Chapter 7: The Laplace Transform — Part 1
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Solving an initial value problem associated with a linear differential
equation:

General solution = complimentary solution + particular solution.

Plug in the initial conditions to specify the undetermined coefficients.

Question: Is there a faster way?
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In Chapter 4, 5, and 6, we majorly deal with linear differential equations
with continuous, differentiable, or analytic coefficients.

But in real applications, sometimes this is not true.
For example:
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Square voltage input: Periodic, Discontinuous.

Question: How to solve the current? How to deal with discontinuity?
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In this lecture we introduce a powerful tool:

Laplace Transform

Invented by Pierre-Simon Laplace (1749 - 1827).
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Overview of the Method

Find unknown y(¢)
that satisfies DE
and initial conditions

Apply Laplace

—
transform %

Solution y(¢)
of original IVP

Apply inverse Laplace
transform %!
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Transformed DE
becomes an algebraic
equation in Y(s)

Solve transformed
equation for Y(s)




Laplace and Inverse Laplace Transform: Definitions and Basics

Laplace and Inverse Laplace Transform: Definitions and Basics
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Laplace and Inverse Laplace Transform: Definitions and Basics

Definition of the Laplace Transform

For a function f(t) defined for ¢ > 0, its Laplace Transfrom is defined as

Ao =2 {0} = [ o,
given that the improper integral converges.
Note: Use capital letters to denote transforms.
ft) S Fs), g(t) 5 Gls),  y(t) S5 Y(s), etc.

Note: The domain of the Laplace transform F(s) (that is, where the
improper integral converges) depends on the function f(¢)
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Laplace and Inverse Laplace Transform: Definitions and Basics

Examples of Laplace Transform

Evaluate .Z {1}.

o) T
Z{1} = e *(1)dt = lim e~ Stdt
0 T—o0 0
efst T 1— efsT
= lim [ } = lim
T—o00 S 0 T— o0 S

When does the above converge? s > 0!

1
Hence, the domain of £ {1} is s >0, and | £ {1} = — |
s
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Laplace and Inverse Laplace Transform: Definitions and Basics

Examples of Laplace Transform

Evaluate . {t}.

e} T _ —st
.,sf{t}:/ te~s'dt = lim td( ¢ )
0 0

T—o0 S

—te— st T T 1 — Te—sT 1
— lim [ ‘ } +/ Zestdt = lim L+;${1}.
0 0

T— o0 S S T—o0 S

When does the above converge? s> 0!

1
Hence, the domain of . {t} is s > 0, and | £ {t} = =
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Laplace and Inverse Laplace Transform: Definitions and Basics

Laplace Transform of ¢"

Z{t"} = n+1’ n=20,1,2,..., s>0

Proof: One way is to prove it by induction. We will show another proof
after discussing the Laplace transform of the derivative of a function.
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Laplace and Inverse Laplace Transform: Definitions and Basics

Laplace Transform of e

f{e“t}:ﬁ, s> a

Proof:
e} T
< {e“t} =/ eMe % dt = lim e~ (smatgy
0 T—o00 0
_ef(sfa)t T 1— 67(sfa)T
~ Jim {} g L2
T— o0 S—a 0 T— o0 S—a

When does the above converge? s — a > 0!

Hence, the domain of .Z {e%} is s > a, and £ {e} = L

s—a’
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Laplace and Inverse Laplace Transform: Definitions and Basics

Laplace Transform of sin(kt) and cos(kt)

k
m, f{cos(kt)} = L s>0

Z {sin(k)} = ERes

Proof:

_ ,—st
Z {sin(kt)} / sin(kt) *Stdt*/ s1n(kt)d< ¢ )
s

— sin(kt)e ! ko[>
= |:Sln):| + - / COS(k,’t)e_Stdt
s 0

0 S

S

_ {‘M“(’“t)et}j + IE.Z {cos(kf)}

When does the above converge? s > 0! — {M} =0
0

S
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Laplace and Inverse Laplace Transform: Definitions and Basics

Laplace Transform of sin(kt) and cos(kt)

. k s
f{sm(kt)} = m, f{cos(kt)} = m, s>0
Proof:
oo oo _ st
L {cos(kt)} = cos(kt)e 'dt = / cos(kt)d< ¢ )
0 0 s
_ —st] o
= {Cos(kt)e } — ]j/ sin(kt)e™*'dt
S 0 S 0

[ —cos(kt)e**
B s

f - fx{sm(kt)}

When does the above converge? s> 0! = {M} =1

s 0 s’
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Laplace Transform of sin(kt) and cos(kt)

k

S
m, f{cos(kt)} = m, s>0

& [sin(kt)} =

Proof:
£ {sin(kt)} = .2 {cos(kt)}
Z{cos(kt)} = L — 22 {sin(kt)}

Solve the above, we get the result:

& [sin(kt)} = ’gz {cos(kt)} = 5’“2 - I;;.,Sf{sin(kt)}
82
;;kQZ{sin(kt)} - ; — 2 {sin(k)} = ﬁkkg
£ {cos(kt)} = ]%.Z{sin(kt)} = ﬁ‘skg
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Laplace and Inverse Laplace Transform: Definitions and Basics

Laplace Transform is Linear

For any o, 3, f(t) N F(s), ¢(t) N G(s),

|2 {af()) + Bg(t)} = aF(s) + BG(s) |

Proof: It can be proved by the linearity of integral.

