Chapter 7：The Laplace Transform－Part 3

王奕翔

Department of Electrical Engineering
National Taiwan University
ihwang＠ntu．edu．tw

December 4， 2013

Properties of Laplace and its Inverse Transforms so far：
1 Laplace Transform of Polynomials，Exponentials，sin，cos，etc．
1 Laplace Transforms of Derivatives
3 Translation in s－Axis and t－Axis
4 Scaling

End of story？

Questions：

■ How to compute $\mathscr{L}\left\{t^{n} e^{a t} \cos (k t)\right\}$ ？
－How to compute $\mathscr{L}^{-1}\left\{\frac{1}{\left((s-a)^{2}+k^{2}\right)^{2}}\right\}$ ？
－How to compute the Laplace transform of a periodic function？

1 Inverse Transform of Derivatives and Product

2 Laplace Transform of Periodic Functions and Dirac Delta Function

3 Systems of Linear Differential Equations

4 Summary

Derivatives of Laplace Transforms

Consider taking the derivative of the Laplace transform $F(s)=\mathscr{L}\{f(t)\}$ ：

$$
\begin{aligned}
\frac{d}{d s} F(s) & =\frac{d}{d s}\left(\int_{0}^{\infty} f(t) e^{-s t} d t\right)=\int_{0}^{\infty} \frac{\partial}{\partial s}\left(f(t) e^{-s t}\right) d t \\
& =\int_{0}^{\infty}-t f(t) e^{-s t} d t=-\mathscr{L}\{t f(t)\}
\end{aligned}
$$

Applying the calculation repetitively，we obtain the following theorem：

Theorem

Let $f(t) \xrightarrow{\mathscr{L}} F(s)$ and $f(t)$ is of exponential order，

$$
\mathscr{L}\left\{t^{n} f(t)\right\}=(-1)^{n} \frac{d^{n}}{d s^{n}} F(s), \quad \mathscr{L}^{-1}\left\{\frac{d^{n}}{d s^{n}} F(s)\right\}=(-t)^{n} f(t) .
$$

Derivatives：

$$
\begin{array}{lll}
f^{(n)}(t) & \stackrel{\mathscr{L}}{\longrightarrow} & s^{n} F(s)-\sum_{k=0}^{n-1} s^{k} f^{(n-1-k)}(0) \\
F^{(n)}(s) & \stackrel{L^{-1}}{\longrightarrow} & (-t)^{n} f(t)
\end{array}
$$

Examples

Example

Evaluate $\mathscr{L}\left\{t^{2} \cos t\right\}$ ．
Solution 1：Since $\mathscr{L}\{\cos t\}=\frac{s}{s^{2}+1}$ ，we have

$$
\begin{aligned}
\mathscr{L}\left\{t^{2} \cos t\right\} & =\frac{d^{2}}{d s^{2}} \frac{s}{s^{2}+1}=\frac{d^{2}}{d s^{2}}\left(\frac{1 / 2}{s-i}+\frac{1 / 2}{s+i}\right) \\
& =\frac{1}{(s-i)^{3}}+\frac{1}{(s+i)^{3}}=\frac{2 s^{3}-6 s}{\left(s^{2}+1\right)^{3}}
\end{aligned}
$$

Solution 2：Since $e^{i t}=\cos t+i \sin t$ ，we have

$$
\mathscr{L}\left\{t^{2} e^{i t}\right\}=\mathscr{L}\left\{t^{2} \cos t\right\}+i \cdot \mathscr{L}\left\{t^{2} \sin t\right\}=\frac{2}{(s-i)^{3}} .
$$

Hence， $\mathscr{L}\left\{t^{2} \cos t\right\}=\operatorname{Re}\left\{\frac{2}{(s-i)^{3}}\right\}=\frac{2 s^{3}-6 s}{\left(s^{2}+1\right)^{3}}$ ．

