Chapter 7：The Laplace Transform

王奕翔
Department of Electrical Engineering
National Taiwan University
ihwang＠ntu．edu．tw

November 18， 2013

Solving an initial value problem associated with a linear differential equation：

1 General solution $=$ complimentary solution + particular solution．
2 Plug in the initial conditions to specify the undetermined coefficients．

Question：Is there a faster way？

In Chapter 4，5，and 6，we majorly deal with linear differential equations with continuous，differentiable，or analytic coefficients．

But in real applications，sometimes this is not true．
For example：

Square voltage input：Periodic，Discontinuous．
Question：How to solve the current？How to deal with discontinuity？

In this lecture we introduce a powerful tool：

Laplace Transform

Invented by Pierre－Simon Laplace（1749－1827）．

Overview of the Method

1 Laplace and Inverse Laplace Transform：Definitions and Basics

Definition of the Laplace Transform

Definition

For a function $f(t)$ defined for $t \geq 0$ ，its Laplace Transfrom is defined as

$$
F(s):=\mathscr{L}\{f(t)\}:=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

given that the improper integral converges．
Note：Use capital letters to denote transforms．

$$
f(t) \xrightarrow{\mathscr{L}} F(s), \quad g(t) \xrightarrow{\mathscr{L}} G(s), \quad y(t) \xrightarrow{\mathscr{L}} Y(s), \text { etc. }
$$

Note：The domain of the Laplace transform $F(s)$（that is，where the improper integral converges）depends on the function $f(t)$

Examples of Laplace Transform

Example

Evaluate $\mathscr{L}\{1\}$ ．

$$
\begin{aligned}
\mathscr{L}\{1\} & =\int_{0}^{\infty} e^{-s t}(1) d t=\lim _{T \rightarrow \infty} \int_{0}^{T} e^{-s t} d t \\
& =\lim _{T \rightarrow \infty}\left[\frac{-e^{-s t}}{s}\right]_{0}^{T}=\lim _{T \rightarrow \infty} \frac{1-e^{-s T}}{s}
\end{aligned}
$$

When does the above converge？$s>0$ ！
Hence，the domain of $\mathscr{L}\{1\}$ is $s>0$ ，and $\mathscr{L}\{1\}=\frac{1}{s}$ ．

Examples of Laplace Transform

Example

Evaluate $\mathscr{L}\{t\}$ ．

$$
\begin{aligned}
\mathscr{L}\{t\} & =\int_{0}^{\infty} t e^{-s t} d t=\lim _{T \rightarrow \infty} \int_{0}^{T} t d\left(\frac{-e^{-s t}}{s}\right) \\
& =\lim _{T \rightarrow \infty}\left[\frac{-t e^{-s t}}{s}\right]_{0}^{T}+\int_{0}^{T} \frac{1}{s} e^{-s t} d t=\lim _{T \rightarrow \infty} \frac{-T e^{-s T}}{s}+\frac{1}{s} \mathscr{L}\{1\} .
\end{aligned}
$$

When does the above converge？$s>0$ ！
Hence，the domain of $\mathscr{L}\{t\}$ is $s>0$ ，and $\mathscr{L}\{t\}=\frac{1}{s^{2}}$ ．

Laplace Transform of t^{n}

$$
\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}, \quad n=0,1,2, \ldots, s>0
$$

Proof：One way is to prove it by induction．We will show another proof after discussing the Laplace transform of the derivative of a function．

Laplace Transform of $e^{a t}$

$$
\mathscr{L}\left\{e^{a t}\right\}=\frac{1}{s-a}, s>a
$$

Proof：

$$
\begin{aligned}
\mathscr{L}\left\{e^{a t}\right\} & =\int_{0}^{\infty} e^{a t} e^{-s t} d t=\lim _{T \rightarrow \infty} \int_{0}^{T} e^{-(s-a) t} d t \\
& =\lim _{T \rightarrow \infty}\left[\frac{-e^{-(s-a) t}}{s-a}\right]_{0}^{T}=\lim _{T \rightarrow \infty} \frac{1-e^{-(s-a) T}}{s-a}
\end{aligned}
$$

