Chapter 6：Series Solutions of Linear Equations

王奕翔
Department of Electrical Engineering
National Taiwan University
ihwang＠ntu．edu．tw

November 13， 2013

Solving Higher－Order Linear Equations

In Chapter 4，we learns how to analytically solve two special kinds of higher－order linear differential equations：
1 Linear Differential Equation with Constant Coefficients
2．Cauchy－Euler Equations

Essentially only one kind－linear DE with constant coefficients！ Because to solve Cauchy－Euler DE，we substitute $x=e^{t}$ ！

Question：Is it possible to solve other kinds，like the following？

$$
\left(x^{2}+2 x-3\right) y^{\prime \prime}-2(x+1) y^{\prime}+2 y=0
$$

Idea：Express the solution function as a power series！

$$
y(x)=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

Focus on：Linear Second－Order Differential Equations

Throughout this lecture，we shall focus on solving homogeneous linear second order differential equations

$$
a_{2}(x) y^{\prime \prime}+a_{1}(x) y+a_{0}(x)=0
$$

using the method of power series．

Standard Form：Frequently throughout the discussions in this lecture：

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0 .
$$

1 Review of Power Series

2 Solutions about Ordinary Points

3 Solutions about Singular Points

4 Summary

Power Series

Definition

A power series in $(x-a)$（or a power series centered at a ）is an infinite series of the following form：

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

where $\left\{c_{n}\right\}_{0}^{\infty}$ is a sequence of real numbers．

Some Examples：

$$
\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+\cdots, \quad \sum_{n=0}^{\infty} 2^{n} x^{n}=1+2 x+4 x^{2}+\cdots
$$

Convergence，Divergence，Absolute Convergence

Convergence：A power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ converges at $x=x_{0}$ if

$$
\lim _{N \rightarrow \infty} \sum_{n=0}^{N} c_{n}\left(x_{0}-a\right)^{n} \quad \text { exists. }
$$

Otherwise，the power series diverges at $x=x_{0}$ ．
Absolute Convergence：A power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ converges absolutely at $x=x_{0}$ if

$$
\lim _{N \rightarrow \infty} \sum_{n=0}^{N}\left|c_{n}\left(x_{0}-a\right)^{n}\right| \quad \text { exists. }
$$

Ratio Test：Suppose $c_{n} \neq 0$ for all n ，then the following test tells us about the convergence of the series：

$$
\lim _{n \rightarrow \infty}\left|\frac{c_{n+1}\left(x_{0}-a\right)^{n+1}}{c_{n}\left(x_{0}-a\right)^{n}}\right|=\left|x_{0}-a\right| \lim _{n \rightarrow \infty}\left|\frac{c_{n+1}}{c_{n}}\right| \quad \begin{array}{ll}
<1 & \text { absolute convergence } \\
>1 & \text { divergence } \\
=1 & \text { not sure }
\end{array}
$$

Interval of Convergence

Interval of Convergence：Every power series has an interval of convergence $I=(a-R, a+R)$ ，in which he power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ converges absolutely．
$R>0$ is called the radius of convergence．

A power series defines a function of $x, f(x):=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ for $x \in I$ ．

Function Defined by a Power Series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$

Define the function（I：interval of convergence）

$$
y(x):=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}, x \in I .
$$

Differentiation

$$
\begin{aligned}
& y^{\prime}(x)=c_{1}+2 c_{2} x+3 c_{3} x^{2}+\cdots=\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1}, x \in I \\
& y^{\prime \prime}(x)=2 c_{2}+6 c_{3} x+12 c_{4} x^{2}+\cdots=\sum_{n=2}^{\infty} n(n-1) c_{n}(x-a)^{n-2}, x \in I
\end{aligned}
$$

Taylor＇s Series

If a function $f(x)$ is infinitely differentiable at a point a ，then it can be represented by Taylor＇s Series as follows，with a radius of convergence $R>0$ ．

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} .
$$

Examples

$$
\begin{gathered}
e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}, x \in \mathbb{R} \\
\frac{1}{1-x}=1+x+x^{2}+\cdots=\sum_{n=0}^{\infty} x^{n}, x \in(-1,1)
\end{gathered}
$$