Convolution and its Laplace Transform

We have seen the Laplace transform of derivatives．How about integrals？

Definition（Convolution）

The convolution of two functions $f(t)$ and $g(t)$ is defined as

$$
(f * g)(t):=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

Note：Convolution is exchangeable：$f * g=g * f$ ．（why？）
Theorem（Convolution in $t \Longleftrightarrow$ Multiplication in s ）
Let $f(t) \xrightarrow{\mathscr{L}} F(s)$ and $g(t) \xrightarrow{\mathscr{L}} G(s)$ ．Then，

$$
\mathscr{L}\{(f * g)(t)\}=F(s) G(s) .
$$

Proof of the Convolution Theorem

Write $F(s)=\int_{0}^{\infty} f\left(\tau_{1}\right) e^{-s \tau_{1}} d \tau_{1}, G(s)=\int_{0}^{\infty} g\left(\tau_{2}\right) e^{-s \tau_{2}} d \tau_{2}$ ．Hence，

$$
\begin{aligned}
F(s) G(s) & =\left(\int_{0}^{\infty} f\left(\tau_{1}\right) e^{-s \tau_{1}} d \tau_{1}\right)\left(\int_{0}^{\infty} g\left(\tau_{2}\right) e^{-s \tau_{2}} d \tau_{2}\right) \\
& =\int_{0}^{\infty} \int_{0}^{\infty} f\left(\tau_{1}\right) g\left(\tau_{2}\right) e^{-s\left(\tau_{1}+\tau_{2}\right)} d \tau_{2} d \tau_{1} \\
& =\int_{0}^{\infty} \int_{\tau_{1}}^{\infty} f\left(\tau_{1}\right) g\left(t-\tau_{1}\right) e^{-s t} d t d \tau_{1} \quad\left(t:=\tau_{1}+\tau_{2}\right) \\
& =\int_{0}^{\infty} \int_{0}^{t} f\left(\tau_{1}\right) g\left(t-\tau_{1}\right) e^{-s t} d \tau_{1} d t \quad \text { (exchange the order) } \\
& =\int_{0}^{\infty}\left(\int_{0}^{t} f\left(\tau_{1}\right) g\left(t-\tau_{1}\right) d \tau_{1}\right) e^{-s t} d t \\
& =\mathscr{L}\{(f * g)(t)\}
\end{aligned}
$$

Examples

Example（Use Laplace Transform to Compute Convolution）

Evaluate the convolution of e^{t} and $\sin t$ ．
Since $\mathscr{L}\left\{e^{t}\right\}=\frac{1}{s-1}, \mathscr{L}\{\sin t\}=\frac{1}{s^{2}+1}$ ，we have

$$
\mathscr{L}\left\{e^{t} * \sin t\right\}=\frac{1}{(s-1)\left(s^{2}+1\right)}=\frac{1 / 2}{s-1}-\frac{1 / 2 s}{s^{2}+1}-\frac{1 / 2}{s^{2}+1}
$$

Hence，

$$
e^{t} * \sin t=\mathscr{L}^{-1}\left\{\frac{1}{(s-1)\left(s^{2}+1\right)}\right\}=\frac{1}{2} e^{t}-\frac{1}{2} \cos t-\frac{1}{2} \sin t .
$$

Examples

Example（Finding Inverse Transforms of Products）

Evaluate $\mathscr{L}^{-1}\left\{\frac{s}{\left(s^{2}+k^{2}\right)^{2}}\right\}$ ．
Write $\frac{s}{\left(s^{2}+k^{2}\right)^{2}}=\frac{s}{s^{2}+k^{2}} \cdot \frac{1}{s^{2}+k^{2}}$ ．Note that

$$
\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+k^{2}}\right\}=\cos (k t), \quad \mathscr{L}^{-1}\left\{\frac{1}{s^{2}+k^{2}}\right\}=\frac{1}{k} \sin (k t) .
$$

By the convolution theorem，we have

$$
\begin{aligned}
\mathscr{L}^{-1}\left\{\frac{s}{\left(s^{2}+k^{2}\right)^{2}}\right\} & =\frac{1}{k} \int_{0}^{t} \cos (k \tau) \sin (k(t-\tau)) d \tau \\
& =\frac{1}{2 k} \int_{0}^{t}\{\sin (k t)-\sin (k(2 \tau-t))\} d \tau \\
& =\frac{1}{2 k}\left[\tau \sin (k t)+\frac{1}{2 k} \cos (k(2 \tau-t))\right]_{0}^{t}=\frac{1}{2 k} t \sin (k t) .
\end{aligned}
$$

