi_{n}, \phi_{m}\right\rangle=c_{m}\left\|\phi_{m}\right\|^{2} \Longrightarrow c_{m}=\frac{\left\langle f, \phi_{m}\right\rangle}{\left\|\phi_{m}\right\|^{2}}
$$

Coefficients in the Solution of the Heat Equation

Recall in solving the Heat equation，the last step is to determine
$\left\{A_{n} \mid n=1,2, \ldots\right\}$ such that $f(x)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi}{L} x\right)$ ．
Based on the principle developed above，we obtain $A_{n}=\frac{\left\langle f, \phi_{n}\right\rangle}{\left\|\phi_{n}\right\|^{2}}$ ，where $\phi_{n}(x):=\sin \left(\frac{n \pi}{L} x\right)$ ．

$$
\left\|\phi_{n}\right\|^{2}=\int_{0}^{L}\left(\sin \left(\frac{n \pi}{L} x\right)\right)^{2} d x=\frac{1}{2} \int_{0}^{L}\left\{1-\cos \left(\frac{2 n \pi}{L} x\right)\right\} d x=\frac{L}{2}
$$

Hence，$A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) d x$ ，and

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi}{L} x\right) \exp \left(-k \frac{n^{2} \pi^{2}}{L^{2}} t\right)
$$

Remaining question：

$$
f(x)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi}{L} x\right)
$$

Will the infinite series converge for $x \in[0, L]$ ？
Does it converge to the function $f(x)$ for $x \in[0, L]$ ？

1 Orthogonal Functions

2 Fourier Series

A Orthogonal Set of Functions

Lemma

The following set of functions are orthogonal on $[-p, p]$ ．

$$
\left\{\frac{1}{2}, \cos \left(\frac{n \pi}{p} x\right), \left.\sin \left(\frac{n \pi}{p} x\right) \right\rvert\, n=1,2, \ldots\right\}
$$

Furthermore，the norm of each function is equal to p ．
Proof：Exercise！
If we expand a function using the above orthogonal set of functions，we obtain the Fourier series of the function．

Definition of Fourier Series

Definition

The Fourier series of a function $f(x)$ defined on the interval $(-p, p)$ is

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left\{a_{n} \cos \left(\frac{n \pi}{p} x\right)+b_{n} \sin \left(\frac{n \pi}{p} x\right)\right\}
$$

where

$$
\begin{aligned}
& a_{0}=\frac{1}{p} \int_{-p}^{p} f(x) d x \\
& a_{n}=\frac{1}{p} \int_{-p}^{p} f(x) \cos \left(\frac{n \pi}{p} x\right) d x, \quad b_{n}=\frac{1}{p} \int_{-p}^{p} f(x) \sin \left(\frac{n \pi}{p} x\right) d x
\end{aligned}
$$

Convergence of Fourier Series

Theorem

Let f and f^{\prime} be piecewise continuous on $[-p, p]$ ．
■ At a point where $f(x)$ is continuous，its Fourier series converges to $f(x)$ ．
－At a point where $f(x)$ is discontinuous，its Fourier series converges to $\frac{1}{2}(f(x+)+f(x-))$ ．
Here

$$
f(x+):=\lim _{h \downarrow 0} f(x+h), \quad f(x-):=\lim _{h \downarrow 0} f(x-h) .
$$

Examples

Example

Expand $f(x)=\left\{\begin{array}{ll}0, & -\pi<x<0 \\ \pi-x, & 0 \leq x<\pi\end{array}\right.$ into a Fourier series．What does the Fourier series converge to at $x=0$ ？

