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Solving Higher-Order Linear Equations

In Chapter 4, we learns how to analytically solve two special kinds of
higher-order linear differential equations:

Linear Differential Equation with Constant Coefficients

Cauchy-Euler Equations

Essentially only one kind — linear DE with constant coefficients!
Because to solve Cauchy-Euler DE, we substitute © = et!

Question: Is it possible to solve other kinds, like the following?

(7 +22—3)y —2(z+ 1)y +2y=0
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Idea: Express the solution function as a
power series!

oo

y(z) = Cpt”
n=0




Focus on: Linear Second-Order Differential Equations

Throughout this lecture, we shall focus on solving homogeneous linear
second order differential equations

ax(2)y" + a1(2)y + ao(z) = 0,

using the method of power series.

Standard Form: Frequently throughout the discussions in this lecture:

Y+ P(z)y + Q(z)y =0.
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Review of Power Series

Review of Power Series
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Review of Power Series

Power Series

A power series in (z— a) (or a power series centered at a) is an infinite
series of the following form:

oo

n
E en(z—a)”,
n=0
where {¢,}3° is a sequence of real numbers.
Some Examples:

ix":1+x+12+~-, i?”x”:1+2x+412+-~.

n=0 n=0
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Review of Power Series

Convergence, Divergence, Absolute Convergence

Convergence: A power series o~ cn(z— a)" converges at & = o if

N
lim cn(z0 — a)"  exists.

N—oo
n=0

Otherwise, the power series diverges at z = xo.

Absolute Convergence: A power series o | cn(z — a)" converges absolutely
at = a9 if
N
lim cn(z0 — @)"| exists.
Jim 3 e "
—

Ratio Test: Suppose ¢, # 0 for all n, then the following test tells us about the
convergence of the series:

< 1 absolute convergence
> 1 divergence
=1 not sure

lim | ent1(o0 = a)™ !

n—oo | cp(o — a)®

Cn+1

= |z — a| lim
n Cn,

i
— 00
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Review of Power Series

Interval of Convergence

Interval of Convergence: Every power series has an interval of
convergence I = (a — R, a+ R), in which he power series

o n
> oo Cn(x — a)™ converges absolutely.

R > 0 is called the radius of convergence.

absolute
divergence convergence divergence

| ° | x
a—-R a a+R

T—series ma\yAT

converge or diverge
at endpoints

(oo}

A power series defines a function of z, f(z) := Z cn(z—a)" forz e I
n=0

DE Lecture 9



Review of Power Series

Function Defined by a Power Series >~ ¢,(z — a)"

Define the function (I: interval of convergence)

(oo}

y(z) = Z en(z—a)", z€ L
n=0
Differentiation
Y (z) = c1 + 2c0n + 3es? 4= i nen(z — a)"‘l, zel
n=1
y'(2) =2¢ 4 6csz+ 12042 + -+ = i n(n—1)ca(z—a)" 2, z€l
n=2
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Review of Power Series

Taylor's Series

If a function f(x) is infinitely differentiable at a point a, then it can be
represented by Taylor’s Series as follows, with a radius of convergence

R > 0. ~ fm
fla) = 3o 10

n

(z—a)™

n=0
Examples

n

6I:1+£+ﬁ+...zzw

a2 o PER

n=0

1 =
1—_£:1+x+m2+~-:nz_ox , ze(—1,1)
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Review of Power Series

Maclaurin Series

Interval
of Convergence

COos x

sin x

tan™

coshx =

sinhx =

In(1 + x)

2 -3 = 1

:1+l+i+i+ :Eixn

123 Zon!

2 4 6 = (—1y
P S S S g e

214! 6! a—o 2n)!
:X_ﬁ_,_x:_xl_*_“‘: >cizwl

31507 S@n+ 1)

X3 lj X7 ka (71)”
T TN N S e 7

375 7 Zﬂznﬂ

XZ .4 ',6 %
1+ 442y 2n

20 41 6! = @2n)!