Laplace Transform of Integrals

Theorem

Let $f(t) \xrightarrow{\mathscr{L}} F(s)$ ．By the convolution theorem，

$$
\mathscr{L}\left\{\int_{0}^{t} f(\tau) d \tau\right\}=\frac{F(s)}{s}
$$

Example

Evaluate $\mathscr{L}^{-1}\left\{\frac{1}{\left(s^{2}+1\right)^{2}}\right\}$ ．
We know that $\mathscr{L}^{-1}\left\{\frac{s}{\left(s^{2}+1\right)^{2}}\right\}=\frac{1}{2} t \sin t$ ．By the theorem above，we have

$$
\mathscr{L}^{-1}\left\{\frac{1}{s} \frac{s}{\left(s^{2}+1\right)^{2}}\right\}=\int_{0}^{t} \frac{\tau \sin \tau}{2} d \tau=\left[\frac{\sin \tau-\tau \cos \tau}{2}\right]_{0}^{t}=\frac{\sin t-t \cos t}{2}
$$

Integral of Laplace Transform

Theorem

Let $f(t) \xrightarrow{\mathscr{L}} F(s)$ ．If $\mathscr{L}\left\{\frac{f(t)}{t}\right\}$ exists，then

$$
\mathscr{L}\left\{\frac{f(t)}{t}\right\}=\int_{s}^{\infty} F(u) d u
$$

Proof：

$$
\begin{aligned}
\int_{s}^{\infty} F(u) d u & =\int_{s}^{\infty} \int_{0}^{\infty} f(t) e^{-u t} d t d u=\int_{0}^{\infty} f(t)\left(\int_{s}^{\infty} e^{-u t} d u\right) d t \\
& =\int_{0}^{\infty} f(t) \frac{e^{-s t}}{t} d t=\mathscr{L}\left\{\frac{f(t)}{t}\right\}
\end{aligned}
$$

Integral Equation

Volterra Integral Equation of $y(t)$ ：

$$
y(t)=g(t)+(h * y)(t)=g(t)+\int_{0}^{t} y(\tau) h(t-\tau) d \tau
$$

We can efficiently solve this kind of equation using Laplace transform．

Example

Solve $y(t)=3 t^{2}-e^{-t}-\int_{0}^{t} y(\tau) e^{t-\tau} d \tau$ ．
Taking Laplace transform on both sides，we get $Y(s)=\frac{6}{s^{3}}-\frac{1}{s+1}-\frac{Y(s)}{s-1}$ ． Hence，

$$
\begin{aligned}
Y(s) & =\frac{6(s-1)}{s^{4}}-\frac{s-1}{s(s+1)}=\frac{6}{s^{3}}-\frac{6}{s^{4}}+\frac{1}{s}-\frac{2}{s+1} \\
\Longrightarrow & y(t)=3 t^{2}-t^{3}+1-2 e^{-t} .
\end{aligned}
$$

1 Inverse Transform of Derivatives and Product

2 Laplace Transform of Periodic Functions and Dirac Delta Function

3 Systems of Linear Differential Equations

4 Summary

Periodic Functions

A function $f(t)$ is periodic with period $T>0$ if $f(t)=f(t+T)$, for all t.

