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Laplace and Inverse Laplace Transform: Definitions and Basics

Solving an initial value problem associated with a linear differential
equation:

1 General solution = complimentary solution + particular solution.

2 Plug in the initial conditions to specify the undetermined coefficients.

Question: Is there a faster way?
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Laplace and Inverse Laplace Transform: Definitions and Basics

In Chapter 4, 5, and 6, we majorly deal with linear differential equations
with continuous, differentiable, or analytic coefficients.
But in real applications, sometimes this is not true.
For example:

where the minus sign indicates that V is decreasing. Note here that we are ignoring
the possibility of friction at the hole that might cause a reduction of the rate of flow
there. Now if the tank is such that the volume of water in it at time t can be written
V(t) ! Awh, where Aw (in ft2) is the constant area of the upper surface of the water
(see Figure 1.3.3), then dV!dt ! Aw dh!dt. Substituting this last expression into (9)
gives us the desired differential equation for the height of the water at time t:

. (10)

It is interesting to note that (10) remains valid even when Aw is not constant. In this
case we must express the upper surface area of the water as a function of h—that is,
Aw ! A(h). See Problem 14 in Exercises 1.3.

Series Circuits Consider the single-loop LRC-series circuit shown in Fig-
ure 1.3.4(a), containing an inductor, resistor, and capacitor. The current in a circuit
after a switch is closed is denoted by i(t); the charge on a capacitor at time t is de-
noted by q(t). The letters L, R, and C are known as inductance, resistance, and capac-
itance, respectively, and are generally constants. Now according to Kirchhoff’s
second law, the impressed voltage E(t) on a closed loop must equal the sum of the
voltage drops in the loop. Figure 1.3.4(b) shows the symbols and the formulas for the
respective voltage drops across an inductor, a capacitor, and a resistor. Since current
i(t) is related to charge q(t) on the capacitor by i ! dq!dt, adding the three voltages

inductor resistor capacitor

and equating the sum to the impressed voltage yields a second-order differential
equation

(11)

We will examine a differential equation analogous to (11) in great detail in
Section 5.1.

Falling Bodies To construct a mathematical model of the motion of a body
moving in a force field, one often starts with the laws of motion formulated by the
English mathematician Isaac Newton (1643–1727). Recall from elementary physics
that Newton’s first law of motion states that a body either will remain at rest or will
continue to move with a constant velocity unless acted on by an external force. In
each case this is equivalent to saying that when the sum of the forces —
that is, the net or resultant force—acting on the body is zero, then the acceleration
a of the body is zero. Newton’s second law of motion indicates that when the net
force acting on a body is not zero, then the net force is proportional to its accelera-
tion a or, more precisely, F ! ma, where m is the mass of the body.

Now suppose a rock is tossed upward from the roof of a building as illustrated
in Figure 1.3.5. What is the position s(t) of the rock relative to the ground at time t?
The acceleration of the rock is the second derivative d2s!dt2. If we assume that the
upward direction is positive and that no force acts on the rock other than the force of
gravity, then Newton’s second law gives

. (12)

In other words, the net force is simply the weight F ! F1 ! "W of the rock near the
surface of the Earth. Recall that the magnitude of the weight is W ! mg, where m is

m 
d 2s
dt2 ! "mg    or    

d 2s
dt2 ! "g

F ! " Fk

L 
d 2q
dt2 # R 

dq
dt

#
1
C

 q ! E(t).

L 
di
dt

! L 
d 2q
dt2 ,    iR ! R 

dq
dt

,    and    
1
C

 q

dh
dt

! "
Ah

Aw
 12gh

1.3 DIFFERENTIAL EQUATIONS AS MATHEMATICAL MODELS ! 25

(a)

(b)

E(t)
L

C

R

(a) LRC-series circuit

(b)

L

R

Inductor
inductance L: henries (h)

voltage drop across: L
di
dt

i

Capacitor
capacitance C: farads (f)

voltage drop across:
1
C

i

Resistor
resistance R: ohms (Ω)
voltage drop across: iR

i

q

C

FIGURE 1.3.4 Symbols, units, and
voltages. Current i(t) and charge q(t) are
measured in amperes (A) and coulombs
(C), respectively

ground
building

rock

s(t)
s0

v0

FIGURE 1.3.5 Position of rock
measured from ground level
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E(t)

t

Square voltage input: Periodic, Discontinuous.
Question: How to solve the current? How to deal with discontinuity?
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Laplace and Inverse Laplace Transform: Definitions and Basics

In this lecture we introduce a powerful tool:

Laplace Transform

Invented by Pierre-Simon Laplace (1749 - 1827).
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Laplace and Inverse Laplace Transform: Definitions and Basics

Overview of the Method

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES ! 285

where the ai, i ! 0, 1, . . . , n and y0, y1, . . . , yn"1 are constants. By the linearity prop-
erty the Laplace transform of this linear combination is a linear combination of
Laplace transforms:

(9)

From Theorem 7.2.2, (9) becomes

,
(10)

where ! G(s). In other words, 

The Laplace transform of a linear differential equation with constant coefficients
becomes an algebraic equation in Y(s). 

