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Solving Higher-Order Linear Equations

In Chapter 4, we learns how to analytically solve two special kinds of
higher-order linear differential equations:

1 Linear Differential Equation with Constant Coefficients
2 Cauchy-Euler Equations

Essentially only one kind – linear DE with constant coefficients!
Because to solve Cauchy-Euler DE, we substitute x = et!

Question: Is it possible to solve other kinds, like the following?

(x2 + 2x − 3)y′′ − 2(x + 1)y′ + 2y = 0
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Idea: Express the solution function as a
power series!

y(x) =
∞∑

n=0

cnxn
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Focus on: Linear Second-Order Differential Equations

Throughout this lecture, we shall focus on solving homogeneous linear
second order differential equations

a2(x)y′′ + a1(x)y + a0(x) = 0,

using the method of power series.

Standard Form: Frequently throughout the discussions in this lecture:

y′′ + P(x)y′ + Q(x)y = 0.
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Power Series

Definition
A power series in (x − a) (or a power series centered at a) is an infinite
series of the following form:

∞∑
n=0

cn(x − a)n,

where {cn}∞0 is a sequence of real numbers.

Some Examples:
∞∑

n=0

xn = 1 + x + x2 + · · · ,
∞∑

n=0

2nxn = 1 + 2x + 4x2 + · · · .
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Convergence, Divergence, Absolute Convergence

Convergence: A power series
∑∞

n=0 cn(x − a)n converges at x = x0 if

lim
N→∞

N∑
n=0

cn(x0 − a)n exists.

Otherwise, the power series diverges at x = x0.

Absolute Convergence: A power series
∑∞

n=0 cn(x − a)n converges absolutely
at x = x0 if

lim
N→∞

N∑
n=0

|cn(x0 − a)n| exists.

Ratio Test: Suppose cn ̸= 0 for all n, then the following test tells us about the
convergence of the series:

lim
n→∞

∣∣∣∣cn+1(x0 − a)n+1

cn(x0 − a)n

∣∣∣∣ = |x0−a| lim
n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ < 1 absolute convergence
> 1 divergence
= 1 not sure
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Interval of Convergence

Interval of Convergence: Every power series has an interval of
convergence I = (a − R, a + R), in which he power series∑∞

n=0 cn(x − a)n converges absolutely.
R > 0 is called the radius of convergence.

232 ! CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS
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REVIEW OF POWER SERIES

REVIEW MATERIAL
! Infinite series of constants, p-series, harmonic series, alternating harmonic series, geometric

series, tests for convergence especially the ratio test
! Power series, Taylor series, Maclaurin series (See any calculus text)

INTRODUCTION In Section 4.3 we saw that solving a homogeneous linear DE with constant
coefficients was essentially a problem in algebra. By finding the roots of the auxiliary equation, we
could write a general solution of the DE as a linear combination of the elementary functions

But as was pointed out in the introduction to Section 4.7,
most linear higher-order DEs with variable coefficients cannot be solved in terms of elementary
functions.  A usual course of action for equations of this sort is to assume a solution in the form of
an infinite series and proceed in a manner similar to the method of undetermined coefficients
(Section 4.4). In Section 6.2 we consider linear second-order DEs with variable coefficients that
possess solutions in the form of a power series, and so it is appropriate that we begin this chapter
with a review of that topic.

eax, xkeax, xkeaxcosbx, and xkeaxsinbx.

6.1

Power Series Recall from calculus that power series in is an infinite
series of the form

Such a series also said to be a power series centered at a. For example, the power
series is centered at a ! "1. In the next section we will be concerned
principally with power series in x, in other words, power series that are centered at

. For example, 

is a power series in x.

Important Facts The following bulleted list summarizes some important
facts about power series 

• Convergence A power series is convergent at a specified value of x if 
its sequence of partial sums converges, that is, 

exists. If the limit does not exist at x, then the series
is said to be divergent.

• Interval of Convergence Every power series has an interval of convergence.
The interval of convergence is the set of all real numbers x for which the series
converges. The center of the interval of convergence is the center a of the series.

• Radius of Convergence The radius R of the interval of convergence of a
power series is called its radius of convergence. If then a power series
converges for and diverges for If the series
converges only at its center a, then If the series converges for all x, then
we write Recall, the absolute-value inequality is
equivalent to the simultaneous inequality A power series
may or may not converge at the endpoints of this interval.

• Absolute Convergence Within its interval of convergence a power series
converges absolutely. In other words, if x is in the interval of convergence
and is not an endpoint of the interval, then the series of absolute values

converges. See Figure 6.1.1.!#
n!0" cn(x " a)n "

a " R and a $ R
a " R % x % a $ R.