Example
Evaluate . {sinh(kt)} and £ {cosh(kt)}.

A: sinh(kt) = 3 (€M — e7*), cosh(kt) = 3 (¥ + e~ *"). Hence

. 2 1 1 1
h(kt) Zs = . -
sinh(kt) 5 (s—k . k) g 57 |k
v 1 1 1 S
h = = + .
cosh(kt) 2(s—k . k) L s> |k
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Laplace and Inverse Laplace Transform: Definitions and Basics

Laplace Transforms of Some Basic Functions

f(¢) F(s) Domain of F(s)
n nl
t ) 5>0
1
e 5> a
s—a
in(kt) L >0
s o s
s

COS(kt) m s>0
. k
sinh(kt) o s> |k
cosh(kt) i s> |k

DE Lecture 10




Laplace and Inverse Laplace Transform: Definitions and Basics

Existence of Laplace Transform

Theorem (Sufficient Conditions for the Existence of Laplace Transform)
If a function f(t) is

m piecewise continuous on [0, ), and

m of exponential order,

then 2 {f(t)} exists for s > c¢ for some constant c.

Definition
A function f(t) is of exponential order if 3 ¢ € R, M > 0,7 > 0 such that

A < Me®*, ¥ t> 1.

Note: If f(t) is of exponential order, then 3 ¢ € R such that for s > ¢,

lim f(t)e *" = 0.

t— o0
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Laplace and Inverse Laplace Transform: Definitions and Basics

Existence of Laplace Transform

Theorem (Sufficient Conditions for the Existence of Laplace Transform)
If a function f(t) is

m piecewise continuous on [0, o), and

m of exponential order,

then £ {f(t)} exists for s > ¢ for some constant c.

Proof: For sufficiently large T > 7, we split the following integral:
T T T
/ f(tdt = / f(t)e*“dt—&—/ f(tye tdt.
0 0 T
I I

We only need to prove that > converges as T — oo:

T T T
|12|§/ \f(t)e*“|dt:/ |f(t)|ef“dt§/ Me e *"dt,

which converges as T — oo for s > ¢ since .& {e“} exists.
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Laplace and Inverse Laplace Transform: Definitions and Basics

In this lecture, we focus on functions that are
m piecewise continuous on [0, c0), and

m of exponential order
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Laplace and Inverse Laplace Transform: Definitions and Basics

Laplace Transform of Derivatives

Suppose (1) is continuous on [0, 00) and of exponential order, and f(?) is
also continuous on [0, 0), then the Laplace transform of f(¢) can be
found as follows:

2= [ T et (ydt= / T etag)

= [f(e) +s/0 Rt =LA} —0) | s> ¢

Note: since f(t) is of exponential order, f(t)e 5 — 0 as t — oo for s > ¢
for some constant c.

Similarly, if f(¢) is also of exponential order, we can find

LD} = sZ ()}~ 1(0) =| L2 ()} - 5/0) — £(0)]
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Laplace and Inverse Laplace Transform: Definitions and Basics

Laplace Transform of Derivatives

IfFf.f,..., "=V are continuous on [0,00) and are of exponential order,
and if ™) (t) is piecewise continuous on [0,00), then
2 {0} = 5"F(s) = "7 f0) = 5721 (0) = -+ = £*7D(0)

where F(s) .= 2 {f()}.

Example
Evaluate .Z {1"}.

A: Let f(t) = t". Since ™ () =n!, fO(0)=0forany 0 <k<n-—1,
using the above theorem we get

ZLA{nl} = s"F(s) = gl — F(s)= —
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Laplace and Inverse Laplace Transform: Definitions and Basics

Inverse Laplace Transform

L)} = F(s) = 27 {F(s)} = 1

F(s): Laplace transform of f(t) <= f(t): inverse Laplace transform of F(s)

Note: Inverse Laplace transform is also linear:

L~ {aF(s) + BG(s)} = af(t) + By(t)

DE Lecture 10



Laplace and Inverse Laplace Transform: Definitions and Basics

Some Inverse Laplace Transforms

F(s) A1) Domain of F(s)
n!
T " s>0
1
e 5> a
s—a
k .
m Sln(kt) s>0
ﬁskz cos(kt) §>0
k
22 sinh(kt) s> |k
i cosh(kt) s> |k
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Laplace and Inverse Laplace Transform: Definitions and Basics