Maclaurin Series	Interval of Convergence
$e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}$	$(-\infty, \infty)$
$\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}$	$(-\infty, \infty)$
$\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}$	$(-\infty, \infty)$
$\tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1}$	$[-1,1]$
$\cosh x=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\cdots=\sum_{n=0}^{\infty} \frac{1}{(2 n)!} x^{2 n}$	$(-\infty, \infty)$
$\sinh x=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+\cdots=\sum_{n=0}^{\infty} \frac{1}{(2 n+1)!} x^{2 n+1}$	$(-\infty, \infty)$
$\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^{n}$	$(-1,1]$
$\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots=\sum_{n=0}^{\infty} x^{n}$	$(-1,1)$

1 Review of Power Series

2 Solutions about Ordinary Points

3 Solutions about Singular Points

4 Summary

Ordinary and Singular Points

Focus on homogeneous linear 2nd order DE

$$
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0
$$

Rewrite it into its standard form $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ ．

Definition（Ordinary and Singular Points）

$x=x_{0}$ is an ordinary point of the above DE if both $P(x)$ and $Q(x)$ are analytic at x_{0} ．Otherwise，$x=x_{0}$ is a singular point．

Analytic at a Point：a function $f(x)$ is analytic at a point $x=x_{0}$ if and only if $f(x)$ can be represented as a power series $\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n}$ with a positive radius of convergence．

In our lecture analytic \equiv infinitely differentiable．

Examples：Ordinary and Singular Points

1 Constant coefficients：$a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$ ．Every $x \in \mathbb{R}$ is ordinary．
2 Cauchy－Euler DE：$x^{2} y^{\prime \prime}+x y^{\prime}+y=0$ ．
－$P(x)=\frac{1}{x}$ is analytic at $x \in \mathbb{R} \backslash\{0\}$ ．
－$Q(x)=\frac{1}{x^{2}}$ is analytic at $x \in \mathbb{R} \backslash\{0\}$ ．
Hence，$x=0$ is the only singular point．
3 Polynomial Coefficients：$a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0$ ，where $a_{2}(x) \neq 0, a_{1}(x), a_{0}(x)$ are all polynomials of x ．

■ $P(x)=\frac{a_{1}(x)}{a_{2}(x)}$ is analytic at $x \in \mathbb{R} \backslash\left\{r \in \mathbb{R}: a_{2}(r)=0\right\}$ ．
■ $Q(x)=\frac{a_{0}(x)}{a_{2}(x)}$ is analytic at $x \in \mathbb{R} \backslash\left\{r \in \mathbb{R}: a_{2}(r)=0\right\}$ ．
Hence，$\left\{r \in \mathbb{R}: a_{2}(r)=0\right\}$ are singular points．
$4 y^{\prime \prime}+x y^{\prime}+(\ln x) y=0$ ．
■ $P(x)=x$ is analytic at $x \in \mathbb{R}$ ．
－$Q(x)=\ln x$ is analytic at $x \in(0, \infty)$ ．
Hence，every $x \leq 0$ is singular．

Existence of Power Series Solutions about Ordinary Points

The following theorem lays the theoretical foundations of the method．

Theorem

Let $x=x_{0}$ be an ordinary point of a homogenous linear 2nd order DE． Then，we can find two linearly independent solutions in the form of power series centered at x_{0} ，that is，

$$
y=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n} .
$$

Moreover，the radius of convergence \geq the distance from x_{0} to the closest singular point in \mathbb{C} ．

Example：Minimum Radius of Convergence

Example

Consider a linear second order $\mathrm{DE}\left(x^{2}+1\right) y^{\prime \prime}+x y^{\prime}-y=0$ ．
Find the minimum radius of convergence of a power series solution about the ordinary points $x=-1$ and $x=0$ ．

A：The singular points in the complex domain \mathbb{C} is $\pm i$ ．
The distance between -1 and $\pm i$ is $\sqrt{1^{2}+1^{2}}=\sqrt{2}$ ．The distance between 0 and $\pm i$ is 1 ．