Theorem

If a function $f(t)$ is piecewise continuous on $[0, \infty)$, of exponential order, and periodic with period T, then

$$
\mathscr{L}\{f(t)\}=\frac{1}{1-e^{-s T}} \int_{0}^{T} f(t) e^{-s t} d t
$$

For example,

$$
\begin{aligned}
\mathscr{L}\{\sin t\} & =\frac{1}{1-e^{-2 \pi s}} \int_{0}^{2 \pi} \sin t e^{-s t} d t \\
& =\frac{1}{1-e^{-2 \pi s}}\left[\frac{-\cos t e^{-s t}-s \sin t e^{-s t}}{s^{2}+1}\right]_{0}^{2 \pi} \\
& =\frac{1}{1-e^{-2 \pi s}} \frac{1-e^{-2 \pi s}}{s^{2}+1}=\frac{1}{s^{2}+1}
\end{aligned}
$$

Proof：

$$
\begin{aligned}
\mathscr{L}\{f(t)\} & =\int_{0}^{\infty} f(t) e^{-s t} d t=\int_{0}^{T} f(t) e^{-s t} d t+\int_{T}^{\infty} f(t) e^{-s t} d t \\
& =\int_{0}^{T} f(t) e^{-s t} d t+\int_{0}^{\infty} f(\tau+T) e^{-s(\tau+T)} d \tau \quad(\tau:=t-T) \\
& =\int_{0}^{T} f(t) e^{-s t} d t+e^{-s T} \int_{0}^{\infty} f(\tau) e^{-s \tau} d \tau \\
& =\int_{0}^{T} f(t) e^{-s t} d t+e^{-s T} \mathscr{L}\{f(t)\}
\end{aligned}
$$

Hence，$\left(1-e^{-s T}\right) \mathscr{L}\{f(t)\}=\int_{0}^{T} f(t) e^{-s t} d t$ ．

$L R$－Circuit with Square－Wave Driving Voltage

Consider an $L R$－circuit with $E(t)$ being a unit square wave，period of which is $2 T$ ，and

$$
E(t)= \begin{cases}1, & 0 \leq t<T \\ 0, & T \leq t<2 T\end{cases}
$$

To determine its current $i(t)$ with $i(0)=0$ ，we solve the following IVP：

$$
L \frac{d i}{d t}+R i=E(t), \quad i(0)=0
$$

Taking the Laplace transform on both sides，we get

$$
\begin{aligned}
(L s+R) I(s) & =\mathscr{L}\{E(t)\}=\frac{1}{1-e^{-2 s T}} \int_{0}^{2 T} E(t) e^{-s t} d t \\
& =\frac{1}{1-e^{-2 s T}} \int_{0}^{T} e^{-s t} d t=\frac{1-e^{-s T}}{s\left(1-e^{-2 s T}\right)}
\end{aligned}
$$

$L R$－Circuit with Square－Wave Driving Voltage

Consider an $L R$－circuit with $E(t)$ being a unit square wave，period of which is $2 T$ ，and

$$
E(t)= \begin{cases}1, & 0 \leq t<T \\ 0, & T \leq t<2 T\end{cases}
$$

$$
\begin{aligned}
I(s) & =\frac{1-e^{-s T}}{s(L s+R)\left(1-e^{-2 s T}\right)}=\frac{1}{s(L s+R)\left(1+e^{-s T}\right)} \\
& =\frac{1}{R}\left(\frac{1}{s}-\frac{1}{s+\frac{R}{L}}\right)\left(1-e^{-s T}+e^{-2 s T}-e^{-3 s T}+\cdots\right)
\end{aligned}
$$

Hence，

$$
i(t)=\frac{1}{R} \sum_{k=0}^{\infty}(-1)^{k}\left(1-e^{-\frac{R}{L}(t-k T)}\right) \mathcal{U}(t-k T)
$$

Unit Impulse Function

（a）graph of $\delta_{a}\left(t-t_{0}\right)$

（b）behavior of δ_{a} as $a \rightarrow 0$

Consider the following unit impulse function

$$
\delta_{a}(t):= \begin{cases}\frac{1}{2 a}, & -a \leq t<a \\ 0, & \text { otherwise }\end{cases}
$$

For any translation $t_{0}>a, \int_{0}^{\infty} \delta_{a}\left(t-t_{0}\right) d t=1$ ．
As $a \rightarrow 0$ ，the duration of the impulse becomes shorter and shorter，and the magnitude of the impulse becomes larger and larger．
$\because \delta_{a}\left(t-t_{0}\right)=\frac{1}{2 a}\left\{\mathcal{U}\left(t-\left(t_{0}-a\right)\right)-\mathcal{U}\left(t-\left(t_{0}+a\right)\right)\right\}$, for $t_{0}>a$ ，

$$
\therefore \mathscr{L}\left\{\delta_{a}\left(t-t_{0}\right)\right\}=\frac{1}{2 a}\left\{\frac{e^{-s\left(t_{0}-a\right)}}{s}-\frac{e^{-s\left(t_{0}+a\right)}}{s}\right\}
$$