When does the above converge？$s-a>0$ ！
Hence，the domain of $\mathscr{L}\left\{e^{a t}\right\}$ is $s>a$ ，and $\mathscr{L}\left\{e^{a t}\right\}=\frac{1}{s-a}$ ．

Laplace Transform of $\sin (k t)$ and $\cos (k t)$

$$
\mathscr{L}\{\sin (k t)\}=\frac{k}{s^{2}+k^{2}}, \mathscr{L}\{\cos (k t)\}=\frac{s}{s^{2}+k^{2}}, s>0
$$

Proof：

$$
\begin{aligned}
\mathscr{L}\{\sin (k t)\} & =\int_{0}^{\infty} \sin (k t) e^{-s t} d t=\int_{0}^{\infty} \sin (k t) d\left(\frac{-e^{-s t}}{s}\right) \\
& =\left[\frac{-\sin (k t) e^{-s t}}{s}\right]_{0}^{\infty}+\frac{k}{s} \int_{0}^{\infty} \cos (k t) e^{-s t} d t \\
& =\left[\frac{-\sin (k t) e^{-s t}}{s}\right]_{0}^{\infty}+\frac{k}{s} \mathscr{L}\{\cos (k t)\}
\end{aligned}
$$

When does the above converge？$s>0!\Longrightarrow\left[\frac{-\sin (k t) e^{-s t}}{s}\right]_{0}^{\infty}=0$

Laplace Transform of $\sin (k t)$ and $\cos (k t)$

$$
\mathscr{L}\{\sin (k t)\}=\frac{k}{s^{2}+k^{2}}, \mathscr{L}\{\cos (k t)\}=\frac{s}{s^{2}+k^{2}}, s>0
$$

Proof：

$$
\begin{aligned}
\mathscr{L}\{\cos (k t)\} & =\int_{0}^{\infty} \cos (k t) e^{-s t} d t=\int_{0}^{\infty} \cos (k t) d\left(\frac{-e^{-s t}}{s}\right) \\
& =\left[\frac{-\cos (k t) e^{-s t}}{s}\right]_{0}^{\infty}-\frac{k}{s} \int_{0}^{\infty} \sin (k t) e^{-s t} d t \\
& =\left[\frac{-\cos (k t) e^{-s t}}{s}\right]_{0}^{\infty}-\frac{k}{s} \mathscr{L}\{\sin (k t)\}
\end{aligned}
$$

When does the above converge？$s>0!\Longrightarrow\left[\frac{-\cos (k t) e^{-s t}}{s}\right]_{0}^{\infty}=\frac{1}{s}$ ．

Laplace Transform of $\sin (k t)$ and $\cos (k t)$

$$
\mathscr{L}\{\sin (k t)\}=\frac{k}{s^{2}+k^{2}}, \mathscr{L}\{\cos (k t)\}=\frac{s}{s^{2}+k^{2}}, s>0
$$

Proof：

$$
\left\{\begin{array}{l}
\mathscr{L}\{\sin (k t)\}=\frac{k}{s} \mathscr{L}\{\cos (k t)\} \\
\mathscr{L}\{\cos (k t)\}=\frac{1}{s}-\frac{k}{s} \mathscr{L}\{\sin (k t)\}
\end{array}\right.
$$

Solve the above，we get the result：

$$
\begin{aligned}
& \mathscr{L}\{\sin (k t)\}=\frac{k}{s} \mathscr{L}\{\cos (k t)\}=\frac{k}{s^{2}}-\frac{k^{2}}{s^{2}} \mathscr{L}\{\sin (k t)\} \\
& \Longrightarrow \frac{s^{2}+k^{2}}{s^{2}} \mathscr{L}\{\sin (k t)\}=\frac{k}{s^{2}} \Longrightarrow \mathscr{L}\{\sin (k t)\}=\frac{k}{s^{2}+k^{2}} \\
& \mathscr{L}\{\cos (k t)\}=\frac{s}{k} \mathscr{L}\{\sin (k t)\}=\frac{s}{s^{2}+k^{2}} .
\end{aligned}
$$

