Chapter 7: The Laplace Transform — Part 3
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Properties of Laplace and its Inverse Transforms so far:

Laplace Transform of Polynomials, Exponentials, sin, cos, etc.
Laplace Transforms of Derivatives
Translation in s-Axis and t-Axis

Scaling

End of story?
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Questions:
m How to compute .Z {t"e® cos(kt)}?

= How to compute .Z~! {m}'?

m How to compute the Laplace transform of a periodic function?
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Inverse Transform of Derivatives and Product

Inverse Transform of Derivatives and Product
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Inverse Transform of Derivatives and Product

Derivatives of Laplace Transforms

Consider taking the derivative of the Laplace transform F(s) = .Z {f(t)}:

%F(S) _ % </Ooof(t)e—stdt> = /OOO % (fit)e=") dt
_ / T e tdt = -2 {10}

Applying the calculation repetitively, we obtain the following theorem:

Let f(t) EN F(s) and f(t) is of exponential order,

n d"

200} = (1 gr). 2 SR ) = (omo.
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Inverse Transform of Derivatives and Product

Derivatives:

/(1) = s"F(s) — i =170 (0)
k=0

F)(s) z, (—)"f()
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Inverse Transform of Derivatives and Product

Examples

Example

Evaluate . {# cos t}.
Solution 1: Since . {cos t} = %7, we have

& s _d2(1/2+£>

d2 2 +1 ds2 \s—i  s+i

.,"f{tQCost} =

1 1 253 — 6s

(s—19)3  (s+14)3 (s> + 1)3

Solution 2: Since e = cos t + isin ¢, we have

i . . 2
X{tht}:.,Sf{t2cost}—|—z-${t2s1nt} =G0

253 —6s

Hence, £ {#*cost} = Re{ﬁ} = ()
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Inverse Transform of Derivatives and Product

Convolution and its Laplace Transform

We have seen the Laplace transform of derivatives. How about integrals?

Definition (Convolution)

The convolution of two functions f(¢) and ¢(t) is defined as

(F* )t /f (t—7)d

Note: Convolution is exchangeable: fx g = g f. (why?)

Theorem (Convolution in ¢ <= Multiplication in s)

Let f(t) =< F(s) and g(t) =< G(s). Then,

ZA{(f* 9)(8)} = F(5)G(s).
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Proof of the Convolution Theorem

Write F(s) = [, flr1)e ™ dry, G(s) = [, g(r2)e ™ dra. Hence,

G(s) = </0 flr)e™*™ dn) (/o g(m2)e™ " dTQ)
- /Oo /oof(Tl)g(Tz)@_s(ﬁJm) dry dmy
o Jo

:/Ooo/wf(ﬁ)g(t—ﬁ)e_“ dtdry (t:=71+ 1)

[e%e] t
=/ / f(r1)g(t—7m1)e " dry dt (exchange the order)

/ </ fr)g(t—n dn) —stdt

{(fx gt
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Inverse Transform of Derivatives and Product

Examples

Example (Use Laplace Transform to Compute Convolution)

Evaluate the convolution of et and sin t.

Since £ {e'} = Lo, L {sint} =

L, 5271“ we have

. 1 12 1/2s  1/2
L e th = = - - :
{¢xsin} (s—1)(s2+1) s—1 £+1 41

Hence,

t . 1 t .
€ *x S1n {(S 1)(52 1)} € COS Sin
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Inverse Transform of Derivatives and Product

Examples

Example (Finding Inverse Transforms of Products)

Evaluate ¢~ { s |

: 1
(32:k2)2 = 52;162 CEE Note that

- s _ 1 1 .
f ! {m} = COS(kt)7 f ! {m} = %Sln(kt).

By the convolution theorem, we have

Write

7 {m} - %/Otcos(lw) sin(k(t — 7)) dr

- /0 {sin(kt) — sin(k(2r — 1))} dr

t

1l 1 N
=5 {Tsm(kt) + 55 cos(k(2r — 1)) = oy, (k) |
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Inverse Transform of Derivatives and Product

Laplace Transform of Integrals

Let f(¢) Z, F(s). By the convolution theorem,

Example
Evaluate 1 {—1;}

We know that 71 { —5 % = Lisint. By the theorem above, we have
(2+1) 2

o1 1 s /thian sint — rcos7 |’ sint — tcost
— — V= T = = .
s(s2+1)2 o 2 2 o 2
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Inverse Transform of Derivatives and Product

Integral Equation

Volterra Integral Equation of y(¢):

u(t) = g(t) + (hx 5)(t) = g(t) + / y(r)h(t— )dr.

We can efficiently solve this kind of equation using Laplace transform.

Solve y(t) = 32 — e~ — fot y(r)et~"dr.

Taking Laplace transform on both sides, we get Y(s) = & — 1 —
Hence,
6(s—1) s—1 6 6 1 2

Y(s) = — = — 4+ _
(5) st s(s+1) & * s s+1

= [y)=32 - F+1-27]
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Laplace Transform of Periodic Functions and Dirac Delta Function

Laplace Transform of Periodic Functions and Dirac Delta Function
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Laplace Transform of Periodic Functions and Dirac Delta Function

Periodic Functions

A function f(¢) is periodic with period T > 0 if f(t) = f(t+ T), for all t.