Dirac Delta Function

Definition（Dirac Delta Function）

$\delta\left(t-t_{0}\right):=\lim _{a \rightarrow 0} \delta_{a}\left(t-t_{0}\right)$.
$\delta\left(t-t_{0}\right)=\infty$ when $t=t_{0}$ but 0 otherwise，and $\int_{0}^{\infty} \delta\left(t-t_{0}\right) d t=1$.

Theorem

For $t_{0}>0$ ，any continuous function $f(t), \int_{0}^{\infty} \delta\left(t-t_{0}\right) f(t) d t=f\left(t_{0}\right)$ ．

Corollary

For $t_{0}>0, \mathscr{L}\left\{\delta\left(t-t_{0}\right)\right\}=e^{-s t_{0}}$.

Proof

$$
\begin{aligned}
\int_{0}^{\infty} \delta\left(t-t_{0}\right) f(t) d t & =\int_{0}^{\infty} \lim _{a \rightarrow 0} \delta_{a}\left(t-t_{0}\right) f(t) d t \\
& =\lim _{a \rightarrow 0} \int_{0}^{\infty} \delta\left(t-t_{0}\right) f(t) d t=\lim _{a \rightarrow 0} \frac{\int_{t_{0}-a}^{t_{0}+a} f(t) d t}{2 a}
\end{aligned}
$$

In the limit of the last expression，we see that both the numerator and the denominator tend to 0 as $a \rightarrow 0$ ．

Hence，by L＇Hôpital＇s Rule，we have：

$$
\begin{aligned}
\int_{0}^{\infty} \delta\left(t-t_{0}\right) f(t) d t & =\lim _{a \rightarrow 0} \frac{\int_{t_{0}-a}^{t_{0}+a} f(t) d t}{2 a}=\lim _{a \rightarrow 0} \frac{\frac{d}{d a} \int_{t_{0}-a}^{t_{0}+a} f(t) d t}{2} \\
& =\lim _{a \rightarrow 0} \frac{f\left(t_{0}+a\right)-\left(-f\left(t_{0}-a\right)\right)}{2}=f\left(t_{0}\right)
\end{aligned}
$$

IVP with Impulse External Drive

Example

Solve $y^{\prime \prime}+y=4 \delta(t-2 \pi)$ subject to $y(0)=1, y^{\prime}(0)=0$ ．
After taking the Laplace transform on both sides，we get

$$
s^{2} Y(s)-s+Y(s)=4 e^{-2 \pi s} \Longrightarrow Y(s)=\frac{s}{s^{2}+1}+\frac{4 e^{-2 \pi s}}{s^{2}+1}
$$

Hence，$y(t)=\cos t+4 \sin (t-2 \pi) \mathcal{U}(t-2 \pi)=\cos t+4 \sin t \mathcal{U}(t-2 \pi)$ ．

1 Inverse Transform of Derivatives and Product

2 Laplace Transform of Periodic Functions and Dirac Delta Function

3 Systems of Linear Differential Equations

4 Summary

Initial Value Problem：System of Linear DE＇s

Idea：With Laplace Transform，
System of Linear DE＇s \longrightarrow System of Linear Algebraic Equation

Advantage：

1 No need to worry about＂implicit conditions＂among undetermined coefficients

2 No need to worry about finding undetermined coefficients using initial conditions

$$
\text { Solve } \quad\left\{\begin{aligned}
x^{\prime \prime}-4 x+y^{\prime \prime} & =t^{2} \\
x^{\prime}+x+y^{\prime} & =0
\end{aligned}\right.
$$