3 5 7 o 1
_k+,+i+£+..4=24 2t

3157 Sen+ 1)

',2 3 A4 % _ln+|
:X_L+X7_JL+.H:E4( ) X!

2 3 4 a=1 N
=l+x+24+85+ =D«

n=0
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Solutions about Ordinary Points

Solutions about Ordinary Points
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Solutions about Ordinary Points

Ordinary and Singular Points

Focus on homogeneous linear 2nd order DE

ax(2)y" + a1(2)y + ap(r)y =0

Rewrite it into its standard form | 3/ + P(z)y + Q(z)y =0 ‘

Definition (Ordinary and Singular Points)

x = zy is an ordinary point of the above DE if both P(z) and Q(z) are
analytic at 9. Otherwise, x = g is a singular point.

Analytic at a Point: a function f(z) is analytic at a point z = x if and
only if f(z) can be represented as a power series >~ cn(z— 29)™ with a
positive radius of convergence.

In our lecture analytic = infinitely differentiable.
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Solutions about Ordinary Points

Examples: Ordinary and Singular Points

Constant coefficients: a2y’ + a1y + aoy = 0. Every x € R is ordinary.
Cauchy-Euler DE: 2%y 4+ zif + y = 0.
m P(z) = + is analytic at z € R\ {0}.
= Q(z) = -5 is analytic at z € R\ {0}.
Hence, z = 0 is the only singular point.

Polynomial Coefficients: a2(z)y" + a1(z)y + ao(z)y = 0, where
az(z) # 0, a1(x), ao(z) are all polynomials of z.

m P(z) = Z;Eg is analytic at z€ R\ {re R: az(r)

m Q(z) = Zggg is analyticat z€ R\ {re R: as(r)
Hence, {r € R: az(r) = 0} are singular points.

' +zy + (Inz) y=0.

=0}.
=0}

m P(z) = zis analytic at z € R.
m Q(z) = Inzis analytic at z € (0, ).
Hence, every x < 0 is singular.
14 / 43
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Solutions about Ordinary Points

Existence of Power Series Solutions about Ordinary Points

The following theorem lays the theoretical foundations of the method.

Theorem

Let x = xy be an ordinary point of a homogenous linear 2nd order DE.
Then, we can find two linearly independent solutions in the form of power
series centered at xg, that is,

y= Z cn(z— 20)™.
n=0

Moreover, the radius of convergence > the distance from xy to the
closest singular point in C.
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Solutions about Ordinary Points

Example: Minimum Radius of Convergence

Example

Consider a linear second order DE (22 + 1)y + 2/ — y = 0.
Find the minimum radius of convergence of a power series solution about
the ordinary points z = —1 and z = 0.

A: The singular points in the complex domain C is +1.

The distance between —1 and +iis v/12 + 12 = v/2. The distance
between 0 and +7is 1.

Based on the previous theorem, we obtain the minimum radius of
convergence R = /2 and R = 1 respectively.

In other words, for |2+ 1| < v/2 and |z| < 1, the power series solution of
the DE exists (and converges absolutely).
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Solutions about Ordinary Points

Example: Finding Power Series Solutions

Example

Consider a linear second order DE (:v2 + 1)y +xy —y=0.
Find two linearly independent power series solution about the ordinary

point z = 0.

A: From the previous discussion, we know that the interval of definition
of the solutions should be (—1,1).

Plug in the power series representation y = 220:0 ™

o0 (o] (o]
Y= E cnt™, Y = g nepr™ 1ty = g cann —1)z" 2
n=0 n=0 n=0

= 0= (@ + 1)y +af —y

=> {(® = Den+ (n+2)(n+ oo }a”
n=0
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Solutions about Ordinary Points

o]

(2 4+ 1)y" +ay —y Z {(n® = Den + (n+2)(n+ 1)y} 2™

n=0
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Solutions about Ordinary Points

+ y" + Z {(n® = Den + (n+2)(n+ 1)y} 2™
= n=0

ny//+$y/7y
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Solutions about Ordinary Points

