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Orthogonal Functions
Fourier Series

Fourier Series is invented by Joseph Fourier, which basically asserts that
most periodic functions can be represented by infinite sums of sine and
cosine functions.

Jean Baptiste Joseph Fourier, (1768 - 1830).
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Fourier’s Motivation: Solving the Heat Equation

Solve u(x, t) : k∂
2u

∂x2 =
∂u
∂t , 0 < x < L, t > 0

subject to : u(0, t) = 0, u(L, t) = 0, t > 0 Boundary
condition

u(x, 0) = f(x), 0 < x < L Initial
condition

The above is called the Heat Equation, which can
be derived from heat transfer theory.
Prior to Fourier, there is no known solution to the
BVP if f(x) (initial temperature distribution over
the space) is general.

466 ! CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

Solution of the BVP To start, we use the product u(x, t) ! X(x)T(t) to separate
variables in (1). Then, if "l is the separation constant, the two equalities

(4)

lead to the two ordinary differential equations

(5)

(6)

Before solving (5), note that the boundary conditions (2) applied to u(x, t) ! X(x)T(t)
are

Since it makes sense to expect that T(t) # 0 for all t, the foregoing equalities hold
only if X(0) ! 0 and X(L) ! 0. These homogeneous boundary conditions together
with the homogeneous DE (5) constitute a regular Sturm-Liouville problem:

. (7)

The solution of this BVP was discussed thoroughly in Example 2 of Section 5.2. In
that example we considered three possible cases for the parameter l: zero, negative,
or positive. The corresponding solutions of the DEs are, in turn, given by

(8)

(9)

(10)

When the boundary conditions X(0) ! 0 and X(L) ! 0 are applied to (8) and (9),
these solutions yield only X(x) ! 0, and so we would have to conclude that u ! 0.
But when X(0) ! 0 is applied to (10), we find that c1 ! 0 and X(x) ! c2 sin ax. The
second boundary condition then implies that X(L) ! c2 sin aL ! 0. To obtain a non-
trivial solution, we must have c2 # 0 and sin aL ! 0. The last equation is satisfied
when aL ! np or a ! np!L. Hence (7) possesses nontrivial solutions when

 X(x) ! c1 cos ax $ c2 sin ax,  % ! a2 & 0.

 X(x) ! c1 cosh ax $ c2 sinh ax,     % ! "a2 ' 0

 X(x) ! c1 $ c2x,   % ! 0

X( $ %X ! 0, X(0) ! 0,  X(L) ! 0

u(0, t) ! X(0)T(t) ! 0    and    u(L, t) ! X(L)T(t) ! 0.

 T ) $ k%T ! 0.

X( $ %X  ! 0

X(

X
!

T)

kT
! "%

x0 L

u = 0 u = 0

FIGURE 12.3.1 Temperatures in 
a rod of length L

HEAT EQUATION

REVIEW MATERIAL
! Section 12.1
! A rereading of Example 2 in Section 5.2 and Example 1 of Section 11.4 is recommended.

INTRODUCTION Consider a thin rod of length L with an initial temperature f (x) throughout
and whose ends are held at temperature zero for all time t & 0. If the rod shown in Figure 12.3.1
satisfies the assumptions given on page 461, then the temperature u(x, t) in the rod is determined
from the boundary-value problem

(1)

(2)

(3)

In this section we shall solve this BVP.

u(x, 0) ! f (x), 0 ' x ' L.

u(0, t) ! 0, u(L, t) ! 0, t & 0

k 
*2u
*x2 !

*u
*t

,  0 ' x ' L,  t & 0

12.3

92467_12_ch12_p455-492.qxd  2/16/12  11:41 AM  Page 466

Below, let’s try to follow Fourier’s steps in solving this problem and see
how Fourier Series is motivated.
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Fourier’s Motivation: Solving the Heat Equation

Solve u(x, t) : k∂
2u

∂x2 =
∂u
∂t , 0 < x < L, t > 0

subject to : u(0, t) = 0, u(L, t) = 0, t > 0 Boundary
condition

u(x, 0) = f(x), 0 < x < L Initial
condition

Step 1: Assume that the solution takes the form u(x, t) = X(x)T(t) .
(This approach was also taken by other predecessors like D. Bernoulli.)

Step 2: Convert the original PDE into the following:

kX ′′T = XT ′ =⇒ X ′′

X =
T ′

kT = −λ =⇒
{

X ′′ + λX = 0

T ′ + λkT = 0.

Boundary condition becomes X(0)T(t) = X(L)T(t) = 0.
Since we want non-trivial solutions, T(t) ̸= 0 =⇒ X(0) = X(L) = 0.