Based on the previous theorem，we obtain the minimum radius of convergence $R=\sqrt{2}$ and $R=1$ respectively．

In other words，for $|x+1|<\sqrt{2}$ and $|x|<1$ ，the power series solution of the DE exists（and converges absolutely）．

Example：Finding Power Series Solutions

Example

Consider a linear second order DE $\left(x^{2}+1\right) y^{\prime \prime}+x y^{\prime}-y=0$ ．
Find two linearly independent power series solution about the ordinary point $x=0$ ．

A：From the previous discussion，we know that the interval of definition of the solutions should be $(-1,1)$ ．
Plug in the power series representation $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ ．

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} c_{n} x^{n}, y^{\prime}=\sum_{n=0}^{\infty} n c_{n} x^{n-1}, y^{\prime \prime}=\sum_{n=0}^{\infty} c_{n} n(n-1) x^{n-2} \\
\Longrightarrow 0 & =\left(x^{2}+1\right) y^{\prime \prime}+x y^{\prime}-y \\
& =\sum_{n=0}^{\infty}\left\{\left(n^{2}-1\right) c_{n}+(n+2)(n+1) c_{n+2}\right\} x^{n}
\end{aligned}
$$

$$
\left(x^{2}+1\right) y^{\prime \prime}+x y^{\prime}-y \quad \sum_{n=0}^{\infty}\left\{\left(n^{2}-1\right) c_{n}+(n+2)(n+1) c_{n+2}\right\} x^{n}
$$

$\sum_{n=0}^{\infty}\left\{\left(n^{2}-1\right) c_{n}+(n+2)(n+1) c_{n+2}\right\} x^{n}$

$$
\begin{aligned}
& x^{\prime 2} \\
& x^{2} y^{\prime \prime}+x y^{\prime \prime}-y \\
& =x^{2} \sum_{n=0}^{\infty} c_{n} n(n-1) x^{n-2} \quad x y^{\prime}=x \sum_{n=0}^{\infty} c_{n} n x^{n-1} \quad y=\sum_{n=0}^{\infty} c_{n} x^{n} \\
& =\sum_{n=0}^{\infty} c_{n} n(n-1) x^{n} \quad x y^{\prime} \quad \sum_{n=0}^{\infty} c_{n} n x^{n}
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime \prime}=\sum_{n=0}^{\infty} c_{n} n(n-1) x^{n-2} \\
& =\sum_{n=2}^{\infty} c_{n} n(n-1) x^{n-2} \\
& =\sum_{k=0}^{\infty} c_{k+2}(k+2)(k+1) x^{k} \\
& \sum_{n=0}^{\infty}\left\{\left(n^{2}-1\right) c_{n}+(n+2)(n+1) c_{n+2}\right\} x^{n} \\
& x^{2} y^{\prime \prime}+x y^{\prime}-y \\
& x^{2} y^{\prime \prime}=x^{2} \sum_{n=0}^{\infty} c_{n} n(n-1) x^{n-2} \quad x y^{\prime}=x \sum_{n=0}^{\infty} c_{n} n x^{n-1} \quad y=\sum_{n=0}^{\infty} c_{n} x^{n} \\
& =\sum_{n=0}^{\infty} c_{n} n(n-1) x^{n} \quad=\sum_{n=0}^{\infty} c_{n} n x^{n}
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime \prime} \quad y^{\prime \prime}=\sum_{n=0}^{\infty} c_{n} n(n-1) x^{n-2} \\
& =\sum_{n=2}^{\infty} c_{n} n(n-1) x^{n-2} \\
& \text { 人 } \\
& =\sum_{k=0}^{\infty} c_{k+2}(k+2)(k+1) x^{k} \\
& x^{2} y^{\prime \prime}+x y^{\prime}-y \\
& x^{2} y^{\prime \prime}=x^{2} \sum_{n=0}^{\infty} c_{n} n(n-1) x^{n-2} \quad x y^{\prime}=x \sum_{n=0}^{\infty} c_{n} n x^{n-1} \quad y=\sum_{n=0}^{\infty} c_{n} x^{n} \\
& =\sum_{n=0}^{\infty} c_{n} n(n-1) x^{n} \\
& =\sum_{n=0}^{\infty} c_{n} n x^{n}
\end{aligned}
$$