If we solve the general transformed equation (10) for the symbol Y(s), we first obtain
P(s)Y(s) ! Q(s) # G(s) and then write

, (11)

where is a polynomial in s of degree
less than or equal to consisting of the various products of the coefficients
ai, . . . , n and the prescribed initial conditions y0, y1, . . . , yn"1, and G(s) is
the Laplace transform of g(t).* Typically, we put the two terms in (11) over the least
common denominator and then decompose the expression into two or more
partial fractions. Finally, the solution y(t) of the original initial-value problem is

, where the inverse transform is done term by term.
The procedure is summarized in the diagram in Figure 7.2.1.

y(t) ! ! "1{Y(s)}

i ! 1,
n " 1

P(s) ! ansn # an"1sn"1 # $ $ $ # a0, Q(s)

Y(s) !
Q(s)
P(s)

#
G(s)
P(s)

!{y(t)} ! Y(s) and !{g(t)}

 # an"1[sn"1Y(s) " sn"2y(0) " $ $ $ " y(n"2)(0)] # $ $ $ # a0Y(s) ! G(s)

an [snY(s) " sn"1y(0) " $ $ $ " y(n"1)(0)]

an!!dny
dtn" # an"1!!d n"1y

dtn"1" # $ $ $ # a0 !{y} ! !{g(t)}.

*The polynomial P(s) is the same as the nth-degree auxiliary polynomial in (12) in Section 4.3 with the
usual symbol m replaced by s.

The next example illustrates the foregoing method of solving DEs, as well as
partial fraction decomposition in the case when the denominator of Y(s) contains a
quadratic polynomial with no real factors.

Apply Laplace
transform  

Apply inverse Laplace
transform      

Find unknown y(t)
that satisfies DE

and initial conditions

Transformed DE
becomes an algebraic

equation in Y(s)

Solve transformed
equation for Y(s) 

Solution y(t)
of original IVP −1

FIGURE 7.2.1 Steps in solving an IVP by the Laplace transform

EXAMPLE 4 Solving a First-Order IVP

Use the Laplace transform to solve the initial-value problem

.

SOLUTION We first take the transform of each member of the differential 
equation:

. (12)!!dy
dt" # 3!{y} ! 13!{sin 2t}

dy
dt

# 3y ! 13 sin 2t,  y(0) ! 6
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1 Laplace and Inverse Laplace Transform: Definitions and Basics
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Laplace and Inverse Laplace Transform: Definitions and Basics

Definition of the Laplace Transform

Definition
For a function f(t) defined for t ≥ 0, its Laplace Transfrom is defined as

F(s) := L {f(t)} :=

∫ ∞

0

e−stf(t)dt,

given that the improper integral converges.

Note: Use capital letters to denote transforms.

f(t) L−→ F(s), g(t) L−→ G(s), y(t) L−→ Y(s), etc.

Note: The domain of the Laplace transform F(s) (that is, where the
improper integral converges) depends on the function f(t)
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Laplace and Inverse Laplace Transform: Definitions and Basics

Examples of Laplace Transform

Example
Evaluate L {1}.

L {1} =

∫ ∞

0

e−st(1)dt = lim
T→∞

∫ T

0

e−stdt

= lim
T→∞

[
−e−st

s

]T

0

= lim
T→∞

1− e−sT

s .

When does the above converge? s > 0!

Hence, the domain of L {1} is s > 0, and L {1} =
1

s .
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Laplace and Inverse Laplace Transform: Definitions and Basics

Examples of Laplace Transform

Example
Evaluate L {t}.

L {t} =

∫ ∞

0

te−stdt = lim
T→∞

∫ T

0

td
(
−e−st

s

)
= lim

T→∞

[
−te−st

s

]T

0

+

∫ T

0

1

s e−stdt = lim
T→∞

−Te−sT

s +
1

s L {1} .

When does the above converge? s > 0!