4 / 22 王奕翔 DE Lecture 13



Orthogonal Functions
Fourier Series

Fourier’s Motivation: Solving the Heat Equation

Solve u(x, t) = X(x)T(t) :
{

X ′′ + λX = 0

T ′ + λkT = 0.

subject to : X(0) = X(L) = 0, Boundary
condition

u(x, 0) = f(x), 0 < x < L Initial
condition

Step 3: λ remains to be determined. What values should λ take?
1 λ = 0: X(x) = c1 + c2x. X(0) = X(L) = 0 =⇒ c1 = c2 = 0.
2 λ = −α2 < 0: X(x) = c1e−αx + c2eαx.

Plug in X(0) = X(L) = 0, we get c1 = c2 = 0.
3 λ = α2 > 0: X(x) = c1 cos(αx) + c2 sin(αx).

Plug in X(0) = X(L) = 0, we get c1 = 0, and c2 sin(αL) = 0.
Hence, c2 ̸= 0 only if αL = nπ.

To obtain a non-trivial solution, pick λ =
n2π2

L2
, n = 1, 2, . . . .
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Fourier’s Motivation: Solving the Heat Equation

Solve u(x, t) = X(x)T(t) :
{

X ′′ + λX = 0

T ′ + λkT = 0.

subject to : X(0) = X(L) = 0, Boundary
condition

u(x, 0) = f(x), 0 < x < L Initial
condition

Step 4: Once we fix λ = n2π2

L2 , n = 1, 2, . . ., we obtain

X(x) = c2 sin
(nπ

L x
)
, T(t) = c3 exp

(
−kn2π2

L2
t
)

=⇒ un(x, t) = An sin
(nπ

L x
)

exp
(
−kn2π2

L2
t
)
, (An := c2c3)

Step 5: Plug in the initial condition =⇒ f(x) = An sin
(nπ

L x
)

not true for general f(x)!
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Fourier’s Motivation: Solving the Heat Equation

Solve u(x, t) = X(x)T(t) :
{

X ′′ + λX = 0

T ′ + λkT = 0.

subject to : X(0) = X(L) = 0, Boundary
condition

u(x, 0) = f(x), 0 < x < L Initial
condition

Step 6: By the superposition principle, below satisfies the PDE.

N∑
n=1

An sin
(nπ

L x
)

exp
(
−kn2π2

L2
t
)

for any N

The question is, can it satisfy u(x, 0) =
N∑

n=1

An sin
(nπ

L x
)
= f(x)?

Not likely

7 / 22 王奕翔 DE Lecture 13



Orthogonal Functions
Fourier Series

Key Observation: f(x) is arbitrary and hence not necessarily a finite sum
of sine functions.
Fourier’s Idea: How about an infinite series? If we can represent
arbitrary f(x) by the infinite series (for 0 < x < L)

f(x) =
∞∑

n=1

An sin
(nπ

L x
)
,

and we can find the values of {An}, the problem is solved.

This motivates the theory of Fourier Series.
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1 Orthogonal Functions

2 Fourier Series
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Functions as Vectors: Inner Product

Definition (Inner Product of Functions)
The inner product of f1(x) and f2(x) on an interval [a, b] is defined as

⟨f1, f2⟩ :=
∫ b

a
f1(x)f2(x) dx

Once inner product is defined, we can accordingly define norm.

Definition (Norm of a Function)
The norm of a function f(x) on an interval [a, b] is

||f(x)|| :=
√

⟨f, f⟩ =

√∫ b

a
(f(x))2 dx

.
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Orthogonality of Functions

Definition (Orthogonal Functions)
f1(x) and f2(x) are orthogonal on an interval [a, b] if ⟨f1, f2⟩ = 0.

Definition (Orthogonal Set)
{ϕ0(x), ϕ1(x), · · · } are orthogonal on an interval [a, b] if

⟨ϕm, ϕn⟩ =
∫ b

a
ϕm(x)ϕn(x) dx = 0, m ̸= n.

Definition (Orthonormal Set)
{ϕ0(x), ϕ1(x), · · · } are orthonomal on an interval [a, b] if they are
orthogonal and ||ϕn(x)|| = 1 for all n.
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Examples

Example (Orthogonal or Not Depends on the Inverval)
The functions f1(x) = x and f2(x) = x2 are orthogonal on the interval
[a, b], a < b, only if a = −b.

Proof: When a < b,

⟨x, x2⟩ =
∫ b

a
x3 dx =

[
1

4
x4
]b

a
=

1

4

(
a4 − b4

)
= 0 ⇐⇒ a + b = 0
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Examples

Example (Exponential Functions are Not Orthogonal)
For λ1, λ2 ∈ R, f1(x) = eλ1x and f2(x) = eλ2x are not orthogonal on any
interval [a, b], a < b.