Step 1：Laplace Transform！$\left(x(0)=x_{1}, x^{\prime}(0)=x_{2}, y(0)=y_{1}, y^{\prime}(0)=y_{2}\right)$

$$
\begin{gathered}
\left\{\begin{array}{r}
\left(s^{2} X(s)-x_{1} s-x_{2}\right)-4 X(s)+\left(s^{2} Y(s)-y_{1} s-y_{2}\right)=\frac{2}{s^{3}} \\
\left(s X(s)-x_{1}\right)+X(s)+\left(s Y(s)-y_{1}\right)=0
\end{array}\right. \\
\Longrightarrow\left\{\begin{array}{c}
\left(s^{2}-4\right) X+s^{2} Y=\left(x_{1}+y_{1}\right) s+\left(x_{2}+y_{2}\right)+\frac{2}{s^{3}} \\
(s+1) X+s Y=\left(x_{1}+y_{1}\right)
\end{array}\right.
\end{gathered}
$$

Step 2：Solve $X(s), Y(s):$ Let $a_{1}:=x_{1}+y_{1}, a_{2}=x_{2}+y_{2}$ ：

$$
X(s)=-\frac{a_{2}}{s+4}-\frac{2}{s^{3}(s+4)}, \quad Y(s)=\frac{a_{1}}{s}+\frac{a_{2}(s+1)}{s(s+4)}+\frac{2(s+1)}{s^{4}(s+4)}
$$

$$
\text { Solve }\left\{\begin{aligned}
x^{\prime \prime}-4 x+y^{\prime \prime} & =t^{2} \\
x^{\prime}+x+y^{\prime} & =0
\end{aligned}\right.
$$

Step 3：Inverse Laplace transform！

$$
\begin{aligned}
& X(s)=-\frac{a_{2}}{s+4}-\frac{2}{s^{3}(s+4)}=\frac{-a_{2}+\frac{1}{32}}{s+4}-\frac{s^{2}-4 s+16}{32 s^{3}} \\
& \Longrightarrow x(t)=\left(-a_{2}+\frac{1}{32}\right) e^{-4 t}-\frac{1}{32}+\frac{1}{8} t-\frac{1}{4} t^{2} \\
& Y(s)=\frac{a_{1}}{s}+\frac{a_{2}(s+1)}{s(s+4)}+\frac{2(s+1)}{s^{4}(s+4)} \\
&=\frac{a_{1}+\frac{a_{2}}{4}}{s}+\frac{\frac{3}{4} a_{2}-\frac{3}{128}}{s+4}+\frac{3}{128} s^{3}-\frac{3}{32} s^{2}+\frac{3}{8} s+\frac{1}{2} \\
& s^{4} \\
& \Longrightarrow y(t)=a_{1}+\frac{a_{2}}{4}+\frac{3}{128}+\left(\frac{3}{4} a_{2}-\frac{3}{128}\right) e^{-4 t}-\frac{3}{32} t+\frac{3}{16} t^{2}+\frac{1}{12} t^{3}
\end{aligned}
$$

$$
\text { Solve } \quad\left\{\begin{aligned}
x^{\prime \prime}-4 x+y^{\prime \prime} & =t^{2} \\
x^{\prime}+x+y^{\prime} & =0
\end{aligned}\right.
$$

Step 4：Simplification！

$$
\begin{aligned}
x(t) & =\overbrace{\left(-a_{2}+\frac{1}{32}\right)}^{c_{1}} e^{-4 t}-\frac{1}{32}+\frac{1}{8} t-\frac{1}{4} t^{2} \\
& =\overbrace{c_{1} e^{-4 t}-\frac{1}{32}+\frac{1}{8} t-\frac{1}{4} t^{2}}^{c_{2}} \\
y(t) & =\overbrace{a_{1}+\frac{a_{2}}{4}+\frac{3}{128}}^{c_{2}}+\overbrace{\left(\frac{3}{4} a_{2}-\frac{3}{128}\right)}^{-\frac{3 c_{1}}{4}} e^{-4 t}-\frac{3}{32} t+\frac{3}{16} t^{2}+\frac{1}{12} t^{3} \\
& =\overbrace{c_{2}-\frac{3}{4} c_{1} e^{-4 t}-\frac{3}{32} t+\frac{3}{16} t^{2}+\frac{1}{12} t^{3}}
\end{aligned}
$$

