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Solving an initial value problem associated with a linear differential
equation:

General solution = complimentary solution + particular solution.

Plug in the initial conditions to specify the undetermined coefficients.

Question: Is there a faster way?
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In Chapter 4, 5, and 6, we majorly deal with linear differential equations
with continuous, differentiable, or analytic coefficients.

But in real applications, sometimes this is not true.
For example:
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Square voltage input: Periodic, Discontinuous.

Question: How to solve the current? How to deal with discontinuity?
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In this lecture we introduce a powerful tool:

Laplace Transform

Invented by Pierre-Simon Laplace (1749 - 1827).
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Overview of the Method

Find unknown y(¢) Apply Laplace Transformed DE
that satisfies DE  f—— PP P becomes an algebraic
o e .. transform & e
and initial conditions equation in Y(s)
Solution y(7) Apply inverse Laplace Solve transformed

of original IVP transform %! equation for Y(s)
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Laplace and Inverse Laplace Transform: Definitions and Basics

Laplace and Inverse Laplace Transform: Definitions and Basics

# DE Lecture 10



Laplace and Inverse Laplace Transform: Definitions and Basics

Definition of the Laplace Transform

For a function f(t) defined for ¢ > 0, its Laplace Transfrom is defined as

F(s) = 2 {f()} = / e,

given that the improper integral converges.

Note: Use capital letters to denote transforms.

-2 F(s), g2 Gs), () S Y(9), etc.

Note: The domain of the Laplace transform F(s) (that is, where the
improper integral converges) depends on the function f(¢)
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Laplace and Inverse Laplace Transform: Definitions and Basics

Examples of Laplace Transform

Evaluate .Z {1}.

e} T
Z{1} = e *(1)dt = lim e~ Stdt
0 T—o0 0
efst T 1— efsT
= lim |: :| = lim
T— o0 S 0 T— o0 S

When does the above converge? s > 0!

1
Hence, the domain of £ {1} is s >0, and | £ {1} = —|.
s

DE Lecture 10



Laplace and Inverse Laplace Transform: Definitions and Basics

Examples of Laplace Transform

Evaluate . {t}.

e T _e—st
.Z{t}:/ te”*'dt = lim td( )
0 0

T—o0 S

—te—st T T 1 — Te=sT 1
— lim [ ¢ } +/ Zestdt = lim L+;${1}.
0 0

T— o0 S S T— o0 S

When does the above converge? s > 0!

1
Hence, the domain of . {t} is s >0, and | Z {1} = — |
S
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Laplace and Inverse Laplace Transform: Definitions and Basics

Laplace Transform of ¢"

n!
g{tn}—m, n:O,l,Z,...,s>0

Proof: One way is to prove it by induction. We will show another proof
after discussing the Laplace transform of the derivative of a function.
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Laplace and Inverse Laplace Transform: Definitions and Basics

Laplace Transform of e

f{e“t}:ﬁ, s> a

Proof:

[eS] T
Z{e"} :/ e dt = lim e~ 9ty
0

T— o0 0
) _e—(s—a)t T ) 1— e—(s—a)T
= hm = hm —_—
T—o0 s—a 0 T— o0 sS—a

When does the above converge? s — a > 0!

Hence, the domain of .Z {e} is s > a, and .Z {e?} = L

s—a’
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Laplace and Inverse Laplace Transform: Definitions and Basics

Laplace Transform of sin(kt) and cos(kt)

ﬁkjkz, Z {cos(kt)} = — >0

Z {sin(kt)} = IR

Proof:

_ ,—st
Z {sin(kt)} / sin(kt)e Stdt*/ sm(kt)d< ¢ >
s

_ —st e s}
= [smkt)} + Ij/ cos(kt)e st dt
§ 0

0 S

_ [_bm(’“t)@_tIo + ’j:.,zﬂ {cos(kt)}

S

When does the above converge? s > 0! — {M] =0
0

S
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Laplace and Inverse Laplace Transform: Definitions and Basics

Laplace Transform of sin(kt) and cos(kt)

. k S
f{sm(kt)} = m, f{cos(kt)} = m, s > O
Proof:
oo oo _ ,—st
L {cos(kt)} = cos(kt)e*“dt:/ cos(kt)d< ¢ )
0 0 S
_ —st] [es]
= {Cos(kt)e } — ]f/ sin(kt)e™**dt
S 0 S 0
_ . — st
- {C"b(’“t)e } _ ¥ o (sin(h)
s o s

When does the above converge? s> 0! = {M} =1

s 0 s’
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Laplace Transform of sin(kt) and cos(kt)

k

m, f{cos(kt)} = i s>0

Z {sin(kt)} = 2R

Proof:
£ {sin(kt)} = 2.2 {cos(kt)}
Z{cos(kt)} = L — 22 {sin(kt)}

Solve the above, we get the result:

& [sin(kt)} = ’53 {cos(kt)} = 5’“2 - ’gz{sin(kt)}
82
;kz & {sin(kt)} = S’; — 2 {sin(k)} = Wk/@

£ {cos(kt)} = %Z{sin(kt)} = ﬁskg
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Laplace and Inverse Laplace Transform: Definitions and Basics

Laplace Transform is Linear

For any o, B, f() < F(s), g(t) = G(s),

|2 {af(t) + Bg(H)} = aF(s) + BG(s) |

Proof: It can be proved by the linearity of integral.