Recursive Formula of Coefficients in Power Series Solution

Example

Consider a linear second order DE $\left(x^{2}+1\right) y^{\prime \prime}+x y^{\prime}-y=0$ ．
Find two linearly independent power series solution about the ordinary point $x=0$ ．

Plug in the power series representation $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ ，we get

$$
\begin{aligned}
& 0=\sum_{n=0}^{\infty}\left\{\left(n^{2}-1\right) c_{n}+(n+2)(n+1) c_{n+2}\right\} x^{n} \\
\Longrightarrow & \left(n^{2}-1\right) c_{n}+(n+2)(n+1) c_{n+2}=0, n=0,1,2, \ldots \\
\Longrightarrow c_{2} & =\frac{1}{2} c_{0}, c_{3}=0, c_{n+2}=\frac{1-n}{2+n} c_{n}, n=2,3,4, \ldots \\
\Longrightarrow c_{2} & =\frac{1}{2} c_{0}, c_{4}=\frac{-1}{2 \cdot 4} c_{0}, c_{6}=\frac{1 \cdot 3}{2 \cdot 4 \cdot 6} c_{0}, \cdots \\
c_{3} & =c_{5}=c_{7}=\cdots=0 .
\end{aligned}
$$

$$
\left(n^{2}-1\right) c_{n}+(n+2)(n+1) c_{n+2}=0, n \geq 0
$$

■ $n=0$

$$
-c_{0}+2 c_{2}=0 \Longrightarrow c_{2}=\frac{1}{2} c_{0}
$$

■ $n=1$

$$
0+6 c_{3}=0 \Longrightarrow c_{3}=0
$$

－$n \geq 2$

$$
\begin{aligned}
& (n-1)(n+1) c_{n}+(n+2)(n+1) c_{n+2}=0 \\
& \quad \Longrightarrow c_{n+2}=\frac{1-n}{2+n} c_{n}
\end{aligned}
$$

Wrapping Up

Example

Consider a linear second order $\mathrm{DE}\left(x^{2}+1\right) y^{\prime \prime}+x y^{\prime}-y=0$ ．
Find two linearly independent power series solution about the ordinary point $x=0$ ．

Therefore

$$
y=c_{0}\left\{1+\frac{1}{2} x^{2}+\frac{-1}{2 \cdot 4} x^{4}+\frac{1 \cdot 3}{2 \cdot 4 \cdot 6} x^{6}+\cdots\right\}+c_{1} x
$$

Thus we obtain two linearly independent solutions：$y_{1}(x)=x$ ，and

$$
y_{2}(x)=1+\frac{1}{2} x^{2}+\sum_{n=2}^{\infty}(-1)^{n-1} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-3)}{2^{n} n!} x^{2 n},|x|<1 .
$$

1 Review of Power Series

2 Solutions about Ordinary Points

3 Solutions about Singular Points

4 Summary

Regular and Irregular Singular Points

Focus on homogeneous linear 2nd order DE

$$
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0
$$

Rewrite it into its standard form $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ ．

Definition（Regular and Irregular Singular Points）

A singular point $x=x_{0}$ of the above DE is regular if both $\left(x-x_{0}\right) P(x)$ and $\left(x-x_{0}\right)^{2} Q(x)$ are analytic at x_{0} ．Otherwise，$x=x_{0}$ is an irregular singular point．

Note：There may not be power series solutions about a singular point $x=x_{0}$ ．However，it is possible to obtain a generalized power series solution

$$
y(x)=\left(x-x_{0}\right)^{r} \sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n}
$$

In other words，at a regular singular point $x=x_{0}$ ，we can convert the standard form