Z {(n® = Den + (n+2)(n+ 1)y} 2™

ny//+$y/7y

oo oo oo
2%y = 2? g cpn(n — 1)1,'”’2 zy =x g cpna ! y= g [

n=0 n=0 n=0
oo )
= g cpn(n —1)a" = E cona™
n=0 n=0
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Solutions about Ordinary Points

y' = con(n —1)z" 2
" =
Y n;()
= Z con(n —1)z" 2
n=2
oo
=Y crralk+2)(k+1)2*
k=0

i {(n® = Den + (n+2)(n+ 1)y} 2™

n=0

ny//+$y/7y

oo oo oo
2%y = 2? g cpn(n — 1)1,'”’2 zy =x g cpna ! y= g [

n=0 n=0 n=0
oo )
= g cpn(n —1)a" = E cona™
n=0 n=0
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Solutions about Ordinary Points

" =
Y n;()
= Z con(n —1)z" 2
n=2
=
= ckralk+2)(k+ 1)2*
k=0

i {(n® = Den + (n+2)(n+ 1)y} 2™

n=0

x2y”+xy’fy

oo oo )
2%y = 2? g con(n —1)z" % xy =z g ezt oy o cpx™
n=0 n=0 n=0

= =
e g cpn(n —1)a" = E cona™
n=0 n=0
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Solutions about Ordinary Points

Recursive Formula of Coefficients in Power Series Solution

Example

Consider a linear second order DE (2% + 1)y’ + 2y — y = 0.
Find two linearly independent power series solution about the ordinary
point z = 0.

Plug in the power series representation y = ZZOZO cpx”, we get

0= Z {(n* = 1)en+ (n+2)(n+ 1) cppafa”
n=0

= (n* —1)cp+(n+2)(n+1)cpa =0, n=0,1,2,...

1 1—n
— Cy = 50()’ c3 :07 Cnt2 = mcny n:2a3747"'
_ 1 -1 1-3
62 - 260704 2 400766 2 4 6607

Cg = C =C7 =+ "=
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Solutions about Ordinary Points

(n* —=1)cn+ (n+2)(n+1)cpya =0, n>0

mn=0 ]
—cg+2c=0 = 622500
mn=1
0+6c3=0 = ¢c3=0
mn>2

(n=1)(n+ e+ (n+2)(n+1)cpp2=0
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Solutions about Ordinary Points

Wrapping Up

Example

Consider a linear second order DE (22 + 1)y + 2/ — y = 0.

Find two linearly independent power series solution about the ordinary
point z = 0.

Therefore

1-3
y00{1+ —2? + 6

T +-~-}+clx

14
21" T2 16

Thus we obtain two linearly independent solutions: y; (z) = x, and

1 > wo11:3:5--(2n=3) ,,
yo(z) = 1+512+;2(f1) S 2" |z) < 1.
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Solutions about Singular Points

Solutions about Singular Points
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Solutions about Singular Points

Regular and Irregular Singular Points

Focus on homogeneous linear 2nd order DE
ax(2)y" + a1(2)y + ao(r)y =0
Y+ P)y + Qa)y =0

Rewrite it into its standard form

Definition (Regular and Irregular Singular Points)

A singular point z = x; of the above DE is regular if both (z — ) P(x)
and (7 — 20)?Q(x) are analytic at zy. Otherwise, z = 1o is an irregular
singular point.

Note: There may not be power series solutions about a singular point
= x9. However, it is possible to obtain a generalized power series

solution
oo

y(@) = (2 2)" Y eale— )"

n=0
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Solutions about Singular Points

In other words, at a regular singular point z = xy, we can convert the
standard form

y' + P(x)y + Q(z)y =0,

into

\ (z— 20)*y" + (z— 20)p(2)y + q(x)y=0]

where p(z) = (z— 20) P(z) and ¢(z) = (z — 29)? Q(z) are both analytic at

T = 19, that is,
p(a:)zZan(x—xo . gz Zb r—1p)", |z — 20| <R
n=0

for some R > 0.