Evaluate . {sinh(k¢)} and £ {cosh(k)}.
A: sinh(kt) = £ (e — e7*), cosh(kt) = % (" + e **). Hence

sinh(kt) 2>

cosh(kt) N




Laplace and Inverse Laplace Transform: Definitions and Basics

Laplace Transforms of Some Basic Functions

f0) F(s) Domain of F(s)
n n!
t ) s>0
1
et s> a
s—a
in(kt) L >0
s o s
s
COS(kt) m s>0
. k
sinh(kt) 2 5> |k
s
cosh(kt) o s> |k
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Laplace and Inverse Laplace Transform: Definitions and Basics

Existence of Laplace Transform

Theorem (Sufficient Conditions for the Existence of Laplace Transform)

If a function f(t) is
m piecewise continuous on [0, c0), and
m of exponential order,

then 2 {f(t)} exists for s > c¢ for some constant c.

Definition
A function f(t) is of exponential order if 3 ¢ € R, M > 0,7 > 0 such that

If(t)] < Me®, ¥ t> 7.

Note: If f(t) is of exponential order, then 3 ¢ € R such that for s > ¢,

lim f(t)e " = 0.
t— o0
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Laplace and Inverse Laplace Transform: Definitions and Basics

Existence of Laplace Transform

Theorem (Sufficient Conditions for the Existence of Laplace Transform)
If a function f(t) is

m piecewise continuous on [0, c0), and

m of exponential order,

then 2 {f(t)} exists for s > c¢ for some constant c.

Proof: For sufficiently large T > 7, we split the following integral:
T T T
/ f(t)ydt = / f(t)e‘S‘dt+/ f(tye 'dt.
0 0 T
I I

We only need to prove that I converges as T — oc:

T T T
|12|§/ \f(t)e*“|dt:/ |f(t)|e*5tdt§/ Me“ e *"dt,

which converges as 7' — oo for s > ¢ since .Z { e} exists.
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Laplace and Inverse Laplace Transform: Definitions and Basics

In this lecture, we focus on functions that are
m piecewise continuous on [0, c0), and

m of exponential order
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Laplace and Inverse Laplace Transform: Definitions and Basics

Laplace Transform of Derivatives

Suppose f(1) is continuous on [0, c0) and of exponential order, and f (1) is
also continuous on [0, c0), then the Laplace transform of f(¢) can be
found as follows:

2= [ T et (ydt= / T etag)

= [f(ne) +s/0 Rt =LA} —A0) | s> ¢

Note: since f(t) is of exponential order, f(t)e 5 — 0 as t — oo for s > ¢
for some constant c.

Similarly, if f(¢) is also of exponential order, we can find

L/ ()} =2/} - 1(0) = \ L {f(H)} — sf(0) — £(0) |
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Laplace and Inverse Laplace Transform: Definitions and Basics

Laplace Transform of Derivatives

IfFf.f,...,f"=Y are continuous on [0, 00) and are of exponential order,
and if ™) (t) is piecewise continuous on [0,0c), then
Z{fV(D} = "Fs) = " 0) = 52 (0) =~ 700

where F(s) .= Z {f(1)}.

Example
Evaluate .Z {t"}.

A: Let f(t) = t". Since fV(t) = nl, (P(0) =0forany 0< k< n—1,
using the above theorem we get
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Laplace and Inverse Laplace Transform: Definitions and Basics

Inverse Laplace Transform

L)} = F(s) = 27 {F(s)} = 1)

F(s): Laplace transform of f(t) <= f(t): inverse Laplace transform of F(s)

Note: Inverse Laplace transform is also linear:

L~ {aF(s) + BG(s)} = af(t) + By(t)
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Laplace and Inverse Laplace Transform: Definitions and Basics

Some Inverse Laplace Transforms

F(s) 1) Domain of F(s)
nl
s, " s>0
1
p— e s>a
k .
m Sln(kt) s>0
ﬁslg? cos(kt) §>0
k
Ry sinh(kt) 5> |k
2 j 2 cosh(kt) s> |k
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Laplace and Inverse Laplace Transform: Definitions and Basics

Examples

Example

Evaluate .Z* {

—25+6
$2+4
Step 1: Decompose

—254+6 s 2
= — 3 .
244 52+4+ s2+4

Step 2: By the linearity of inverse Laplace transform,

-1 —2s+6 o 1 S 1 2
z {524—4}_ 2z {52+4}+3$ {52—|—4}

:‘ —ZCos2t+3sin2t‘.
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Laplace and Inverse Laplace Transform: Definitions and Basics

Examples

Example

—1 (8+3)2
Evaluate . {(s— D620+ 4 }

Step 1: Decompose into partial fractions:

3 (54 3)° 4 B C
= oG-G8 ~s-1 T s-2 Tard

We can find A, B, C by the following:

A:{ (s+3)2 ] _ 16, (s+3)? 25
(s—TJ(s = 2)(s+4) |,

€= {<s— 1)((5;32));%] LT3

Step 2: Linearity = f(t) =|——¢e + —e" 4+ ——e¢
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