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0
$$

into

$$
\left(x-x_{0}\right)^{2} y^{\prime \prime}+\left(x-x_{0}\right) p(x) y^{\prime}+q(x) y=0
$$

where $p(x)=\left(x-x_{0}\right) P(x)$ and $q(x)=\left(x-x_{0}\right)^{2} Q(x)$ are both analytic at $x=x_{0}$ ，that is，

$$
p(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}, q(x)=\sum_{n=0}^{\infty} b_{n}\left(x-x_{0}\right)^{n},\left|x-x_{0}\right|<R
$$

for some $R>0$ ．

Examples：Classification of Singular Points

1 Cauchy－Euler DE：$x^{2} y^{\prime \prime}+x y^{\prime}+y=0$ ．Its has one singular point $x=0$ ．
－$x P(x)=x \frac{1}{x}=1$ is analytic at $x=0$ ．
－$x^{2} Q(x)=x^{2} \frac{1}{x^{2}}=1$ is analytic at $x=0$ ．
Hence，$x=0$ is a regular singular point．
2 Polynomial Coefficients：$a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0$ ，where $a_{2}(x) \neq 0, a_{1}(x), a_{0}(x)$ are all polynomials of x ．Let $x=x_{0}$ be a root of $a_{2}(x)=0$ ．Hence $x=x_{0}$ is a singular point．
－If in the denominator of the rational function $P(x)=\frac{a_{1}(x)}{a_{2}(x)}$（after reduction），the factor $\left(x-x_{0}\right)$ appears at most to the first power， then $\left(x-x_{0}\right) P(x)$ is analytic at $x=x_{0}$ ．
－If in the denominator of the rational function $Q(x)=\frac{a_{0}(x)}{a_{2}(x)}$（after reduction），the factor $\left(x-x_{0}\right)$ appears at most to the second power， then $\left(x-x_{0}\right)^{2} Q(x)$ is analytic at $x=x_{0}$ ．

Examples：Classification of Singular Points

Example

For the second order $\mathrm{DE}\left(x^{2}-4\right)^{2} y^{\prime \prime}+3(x-2) y^{\prime}+5 y=0$ ，find the singular points and classify them into regular and irregular ones．

A：First rewrite the DE into the standard form：

$$
y^{\prime \prime}+3 \frac{x-2}{\left(x^{2}-4\right)^{2}} y^{\prime}+\frac{5}{\left(x^{2}-4\right)^{2}} y=y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0 .
$$

Since $P(x)=3 \frac{x-2}{\left(x^{2}-4\right)^{2}}=\frac{3}{(x-2)(x+2)^{2}}$ and $Q(x)=\frac{5}{\left(x^{2}-4\right)^{2}}=\frac{5}{(x-2)^{2}(x+2)^{2}}$ ，we have two singular points $x=2,-2$ for this DE．
$x=2$ ：regular singular point，because $(x-2) P(x)=\frac{3}{(x+2)^{2}}$ and $(x-2)^{2} Q(x)=\frac{5}{(x+2)^{2}}$ are both analytic at $x=2$ ．
$x=-2$ ：irregular singular point because $(x+2) P(x)=\frac{3}{(x-2)(x+2)}$ is not analytic at $x=-2$ ．

Method of Frobenius

Theorem

Let $x=x_{0}$ be a regular singular point of a homogenous linear 2nd order $D E$ ．Then，we can find at least one solutions in the following form：

$$
y=\left(x-x_{0}\right)^{r} \sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n}=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n+r}
$$

where r is a constant（not necessarily an integer）to be determined．The series will converge on some interval $0<x-x_{0}<R$ ．

Note 1：Without loss of generality we assume that $c_{0} \neq 0$ ．
Note 2：We have to determine
－The exponent r first，
－and then the sequence $\left\{c_{n}, n=1,2, \ldots\right\}$ ．

Method of Frobenius：Calculation

Without loss of generality，assume that the regular singular point is $x=0$ ．We convert the standard form into

$$
x^{2} y^{\prime \prime}+x p(x) y^{\prime}+q(x) y=0
$$

where $p(x)=x P(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $q(x)=x^{2} Q(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$ ．
Plug in $y=x^{r} \sum_{n=0}^{\infty} c_{n} x^{n}=\sum_{n=0}^{\infty} c_{n} x^{n+r}$ ，we get

$$
\begin{aligned}
x^{2} y^{\prime \prime}+x p(x) y^{\prime}+q(x) y & =x^{2}\left(\sum_{n=0}^{\infty} c_{n}(n+r)(n+r-1) x^{n+r-2}\right) \\
& +x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)\left(\sum_{n=0}^{\infty} c_{n}(n+r) x^{n+r-1}\right) \\
& +\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)\left(\sum_{n=0}^{\infty} c_{n} x^{n+r}\right)
\end{aligned}
$$