Examples

Example

Evaluate .#* { —25+6 }

$2+4
Step 1: Decompose

—254+6 s 2
= 3 .
2 +4 s2+4+ s2+4

Step 2: By the linearity of inverse Laplace transform,

-1 —2s+6 _ 1 S 1 2
< {82+4}_ > {52+4}+3f {s2+4}

:‘ —26082t+3sin2t‘.
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Laplace and Inverse Laplace Transform: Definitions and Basics

Examples

Example

-1 (s+3)*
Evaluate . {(s— D620+ 4 }

Step 1: Decompose into partial fractions:

(s 4+ 3)? A B c
(s—1)(s—2)(s+4) s—1 s—2 s+4°

We can find A, B, C by the following:

F(s) :=

A:{ (s+3)° ] _ 16 (s+3)? 2

(s—1J(s=2)(s+4)],_, -5 (s—1)(s—2)(s+4)],_, 6
. (s+3)2 1

€= {(S— 1)(s— 2)1»‘2%/47]3:_4 30

Step 2: Linearity = f(t) = _16 e+ 2 2'5_,_7 —4t |

5 6 30
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Solve Initial Value Problems using Laplace Transforms

Solve Initial Value Problems using Laplace Transforms
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Solve Initial Value Problems using Laplace Transforms

Solving a First-Order IVP with Laplace Transform

Example

Solve i/ + 3y = 13sin2t, y(0) = 6.

Step 1: Laplace-transform both sides:

L{yY}+32 {y} =13L {sin 2} = (sY(s) — y(0)) +3Y(s) = 13ﬁ
26
= (s+3)Y(s) =6+ 214

Note: Use initial condition y(0) = 6 to compute .Z {y/} = sY(s) — y(0) = sY(s) — 6.
6 n 26

s+3  (s+3)(s2+4)

Step 3: Compute the inverse Laplace transform of Y{s):

Step 2: Solve Y(s): Y(s) =

8 n —2s n 6
s+3 s2+4 s24+4

— | y(t) = 8¢ * — cos 2t + 3sin 2¢ |

Y(s) =
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Solve Initial Value Problems using Laplace Transforms

Partial fraction decomposition:

26 A Bs+ C

(s+3)(s2+4) s+3 244

26 26
4= [m}:m =2

26 = (Bs+ C)(s+3)+ A(s° +4) = B=—-A= -2, C=-3B=6.
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Solve Initial Value Problems using Laplace Transforms

Solving a Second-Order IVP with Laplace Transform

Solve 3/ — 3y +2y= e, y(0) =1, ¥ (0)=5.

Step 1: Laplace-transform both sides:

A {y” -3 {y’} +22{y}t =2 {e_4t}

1
= (s*Y(s) — s9(0) — ¥/ (0)) — 3 (sY(s) — y(0)) +2Y(s) = P
1
2 _

= (s 3S+2)Y(S)_S+2+s+4

) ) . s+ 2 1
Step 2: Solve Y(s): Y(s) = G002 + GIG-D6=2
Step 3: Compute the inverse Laplace transform of Y(s):
Y(s)—737%+4+%+ 3 — (t)__§673t+§e2t+i674t

T so1 T s—2 T s+4 V=775 6 30 |
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Solve Initial Value Problems using Laplace Transforms

Partial fraction decomposition:

s+ 2 1 A B C
GoDG6-2)  GrH6-D6-2 s-1'Ts-2"554

O 5+ 2 1 __a_1
A__M(s—2)+(8+4)1§»>/17(s—2)]3=1_ 75
[ s+2 1 .1
e leoe=o Tt (S+4)(sf1)lﬁ/?7]s:2_4+6
_ 1 - L
€= _M(s—l)(s—Q)Lﬂ_ 30
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Solve Initial Value Problems using Laplace Transforms

General Procedure of Solving IVP with Laplace Transform

Initial Value Problem
any(n) + anfly(nil) +- all/ +ap = g(t) y(t)
y(o) = Yo, y/(O) =Y. 7?,/("71)(0) = Yn-1

Laplace|Transform Inverse Laplace
3 . o g Transform
«Z’{z/(")(i)} =Y (s) —|(s" w0 + 55y - )

Partial Fraction

Decomposition
An Algebraic Equation
P(s)Y (s) = Q(s) + G(s)
n Solve the
) ) G(s)
P(s) = aksk7 Algebraic Equation Y(s) = Q(s) +
2 Ps) T PG)
n k-1 ]
Q(s) = Z ay, Zyk—l—jsj
k=0  j=0
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Summary

B Summary
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Summary

Short Recap

m Definition of Laplace Transform and Inverse Laplace Transform

Laplace Transform of some Basic Functions

Exponential Order

Laplace Transform of Derivatives

m Solving IVP with Laplace Transforms
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Summary

Self-Practice Exercises

7-1: 3, 5, 13, 15, 29, 35, 43, 50, 53, 54, 55

7-2: 1, 3,13, 15, 19, 21, 29, 35, 43
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