" x " a " % RR ! #.
R ! 0.

" x " a " & R." x " a " % R
R & 0,

cn (x " a)nlim
N : #

 !N
n!0

lim
N : #

 SN (x) !{SN(x)}

!#
n!0cn(x " a)n.

!
#

n!0
2nxn ! 1 $ 2x $ 4x2 $ . . .

a ! 0

!#
n!0 (x $ 1)n

!
#

n!0
cn(x " a)n ! c0 $ c1(x " a) $ c2(x " a)2 $ . . ..

x " a

The index of summation need not 
start at n ! 0. !
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A power series defines a function of x, f(x) :=
∞∑

n=0

cn(x − a)n for x ∈ I.
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Function Defined by a Power Series
∑∞

n=0 cn(x − a)n

Define the function (I: interval of convergence)

y(x) :=
∞∑

n=0

cn(x − a)n, x ∈ I.

Differentiation

y′(x) = c1 + 2c2x + 3c3x2 + · · · =
∞∑

n=1

ncn(x − a)n−1, x ∈ I

y′′(x) = 2c2 + 6c3x + 12c4x2 + · · · =
∞∑

n=2

n(n − 1)cn(x − a)n−2, x ∈ I
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Taylor’s Series

If a function f(x) is infinitely differentiable at a point a, then it can be
represented by Taylor’s Series as follows, with a radius of convergence
R > 0.

f(x) =
∞∑

n=0

f(n)(a)
n! (x − a)n.

Examples

ex = 1 +
x
1!

+
x2
2!

+ · · · =
∞∑

n=0

xn

n! , x ∈ R

1

1− x = 1 + x + x2 + · · · =
∞∑

n=0

xn, x ∈ (−1, 1)
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differentiable functions such as ex and so on, can
be represented by Taylor series

or by a Maclaurin series

.

You might remember some of the following Maclaurin series representations.

Interval
Maclaurin Series of Convergence

(2)

These results can be used to obtain power series representations of other
functions. For example, if we wish to find the Maclaurin series representation
of, say, we need only replace x in the Maclaurin series for 

Similarly, to obtain a Taylor series representation of centered at 
we replace x by in the Maclaurin series for ln(1 ! x):x " 1

a # 1ln x

ex2
# 1 !

x2

1!
!

x4

2!
!

x6

3!
! . . . # !

$

n#0

1
n!

 x2n.

ex:ex2

("1, 1) 
1

1 " x
# 1 ! x ! x2 ! x3 ! . . . # !

$

n#0
xn

("1, 1] ln(1 ! x) # x "
x2

2
!

x3

3
"

x4

4
! . . . # !

$

n#1

("1)n!1

n
xn

("$, $) sinh x # x !
x3

3!
!

x5

5!
!

x7

7!
! . . . # !

$

n#0

1
(2n ! 1)!

x2n!1

("$, $) cosh x # 1 !
x2

2!
!

x4

4!
!

x6

6!
! . . . # !

$

n#0

1
(2n)!

x2n

["1, 1] tan"1 x # x "
x3

3
!

x5

5
"

x7

7
! . . . # !

$

n#0

("1)n

2n ! 1
x2n!1

("$, $) sin x # x "
x3

3!
!

x5

5!
"

x7

7!
! . . . # !

$

n#0

("1)n

(2n ! 1)!
x2n!1

("$, $) cos x # 1 "
x2

2!
!

x4

4!
"

x6

6!
! . . . # !

$

n#0

("1)n

(2n)!
x2n

("$, $) ex # 1 !
x
1!

!
x2

2!
!

x3

3!
! . . . # !

$

n#0

1
n!

xn

!
$

n#0

f (n)(0)
n!

xn # f(0) !
f %(0)
1!

x !
f &(0)

1!
x2 ! . . .

!
$

n#0

f (n)(a)
n!

(x " a)n # f (a) !
f%(a)

1!
(x " a) !

f &(a)
1!

(x " a)2 ! . . .

ln(1 ! x),cos x,ex, sinx,

ln x # ln(1 ! (x " 1)) # (x " 1) "
(x " 1)2

2
!

(x " 1)3

3
"

(x " 1)4

4
! . . . # !

$

n#1

("1)n!1

n
 (x " 1)n.

The interval of convergence for the power series representation of is the
same as that of that is, But the interval of convergence of the
Taylor series of is now this interval is shifted 1 unit to
the right.

• Arithmetic of Power Series Power series can be combined through the
operations of addition, multiplication, and division. The procedures for
powers series are similar to the way in which two polynomials are added,
multiplied, and divided —that is, we add coefficients of like powers of x,
use the distributive law and collect like terms, and perform long division. 