Laplace Transform is Linear

Theorem

For any $\alpha, \beta, f(t) \xrightarrow{\mathscr{L}} F(s), g(t) \xrightarrow{\mathscr{L}} G(s)$,

$$
\mathscr{L}\{\alpha f(t)+\beta g(t)\}=\alpha F(s)+\beta G(s)
$$

Proof：It can be proved by the linearity of integral．

Example

Evaluate $\mathscr{L}\{\sinh (k t)\}$ and $\mathscr{L}\{\cosh (k t)\}$ ．
$\mathrm{A}: \sinh (k t)=\frac{1}{2}\left(e^{k t}-e^{-k t}\right), \cosh (k t)=\frac{1}{2}\left(e^{k t}+e^{-k t}\right)$ ．Hence

$$
\begin{aligned}
& \sinh (k t) \xrightarrow{\mathscr{L}} \frac{1}{2}\left(\frac{1}{s-k}-\frac{1}{s+k}\right)=\frac{k}{s^{2}-k^{2}}, s>|k| \\
& \cosh (k t) \xrightarrow{\mathscr{L}} \frac{1}{2}\left(\frac{1}{s-k}+\frac{1}{s+k}\right)=\frac{s}{s^{2}-k^{2}}, s>|k| .
\end{aligned}
$$

Laplace Transforms of Some Basic Functions

$$
\begin{aligned}
t^{n} \xrightarrow{\mathscr{L}} \frac{n!}{s^{n+1}} & s>0 \\
e^{a t} \xrightarrow{\mathscr{L}} \frac{1}{s-a} & s>a \\
\sin (k t) \stackrel{\mathscr{L}}{\longrightarrow} \frac{k}{s^{2}+k^{2}} & s>0 \\
\cos (k t) \stackrel{\mathscr{L}}{\longrightarrow} \frac{s}{s^{2}+k^{2}} & s>0 \\
\sinh (k t) \xrightarrow{\mathscr{L}} \frac{k}{s^{2}-k^{2}} & s>|k| \\
\cosh (k t) \xrightarrow{\mathscr{L}} \frac{s}{s^{2}-k^{2}} &
\end{aligned}
$$

Existence of Laplace Transform

Theorem（Sufficient Conditions for the Existence of Laplace Transform）
If a function $f(t)$ is
－piecewise continuous on $[0, \infty)$ ，and
－of exponential order， then $\mathscr{L}\{f(t)\}$ exists for $s>c$ for some constant c ．

Definition

A function $f(t)$ is of exponential order if $\exists c \in \mathbb{R}, M>0, \tau>0$ such that

$$
|f(t)|<M e^{c t}, \forall t>\tau
$$

Note：If $f(t)$ is of exponential order，then $\exists c \in \mathbb{R}$ such that for $s>c$ ，

$$
\lim _{t \rightarrow \infty} f(t) e^{-s t}=0
$$

Existence of Laplace Transform

Theorem（Sufficient Conditions for the Existence of Laplace Transform）

If a function $f(t)$ is
－piecewise continuous on $[0, \infty)$ ，and
－of exponential order， then $\mathscr{L}\{f(t)\}$ exists for $s>c$ for some constant c ．

Proof：For sufficiently large $T>\tau$ ，we split the following integral：

$$
\int_{0}^{T} f(t) d t=\underbrace{\int_{0}^{\tau} f(t) e^{-s t} d t}_{I_{1}}+\underbrace{\int_{\tau}^{T} f(t) e^{-s t} d t}_{I_{2}}
$$

We only need to prove that I_{2} converges as $T \rightarrow \infty$ ：

$$
\left|I_{2}\right| \leq \int_{\tau}^{T}\left|f(t) e^{-s t}\right| d t=\int_{\tau}^{T}|f(t)| e^{-s t} d t \leq \int_{\tau}^{T} M e^{c t} e^{-s t} d t
$$

which converges as $T \rightarrow \infty$ for $s>c$ since $\mathscr{L}\left\{e^{c t}\right\}$ exists．

In this lecture，we focus on functions that are
\square piecewise continuous on $[0, \infty)$ ，and ■ of exponential order