Method of Frobenius：Calculation

Without loss of generality，assume that the regular singular point is $x=0$ ．We convert the standard form into

$$
x^{2} y^{\prime \prime}+x p(x) y^{\prime}+q(x) y=0
$$

where $p(x)=x P(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $q(x)=x^{2} Q(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$ ．
Plug in $y=x^{r} \sum_{n=0}^{\infty} c_{n} x^{n}=\sum_{n=0}^{\infty} c_{n} x^{n+r}$ ，we get

$$
\begin{aligned}
x^{2} y^{\prime \prime}+x p(x) y^{\prime}+q(x) y & =x^{r}\left(\sum_{n=0}^{\infty} c_{n}(n+r)(n+r-1) x^{n}\right) \\
& +x^{r}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)\left(\sum_{n=0}^{\infty} c_{n}(n+r) x^{n}\right) \\
& +x^{r}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)\left(\sum_{n=0}^{\infty} c_{n} x^{n}\right)
\end{aligned}
$$

Method of Frobenius：Calculation

Without loss of generality，assume that the regular singular point is $x=0$ ．We convert the standard form into

$$
x^{2} y^{\prime \prime}+x p(x) y^{\prime}+q(x) y=0
$$

where $p(x)=x P(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $q(x)=x^{2} Q(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$ ．
Plug in $y=x^{r} \sum_{n=0}^{\infty} c_{n} x^{n}=\sum_{n=0}^{\infty} c_{n} x^{n+r}$ ，we get

$$
\begin{aligned}
x^{2} y^{\prime \prime}+x p(x) y^{\prime}+q(x) y & =x^{r}\left(\sum_{n=0}^{\infty} c_{n}(n+r)(n+r-1) x^{n}\right) \\
& +x^{r}\left(\sum_{n=0}^{\infty}\left\{\sum_{k=0}^{n} a_{n-k} c_{k}(k+r)\right\} x^{n}\right) \\
& +x^{r}\left(\sum_{n=0}^{\infty}\left\{\sum_{k=0}^{n} b_{n-k} c_{k}\right\} x^{n}\right)
\end{aligned}
$$

Method of Frobenius：Calculation

Without loss of generality，assume that the regular singular point is $x=0$ ．We convert the standard form into

$$
x^{2} y^{\prime \prime}+x p(x) y^{\prime}+q(x) y=0
$$

where $p(x)=x P(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $q(x)=x^{2} Q(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$ ．
Plug in $y=x^{r} \sum_{n=0}^{\infty} c_{n} x^{n}=\sum_{n=0}^{\infty} c_{n} x^{n+r}$ ，we get

$$
x^{2} y^{\prime \prime}+x p(x) y^{\prime}+q(x) y=x^{r}\left(\sum_{n=0}^{\infty} L_{n} x^{n}\right)
$$

where

$$
L_{n}:=c_{n}(n+r)(n+r-1)+\sum_{k=0}^{n} c_{k}\left\{a_{n-k}(k+r)+b_{n-k}\right\}=0, \forall n=0,1,2, \ldots
$$

Indicial Equation（Index \rightarrow Indices \rightarrow Indicial）

Further manipulate the conditions：

$$
\begin{aligned}
L_{n} & =c_{n}(n+r)(n+r-1)+\sum_{k=0}^{n} c_{k}\left\{a_{n-k}(k+r)+b_{n-k}\right\} \\
& =c_{n}\left\{(n+r)(n+r-1)+a_{0}(n+r)+b_{0}\right\}+\sum_{k=0}^{n-1} c_{k}\left\{a_{n-k}(k+r)+b_{n-k}\right\} \\
& =c_{n} I(n+r)+\sum_{k=0}^{n-1} c_{k}\left\{a_{n-k}(k+r)+b_{n-k}\right\}=0
\end{aligned}
$$