DE Lecture 9



Solutions about Singular Points

Examples: Classification of Singular Points

Cauchy-Euler DE: 22y’ + zy/ + y = 0. Its has one singular point z = 0.

m zP(z) = 1 = 1 is analytic at = 0.
m 2°Q(z) = 2° % = Lis analytic at z=10.

Hence, z = 0 is a regular singular point.

Polynomial Coefficients: a2(z)y” + a1(z)y + ao(z)y = 0, where
az(z) # 0, a1(z), ap(z) are all polynomials of z. Let = 19 be a root of
az(z) = 0. Hence z = 2o is a singular point.

m If in the denominator of the rational function P(z) = Z;—éﬁ; (after

reduction), the factor (z — o) appears at most to the first power,
then (z — zo) P(z) is analytic at z = zo.

m If in the denominator of the rational function Q(z) = 228 (after
reduction), the factor (z — o) appears at most to the second power,
then (z — 29)? Q(x) is analytic at z = 0.
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Solutions about Singular Points

Examples: Classification of Singular Points

For the second order DE (2% — 4)%y/”’ + 3(z — 2)y + 5y = 0, find the singular
points and classify them into regular and irregular ones.
A: First rewrite the DE into the standard form:

1" +3 x—2 + 5
R v Ll oy
H _ —2 _ 3 _ 5 _ 5
Since P(z) =30=4 = Gogy(erz 2 QD) = oo = G We
have two singular points z = 2, —2 for this DE.

sy="19 + P(2)y + Qa)y =

x = 2: regular singular point, because (z — 2)P(z) = ﬁ and
(z—2)%Q(z) = iayz are both analytic at z = 2.

x = —2: irregular singular point because (z+ 2)P(z) = is not

3
(z—2)(2+2)
analytic at z = —2.
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Solutions about Singular Points

Method of Frobenius

Theorem

Let © = xy be a regular singular point of a homogenous linear 2nd order
DE. Then, we can find at least one solutions in the following form:

y=(z—120)"Y calz—m)" =D calz—20)""",
n=0 n=0

where r is a constant (not necessarily an integer) to be determined. The
series will converge on some interval 0 < x — 19 < R.
Note 1: Without loss of generality we assume that ¢y # 0.

Note 2: We have to determine
m The exponent r first,

m and then the sequence {¢,, n=1,2,...}.
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Solutions about Singular Points

Method of Frobenius: Calculation

Without loss of generality, assume that the regular singular point is z = 0. We
convert the standard form into

2y + ap(2)y + q(z)y =0

where p(z) = zP(z) = >.°° , anz” and g(z) = 2 Q(z) = 322 bna™.

Plugin y=12"> o0 ) cn” = > 00 ) cua™7, we get

2y’ + ap(a)y + q(x)y = & <Z ca(n+7)(n+r— 1):5"”2)

n=0

+z < 3 a,@") <§: cn(n+ r)x"Ml)
n=0 n=0
+ (i bn:r"> <i cnx"+r)
n=0 n=0
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Solutions about Singular Points

Method of Frobenius: Calculation

Without loss of generality, assume that the regular singular point is z = 0. We
convert the standard form into

2y + ap(2)y + q(z)y =0

oo

where p(z) = zP(z) = >.°° , anz” and g(z) = 2 Q(z) = 322 bna™.

Plugin y=12"> 20 ) cn” = > 00 ) cua™", we get

Py’ +ap()y + o2y = o (Z enln+r)(nt 7 - m”)

n=0

+ 2" (Z anx"> (Z en(n+ r)x")

n=0 n=0

() (Se)

n=0
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Solutions about Singular Points

Method of Frobenius: Calculation

Without loss of generality, assume that the regular singular point is z = 0. We
convert the standard form into

2y + ap(2)y + q(z)y =0

where p(z) = zP(z) = >.°° , anz” and g(z) = 2 Q(z) = 322 bna™.

Plugin y=12"> 20 ) cn” = > 00 ) cua™", we get
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Solutions about Singular Points

Method of Frobenius: Calculation

Without loss of generality, assume that the regular singular point is z = 0. We
convert the standard form into

2y’ +ap(2)y + g()y =0
where p(z) = zP(z) = >.°° , anz” and g(z) = 2 Q(z) = 322 bna™.