Proof: If λ1 = −λ2,

⟨eλ1x, eλ2x⟩ =
∫ b

a
e(λ1+λ2)x dx = b − a ̸= 0.

If λ1 ̸= −λ2,

⟨eλ1x, eλ2x⟩ =
∫ b

a
e(λ1+λ2)x dx =

e(λ1+λ2)b − e(λ1+λ2)a

λ1 + λ2
̸= 0,

since an exponential function is strictly monotone.
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Examples

Example
The set of functions

{
sin

(nπ
L x

)
| n = 1, 2, . . .

}
are orthogonal on [0,L].

Proof: Let ϕn(x) := sin
(nπ

L x
)
. For m ̸= n,

⟨ϕm, ϕn⟩ =
∫ L

0

sin
(mπ

L x
)

sin
(nπ

L x
)

dx

=

∫ L

0

1

2

{
cos

(
(m − n)π

L x
)
− cos

(
(m + n)π

L x
)}

dx

=
L

2(m − n)π

[
sin

(
(m − n)π

L x
)]L

0

− L
2(m + n)π

[
sin

(
(m + n)π

L x
)]L

0

= 0− 0 = 0.
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Orthogonal Series Expansion

Question: For a infinite orthogonal set {ϕn(x) | n = 0, 1, . . .} on some
interval [a, b], can we expand an arbitrary function f(x) as

f(x) =
∞∑

n=0

cnϕn(x) ?

If so, how to find the coefficients {cn}?
We answer the former question later with a particular set of orthogonal
functions.
For the latter, simply take the inner product ⟨f, ϕm⟩ to find the
coefficient cm!

⟨f, ϕm⟩ =
∞∑

n=0

cn⟨ϕn, ϕm⟩ = cm||ϕm||2 =⇒ cm =
⟨f, ϕm⟩
||ϕm||2

.
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Coefficients in the Solution of the Heat Equation

Recall in solving the Heat equation, the last step is to determine

{An | n = 1, 2, . . .} such that f(x) =
∞∑

n=1

An sin
(nπ

L x
)

.

Based on the principle developed above, we obtain An = ⟨f,ϕn⟩
||ϕn||2 , where

ϕn(x) := sin
(nπ

L x
)
.

||ϕn||2 =

∫ L

0

(
sin

(nπ
L x

))2

dx =
1

2

∫ L

0

{
1− cos

(
2nπ
L x

)}
dx =

L
2
.

Hence, An =
2

L

∫ L

0

f(x) sin
(nπ

L x
)

dx, and

u(x, t) =
∞∑

n=1

An sin
(nπ

L x
)

exp
(
−kn2π2

L2
t
)
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Remaining question:

f(x) =
∞∑

n=1

An sin
(nπ

L x
)

Will the infinite series converge for x ∈ [0,L]?
Does it converge to the function f(x) for x ∈ [0,L]?
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1 Orthogonal Functions

2 Fourier Series
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A Orthogonal Set of Functions

Lemma
The following set of functions are orthogonal on [−p, p].{

1

2
, cos

(
nπ
p x

)
, sin

(
nπ
p x

) ∣∣∣∣∣n = 1, 2, . . .

}
.

Furthermore, the norm of each function is equal to p.

Proof: Exercise!
If we expand a function using the above orthogonal set of functions, we
obtain the Fourier series of the function.
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Definition of Fourier Series

Definition
The Fourier series of a function f(x) defined on the interval (−p, p) is

a0

2
+

∞∑
n=1

{
an cos

(
nπ
p x

)
+ bn sin

(
nπ
p x

)}
,

where

a0 =
1

p

∫ p

−p
f(x) dx

an =
1

p

∫ p

−p
f(x) cos

(
nπ
p x

)
dx, bn =

1

p

∫ p

−p
f(x) sin

(
nπ
p x

)
dx.
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Convergence of Fourier Series

x

f(x+)

f(x�)

Theorem
Let f and f ′ be piecewise continuous on [−p, p].

At a point where f(x) is continuous, its Fourier
series converges to f(x).
At a point where f(x) is discontinuous, its
Fourier series converges to 1

2
(f(x+) + f(x−)).

Here

f(x+) := lim
h↓0

f(x + h), f(x−) := lim
h↓0

f(x − h).
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Examples

Example

Expand f(x) =
{
0, −π < x < 0

π − x, 0 ≤ x < π
into a Fourier series. What does

the Fourier series converge to at x = 0?
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