Hence, the domain of L {t} is s > 0, and L {t} =
1

s2 .
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Laplace and Inverse Laplace Transform: Definitions and Basics

Laplace Transform of tn

L {tn} =
n!

sn+1
, n = 0, 1, 2, . . . , s > 0

Proof: One way is to prove it by induction. We will show another proof
after discussing the Laplace transform of the derivative of a function.
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Laplace and Inverse Laplace Transform: Definitions and Basics

Laplace Transform of eat

L
{

eat} =
1

s − a , s > a

Proof:

L
{

eat} =

∫ ∞

0

eate−stdt = lim
T→∞

∫ T

0

e−(s−a)tdt

= lim
T→∞

[
−e−(s−a)t

s − a

]T

0

= lim
T→∞

1− e−(s−a)T

s − a

When does the above converge? s − a > 0!
Hence, the domain of L {eat} is s > a, and L {eat} = 1

s−a .
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Laplace Transform of sin(kt) and cos(kt)

L {sin(kt)} =
k

s2 + k2 , L {cos(kt)} =
s

s2 + k2 , s > 0

Proof:

L {sin(kt)} =

∫ ∞

0

sin(kt)e−stdt =
∫ ∞

0

sin(kt)d
(
−e−st

s

)
=

[
− sin(kt)e−st

s

]∞
0

+
k
s

∫ ∞

0

cos(kt)e−stdt

=

[
− sin(kt)e−st

s

]∞
0

+
k
sL {cos(kt)}

When does the above converge? s > 0! =⇒
[
− sin(kt)e−st

s

]∞
0

= 0
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Laplace and Inverse Laplace Transform: Definitions and Basics

Laplace Transform of sin(kt) and cos(kt)

L {sin(kt)} =
k

s2 + k2 , L {cos(kt)} =
s

s2 + k2 , s > 0

Proof:

L {cos(kt)} =

∫ ∞

0

cos(kt)e−stdt =
∫ ∞

0

cos(kt)d
(
−e−st

s

)
=

[
− cos(kt)e−st

s

]∞
0

− k
s

∫ ∞

0

sin(kt)e−stdt

=

[
− cos(kt)e−st

s

]∞
0

− k
sL {sin(kt)}

When does the above converge? s > 0! =⇒
[
− cos(kt)e−st

s

]∞
0

= 1
s .
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Laplace and Inverse Laplace Transform: Definitions and Basics

Laplace Transform of sin(kt) and cos(kt)

L {sin(kt)} =
k

s2 + k2 , L {cos(kt)} =
s

s2 + k2 , s > 0

Proof: {
L {sin(kt)} = k

s L {cos(kt)}
L {cos(kt)} = 1

s − k
s L {sin(kt)}

Solve the above, we get the result:

L {sin(kt)} =
k
sL {cos(kt)} =

k
s2 − k2

s2 L {sin(kt)}

=⇒ s2 + k2
s2 L {sin(kt)} =

k
s2 =⇒ L {sin(kt)} =

k
s2 + k2

L {cos(kt)} =
s
kL {sin(kt)} =

s
s2 + k2 .
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Laplace and Inverse Laplace Transform: Definitions and Basics

Laplace Transform is Linear
Theorem
For any α, β, f(t) L−→ F(s), g(t) L−→ G(s),

L {αf(t) + βg(t)} = αF(s) + βG(s)

Proof: It can be proved by the linearity of integral.

Example
Evaluate L {sinh(kt)} and L {cosh(kt)}.

A: sinh(kt) = 1
2

(
ekt − e−kt), cosh(kt) = 1

2

(
ekt + e−kt). Hence

sinh(kt) L−→ 1

2

(
1

s − k − 1

s + k

)
=

k
s2 − k2 , s > |k|

cosh(kt) L−→ 1

2

(
1

s − k +
1

s + k

)
=

s
s2 − k2 , s > |k| .
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Laplace Transforms of Some Basic Functions

f(t) F(s) Domain of F(s)

tn n!
sn+1

s > 0

eat 1

s − a s > a

sin(kt) k
s2 + k2 s > 0

cos(kt) s
s2 + k2 s > 0

sinh(kt) k
s2 − k2 s > |k|

cosh(kt) s
s2 − k2 s > |k|
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Existence of Laplace Transform

Theorem (Sufficient Conditions for the Existence of Laplace Transform)
If a function f(t) is

piecewise continuous on [0,∞), and
of exponential order,

then L {f(t)} exists for s > c for some constant c.

Definition
A function f(t) is of exponential order if ∃ c ∈ R,M > 0, τ > 0 such that

|f(t)| ≤ Mect, ∀ t > τ.