If a function f(t) is piecewise continuous on [0,c0), of exponential order,
and periodic with period T, then

T
LWy = mmr | KO

For example,

1 2 _
f{sin t} = ﬂ/o sin te Stdt

e
B 1 {— cos te”*t — ssin te‘“] 2
1— e 27s s2+1 o
1 1 — e 2 1

T 12 241 2+1
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Laplace Transform of Periodic Functions and Dirac Delta Function

Proof:

o0 T o
Z{f(H)} :/0 f(t)e_Stdt:/O f(t)e_‘”"dt‘f'/T f<t)e_stdt
= /Tf(t)e_stdt+ /OO f(,r n T)e—S(T+T) dT (’T — 1_7)
0 0

T e
= / fitye=tdt+ =T / fir)e Tdr
0 0

T
= | foetas 2 g0

Hence, (1 — e=*7) 2 {f(t)} = J,] f(t)e > dt.
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Laplace Transform of Periodic Functions and Dirac Delta Function

LR-Circuit with Square-Wave Driving Voltage

Consider an LR-circuit with E(t) being a unit square
wave, period of which is 27, and

1 <t< T
E(t):{’ 0sit<

0, T<t<2T

To determine its current 4(¢) with 4(0) = 0, we solve the following IVP:

di

L
dt

+ Ri= E(t), i(0)=0.
Taking the Laplace transform on both sides, we get

2T
(Ls+ R) I(s) = % {E(t)} ﬁ/{) E(f)etdt

1 T 1— —sT
= 2T/ e *dt = - 25T
1—e2sT ], s(1— e=2s7)
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Laplace Transform of Periodic Functions and Dirac Delta Function

LR-Circuit with Square-Wave Driving Voltage

Consider an LR-circuit with E(t) being a unit square
wave, period of which is 27, and

1, 0<t<T
E(t) = -
0, T<t<2T

3 1— e T B 1
T WLs+ R)(1— e 2T)  s(Ls+ R)(1+ e 7)

1 (1 1
— | = _ 1—6_ST—|-€_25T—€_35T+"'
R(s 5+§>( )

Hence,
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Laplace Transform of Periodic Functions and Dirac Delta Function

Unit Impulse Function

Consider the following unit impulse function

Y 20—
1/2a ——
I I
! ! 508 = i, —a<t<a
ty-a to to+a ! ll( ) =

0, otherwise
(a) graph of §,(t — 1)

For any translation t, > a, fooo 0ot —to)dt = 1.

f
’ X As a — 0, the duration of the impulse becomes shorter
H and shorter, and the magnitude of the impulse becomes
H larger and larger.
Il
H L a(t—to) = 5 {U(L— (to — @) =U(t = (to + a))},
W for to > a,
| |
[
AN —s(to—a) —s(tp+a)
—H— .'.Z{éa(tfto)}:i{e _ ¢ }
P 2a s S
e
| [ |
——

(b) behavior of §,as a — 0
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Laplace Transform of Periodic Functions and Dirac Delta Function

Dirac Delta Function

Extreme Case of Unit Impulse:

Definition (Dirac Delta Function)

8(t = to) := lim da(t — to).

§(t— to) = 0o when ¢ =y but 0 otherwise, and [~ §(t — to)dt = 1.

Theorem

For ty > 0, Z{6(t)} = e 5.

Proof:

1 e—s(to—a) e—s(t0+a)

—0 2a

1 (s _ -5 _ _
= lim = { Ze S — 7St L — =5t
a—0 2 S S

S S

2 (50} = I # (0a(t - ) = iy 5 { - !




Laplace Transform of Periodic Functions and Dirac Delta Function

IVP with Impulse External Drive

Solve ¢/ + y = 46(¢t — 27) subject to y(0) =1, ¥/ (0) = 0.

After taking the Laplace transform on both sides, we get

s 4e2ms

2 _ —27s _
s Y(s) — s+ Y(s) = 4de = Y(S)_m+8274-1

Hence, y(t) = cost+ 4sin(t — 2m)U(t — 27) = cos t+ 4sin t U(t — 27).

v4 Sudden Change at t = 27

cos t, 0<t<2r
y(t) = .
- A cost+4sint, t>2xw
" \v% .
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Systems of Linear Differential Equations

Systems of Linear Differential Equations
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Systems of Linear Differential Equations

Initial Value Problem: System of Linear DE's

Idea: With Laplace Transform,
System of Linear DE's — System of Linear Algebraic Equation

Advantage:
No need to worry about “implicit conditions” among undetermined
coefficients

No need to worry about finding undetermined coefficients using
initial conditions
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Systems of Linear Differential Equations

"4 /N — 2
Solve o x+y/
d4+z+y =0

Step 1: Laplace Transform! (z(0) = 21,2/ (0) = z2, 4(0) = y1, ¥ (0) = y2)

($X(s) —ms— m2) —4X(s) + (P Y(s) — yus — y2) = 323
(sX(s) — 21) + X(s) + (s¥(s) —y1) =0

2
(32_4)X—|—32Y: (;v1+y1)s+(x2+y2)+s—3

(s+1)X+sY= (21 +u)
Step 2: Solve X(s), Y(s): Let ¢1 := 21 + 41, co = 22 + ¥o:

2 2 ¥(s) = a ca(s+1)  2(s+1)

M) =1 Ber s s(st+4) | s(s+4)
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Systems of Linear Differential Equations

"y V2
Solve {x Ty

74+x+y =0

Step 3: Inverse Laplace transform!

X(s) Co 2 —<:2—|-?%2 2 —4s+ 16
g) = — — = _
s+4  $(s+4) s+4 323
1 _ 1 1 1
— o) = (oot gg) gy gt g
1 c(s+1)  2(s+1)
Y(s) = — 1
s s(s+4)  ss+4)
_at+g  do-gr ¥ ms tists
= + + :
s s+4 s

c 3 3 3
= y(t)=cl+2++<c’2—>e““—32 + t2+ﬁt3
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