Example：Series－Shunt Circuit

Consider an $L R C$－circuit with R and C shunt．
1 Voltage drop $E \rightarrow L \rightarrow R=E(t)$
2 Identical voltage drop across R and across C
$3 i_{1}=i_{2}+i_{3}$
Hence，

$$
\begin{aligned}
L \frac{d i_{1}}{d t}+R i_{2} & =E(t), \quad R \frac{d i_{2}}{d t}=\frac{i_{3}}{C}, \quad i_{3}=i_{1}-i_{2} \\
& \Longrightarrow\left\{\begin{array}{c}
L \frac{d i_{1}}{d t}+R i_{2}=E(t) \\
R C \frac{d i_{2}}{d t}+i_{2}-i_{1}=0
\end{array}\right.
\end{aligned}
$$

Solve $\left\{\begin{array}{l}L \frac{d i_{1}}{d t}+R i_{2}=E \\ R C \frac{d i_{2}}{d t}+i_{2}=i_{1}\end{array}, \quad i_{1}(0)=i_{2}(0)=0\right.$.
Step 1：Laplace Transform！

$$
\left\{\begin{aligned}
L s I_{1}(s)+R I_{2}(s) & =\frac{E}{s} \\
(R C s+1) I_{2}(s) & =I_{1}(s)
\end{aligned}\right.
$$

Step 2：Solve $I_{1}(s), I_{2}(s)$ ：

$$
I_{2}(s)=\frac{E}{s\left(L R C s^{2}+L s+R\right)}, \quad I_{1}(s)=\frac{(R C s+1) E}{s\left(L R C s^{2}+L s+R\right)}
$$

Step 3：Inverse Laplace transform！$i_{2}(t)=\cdots, \quad i_{1}(t)=\cdots$

1 Inverse Transform of Derivatives and Product

2 Laplace Transform of Periodic Functions and Dirac Delta Function

3 Systems of Linear Differential Equations

4 Summary

Derivatives：

$$
\begin{array}{lll}
f^{(n)}(t) & \xrightarrow{\mathscr{L}} & s^{n} F(s)-\sum_{k=0}^{n-1} s^{k} f^{(n-1-k)}(0) \\
F^{(n)}(s) & \xrightarrow{\mathscr{L}^{-1}} & (-t)^{n} f(t)
\end{array}
$$

Integrals：

$$
\begin{array}{lll}
\int_{0}^{t} f(\tau) g(t-\tau) d \tau & \xrightarrow{\mathscr{L}} & F(s) G(s) \\
\int_{0}^{t} f(\tau) d \tau & \xrightarrow{\mathscr{L}} & \frac{F(s)}{s} \\
\int_{s}^{\infty} F(u) d u & \xrightarrow{\mathscr{L}^{-1}} & \frac{f(t)}{t}
\end{array}
$$

Periodic Function：

$$
f(t), \text { period } T \quad \xrightarrow{\mathscr{L}} \quad \frac{1}{1-e^{-s T}} \int_{0}^{T} f(t) e^{-s t} d t
$$

Dirac Delta Function：
$\delta\left(t-t_{0}\right), t_{0} \geq 0$
$\xrightarrow{\mathscr{L}} \quad e^{-s t_{0}}$

Short Recap

－Multiplication by $(-t)^{n} \Longleftrightarrow n$－th Order Derivative in s
－Convolution in $t \Longleftrightarrow$ Multiplication in s
■ Laplace Transform of Periodic Functions：Compute the Integral within a Period
－Impulse and Dirac Delta Function
－ $\mathscr{L}\left\{\delta\left(t-t_{0}\right)\right\}=e^{-s t_{0}}$
－Solving System of Linear DE with Laplace Transform

Self－Practice Exercises

7－4： $5,13,17,23,29,39,49,51,53,59,63,66,67$
7－5：5，11， 13
7．6：7，11，15， 17