Note: If f(t) is of exponential order, then ∃ c ∈ R such that for s > c,

lim
t→∞

f(t)e−st = 0.
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Laplace and Inverse Laplace Transform: Definitions and Basics

Existence of Laplace Transform

Theorem (Sufficient Conditions for the Existence of Laplace Transform)
If a function f(t) is

piecewise continuous on [0,∞), and
of exponential order,

then L {f(t)} exists for s > c for some constant c.

Proof: For sufficiently large T > τ , we split the following integral:∫ T

0

f(t)dt =
∫ τ

0

f(t)e−stdt︸ ︷︷ ︸
I1

+

∫ T

τ

f(t)e−stdt︸ ︷︷ ︸
I2

.

We only need to prove that I2 converges as T → ∞:

|I2| ≤
∫ T

τ

|f(t)e−st|dt =
∫ T

τ

|f(t)|e−stdt ≤
∫ T

τ

Mecte−stdt,

which converges as T → ∞ for s > c since L
{

ect} exists.
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In this lecture, we focus on functions that are
piecewise continuous on [0,∞), and
of exponential order
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Laplace and Inverse Laplace Transform: Definitions and Basics

Laplace Transform of Derivatives

Suppose f(t) is continuous on [0,∞) and of exponential order, and f′(t) is
also continuous on [0,∞), then the Laplace transform of f′(t) can be
found as follows:

L {f′(t)} =

∫ ∞

0

e−stf′(t)dt =
∫ ∞

0

e−std (f(t))

=
[
f(t)e−st]∞

0
+ s

∫ ∞

0

e−stf(t)dt = sL {f(t)} − f(0) , s > c

Note: since f(t) is of exponential order, f(t)e−st → 0 as t → ∞ for s > c
for some constant c.
Similarly, if f′(t) is also of exponential order, we can find

L {f′′(t)} = sL {f′(t)} − f′(0) = s2L {f(t)} − sf(0)− f′(0) .
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Laplace and Inverse Laplace Transform: Definitions and Basics

Laplace Transform of Derivatives

Theorem
If f, f′, . . . , f(n−1) are continuous on [0,∞) and are of exponential order,
and if f(n)(t) is piecewise continuous on [0,∞), then

L
{

f(n)(t)
}
= snF(s)− sn−1f(0)− sn−2f′(0)− · · · − f(n−1)(0),

where F(s) := L {f(t)}.

Example
Evaluate L {tn}.

A: Let f(t) = tn. Since f(n)(t) = n!, f(k)(0) = 0 for any 0 ≤ k ≤ n − 1,
using the above theorem we get

L {n!} = snF(s) = n!
s =⇒ F(s) = n!

sn+1
.
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Laplace and Inverse Laplace Transform: Definitions and Basics

Inverse Laplace Transform

L {f(t)} = F(s) ⇐⇒ L −1 {F(s)} = f(t)

F(s): Laplace transform of f(t) ⇐⇒ f(t): inverse Laplace transform of F(s)

Note: Inverse Laplace transform is also linear:

L −1 {αF(s) + βG(s)} = αf(t) + βg(t)
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Some Inverse Laplace Transforms

F(s) f(t) Domain of F(s)

n!
sn+1

tn s > 0

1

s − a eat s > a

k
s2 + k2 sin(kt) s > 0

s
s2 + k2 cos(kt) s > 0

k
s2 − k2 sinh(kt) s > |k|

s
s2 − k2 cosh(kt) s > |k|
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Laplace and Inverse Laplace Transform: Definitions and Basics

Examples

Example

Evaluate L −1

{
−2s + 6

s2 + 4

}
.

Step 1: Decompose

−2s + 6

s2 + 4
= −2

s
s2 + 4

+ 3
2

s2 + 4
.

Step 2: By the linearity of inverse Laplace transform,

L −1

{
−2s + 6

s2 + 4

}
= −2L −1

{
s

s2 + 4

}
+ 3L −1

{
2

s2 + 4

}
= −2 cos 2t + 3 sin 2t .
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Examples

Example

Evaluate L −1

{
(s + 3)2

(s − 1)(s − 2)(s + 4)

}
.

Step 1: Decompose into partial fractions:

F(s) := (s + 3)2

(s − 1)(s − 2)(s + 4)
=

A
s − 1

+
B

s − 2
+

C
s + 4

.

We can find A,B,C by the following:

A =

[
(s + 3)2

���(s − 1)(s − 2)(s + 4)

]
s=1

=
16

−5
, B =

[
(s + 3)2

(s − 1)���(s − 2)(s + 4)

]
s=2

=
25

6

C =

[
(s + 3)2

(s − 1)(s − 2)���(s + 4)

]
s=−4

=
1

30

Step 2: Linearity =⇒ f(t) = −16

5
et +

25

6
e2t +

1

30
e−4t .
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