Plugin y=12"> 20 ) cn” = > 00 ) cua™", we get

2y’ + ap(a)y + q(z (Z Lnx )

where

Ly :=cp(n+ 1) (n+r—1) —&—ch{an,k(k—&— )4+ b} =0, Vn=0,1,2,...
k=0
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Solutions about Singular Points

Indicial Equation (index — Indices — Indicial)

Further manipulate the conditions:

Lyo=ci(n+r)(n+r—1)+ i ce{an—r(k+ 1) + bnr}

k=0
n—1
= c{(n+n)(n+r—1)+ao(n+n) +bo}+ D cx{anrlk+7) + bur}
k=0
n—1
=cal(n+ 1)+ > cr{ani(k+ 1)+ by s} =0.
k=0

For n = 0, the condition reduces to

‘I(r):r(r—l)—i—aor—i— bo:()‘.

This is called the indicial equation of the problem, and the two roots are
called indicial roots/exponents.
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Solutions about Singular Points

Roots of the Indicial Equation

Let the two real roots of I(r) = r(r— 1) 4+ aor+ bo = 0 be 71,72 and 1 > 72.

P.S. We do not consider the case when r1, T2 are complex conjugate roots.

r. > ry and r, — 12 ¢ Z: Two linearly independent solutions can be found
oo

yi(z) = Z

CnCEmLTl, o 75 0, yQ(.T) — Z dnxTer, dO 7& 0
n=0 n=0

[e o]

1 > 12 and r; — 1o € Z: Two linearly independent solutions can be found:

(@) = et #0, y(a) =

> C wyi(z)ln I+Z dnz"t™2, dy # 0.

can be 0 n=0

B n=

r2: Two linearly independent solutions can be found:

n(z) = Z a2 ¢ #0, y(z) =yi(x)lnz+ Z dnz" T2,
n=0

n=1
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Solutions about Singular Points

Examples

Solve 2zy" + (1 + z)y + y = 0.

Solve zy’ + y = 0.
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Summary

A Summary
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Summary

Solve aa(z)y” + a1 (x)y + ap(z)y =0
about a point z = xg

Convert it into
Y+ P(x)y' + Qx)y =0

P(), Q(«)| analytical at ao?
T is ordinary

Plug in

Yes y=Y,gc

Two linearly independent
power series solutions
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Solve aa(z)y” + a1 (x)y + ap(z)y =0
about a point z = xg

Convert it into
Y+ P(x)y' + Qx)y =0

P(2), Q(x)| analytical at a7

T is ordinary

Plug in
Yes |y =52 penle — )"

Two linearly independent
power series solutions

Summary

No

Convert it into

(z — m0)%y" + (z — zo)p(x)y’ + q(x)y =0

(@), q(.x)lam\ls ical at 707

T is regular singular’

Plug in
Y= (v —20)" X0l nl® — 70)"

Case 1: 1y > and 1 — 15 € 2

pi@) =D ™M g £0, yalw) =Y dyu™t?, dy £0
"m0 =

Case 2: ry >rpandry —ry €7

yi(@) =D ™ o £0, ()= O pia)nut . dyumtT, dg #0.

n=0 ean be 0 n=0

Case 3: 11 =717

ni(@) =Y ™ e 20, ya(a) = prlw) nu+ Y dyu T

n—0 n—1
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Summary

Short Recap

m Power Series, Radius of Convergence, Analyticity, Taylor's Series

Ordinary Points vs. Singular Points

m Power Series Solution, Recursive Formula

Regular Singular Point vs. Irregular Singular Point
m Generalized Power Series

m Method of Frobenius, Indicial Equation
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Summary

Self-Practice Exercises

6-1: 1, 7, 13, 15, 19, 23, 25, 29, 35
6-2: 1, 3, 13, 15, 19, 21, 23

6-3: 1, 3,5, 09, 11, 13, 17, 25, 27, 29, 33
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