For $n=0$ ，the condition reduces to

$$
I(r)=r(r-1)+a_{0} r+b_{0}=0
$$

This is called the indicial equation of the problem，and the two roots are called indicial roots／exponents．

Roots of the Indicial Equation

Let the two real roots of $I(r)=r(r-1)+a_{0} r+b_{0}=0$ be r_{1}, r_{2} and $r_{1} \geq r_{2}$ ． P．S．We do not consider the case when r_{1}, r_{2} are complex conjugate roots．
$1 r_{1}>r_{2}$ and $r_{1}-r_{2} \notin \mathbb{Z}$ ：Two linearly independent solutions can be found：

$$
y_{1}(x)=\sum_{n=0}^{\infty} c_{n} x^{n+r_{1}}, c_{0} \neq 0, \quad y_{2}(x)=\sum_{n=0}^{\infty} d_{n} x^{n+r_{2}}, d_{0} \neq 0
$$

$2 r_{1}>r_{2}$ and $r_{1}-r_{2} \in \mathbb{Z}$ ：Two linearly independent solutions can be found：

$$
y_{1}(x)=\sum_{n=0}^{\infty} c_{n} x^{n+r_{1}}, c_{0} \neq 0, \quad y_{2}(x)=\underbrace{C}_{\text {can be } 0} y_{1}(x) \ln x+\sum_{n=0}^{\infty} d_{n} x^{n+r_{2}}, d_{0} \neq 0
$$

$3 r_{1}=r_{2}$ ：Two linearly independent solutions can be found：

$$
y_{1}(x)=\sum_{n=0}^{\infty} c_{n} x^{n+r_{1}}, c_{0} \neq 0, \quad y_{2}(x)=y_{1}(x) \ln x+\sum_{n=1}^{\infty} d_{n} x^{n+r_{2}}
$$

Examples

Example

Solve $2 x y^{\prime \prime}+(1+x) y^{\prime}+y=0$ ．

Example

Solve $x y^{\prime \prime}+y=0$ ．

1 Review of Power Series

2 Solutions about Ordinary Points

3 Solutions about Singular Points

4 Summary

Solve $a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0$
about a point $x=x_{0}$

Solve $a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0$ about a point $x=x_{0}$

Convert it into

$\left(x-x_{0}\right)^{2} y^{\prime \prime}+\left(x-x_{0}\right) p(x) y^{\prime}+q(x) y=0$

Case 1：$r_{1}>r_{2}$ and $r_{1}-r_{2} \notin \mathbb{Z}$

$$
y_{1}(x)=\sum_{n=0}^{\infty} c_{n} u^{n+r_{1}}, c_{0} \neq 0, \quad y_{2}(x)=\sum_{n=0}^{\infty} d_{n} u^{n+r_{2}}, d_{0} \neq 0
$$

Case 2：$r_{1}>r_{2}$ and $r_{1}-r_{2} \in \mathbb{Z}$
$y_{1}(x)=\sum_{n=0}^{\infty} c_{n} u^{n+r_{1}}, c_{0} \neq 0, \quad y_{2}(x)=\underbrace{C}_{\text {can be } 0} y_{1}(x) \ln u+\sum_{n=0}^{\infty} d_{n} u^{n+r_{2}}, d_{0} \neq 0$ ．
Case 3：$r_{1}=r_{2}$

$$
y_{1}(x)=\sum_{n=0}^{\infty} c_{n} u^{n+r_{1}}, c_{0} \neq 0, \quad y_{2}(x)=y_{1}(x) \ln u+\sum_{n=1}^{\infty} d_{n} u^{n+r_{2}}
$$

Short Recap

■ Power Series，Radius of Convergence，Analyticity，Taylor＇s Series
－Ordinary Points vs．Singular Points
■ Power Series Solution，Recursive Formula
－Regular Singular Point vs．Irregular Singular Point
－Generalized Power Series
－Method of Frobenius，Indicial Equation

Self－Practice Exercises

$6-1: 1,7,13,15,19,23,25,29,35$
6－2：1，3，13，15，19，21， 23
$6-3: 1,3,5,9,11,13,17,25,27,29,33$