("1, 1](0, 2];ln x
("$, $).ex,

ex2

You can also verify that the interval of
convergence is (0, 2] by using the ratio
test.

!
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Ordinary and Singular Points

Focus on homogeneous linear 2nd order DE

a2(x)y′′ + a1(x)y′ + a0(x)y = 0

Rewrite it into its standard form y′′ + P(x)y′ + Q(x)y = 0 .

Definition (Ordinary and Singular Points)
x = x0 is an ordinary point of the above DE if both P(x) and Q(x) are
analytic at x0. Otherwise, x = x0 is a singular point.

Analytic at a Point: a function f(x) is analytic at a point x = x0 if and
only if f(x) can be represented as a power series

∑∞
n=0 cn(x − x0)n with a

positive radius of convergence.
In our lecture analytic ≡ infinitely differentiable.
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Examples: Ordinary and Singular Points

1 Constant coefficients: a2y′′ + a1y′ + a0y = 0. Every x ∈ R is ordinary.

2 Cauchy-Euler DE: x2y′′ + xy′ + y = 0.
P(x) = 1

x is analytic at x ∈ R \ {0}.
Q(x) = 1

x2 is analytic at x ∈ R \ {0}.
Hence, x = 0 is the only singular point.

3 Polynomial Coefficients: a2(x)y′′ + a1(x)y′ + a0(x)y = 0, where
a2(x) ̸= 0, a1(x), a0(x) are all polynomials of x.

P(x) = a1(x)
a2(x) is analytic at x ∈ R \ {r ∈ R : a2(r) = 0}.

Q(x) = a0(x)
a2(x) is analytic at x ∈ R \ {r ∈ R : a2(r) = 0}.

Hence, {r ∈ R : a2(r) = 0} are singular points.

4 y′′ + xy′ + (ln x) y = 0.
P(x) = x is analytic at x ∈ R.
Q(x) = ln x is analytic at x ∈ (0,∞).

Hence, every x ≤ 0 is singular.
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Existence of Power Series Solutions about Ordinary Points

The following theorem lays the theoretical foundations of the method.

Theorem
Let x = x0 be an ordinary point of a homogenous linear 2nd order DE.
Then, we can find two linearly independent solutions in the form of power
series centered at x0, that is,

y =
∞∑

n=0

cn(x − x0)n.

Moreover, the radius of convergence ≥ the distance from x0 to the
closest singular point in C.
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Example: Minimum Radius of Convergence

Example
Consider a linear second order DE (x2 + 1)y′′ + xy′ − y = 0.
Find the minimum radius of convergence of a power series solution about
the ordinary points x = −1 and x = 0.

A: The singular points in the complex domain C is ±i.
The distance between −1 and ±i is

√
12 + 12 =

√
2. The distance

between 0 and ±i is 1.
Based on the previous theorem, we obtain the minimum radius of
convergence R =

√
2 and R = 1 respectively.

In other words, for |x + 1| <
√
2 and |x| < 1, the power series solution of

the DE exists (and converges absolutely).
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Example: Finding Power Series Solutions

Example
Consider a linear second order DE (x2 + 1)y′′ + xy′ − y = 0.
Find two linearly independent power series solution about the ordinary
point x = 0.

A: From the previous discussion, we know that the interval of definition
of the solutions should be (−1, 1).
Plug in the power series representation y =

∑∞
n=0 cnxn:

y =
∞∑

n=0

cnxn, y′ =
∞∑

n=0

ncnxn−1, y′′ =
∞∑

n=0

cnn(n − 1)xn−2

=⇒ 0 = (x2 + 1)y′′ + xy′ − y

=
∞∑

n=0

{
(n2 − 1)cn + (n + 2)(n + 1)cn+2

}
xn
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(x2 + 1)y00 + xy

0 � y

1X

n=0

�
(n2 � 1)cn + (n+ 2)(n+ 1)cn+2

 
x

n
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(x2 + 1)y00 + xy

0 � y

x

2
y

00 + xy

0 � y

y00

1X

n=0

�
(n2 � 1)cn + (n+ 2)(n+ 1)cn+2

 
x

n
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(x2 + 1)y00 + xy

0 � y

x

2
y

00 + xy

0 � y

x

2
y

00 = x

2
1X

n=0

cnn(n� 1)xn�2

=
1X

n=0

cnn(n� 1)xn

xy

0 = x

1X

n=0

cnnx
n�1

=
1X

n=0

cnnx
n

y =
1X

n=0

cnx
n

y00

1X

n=0

�
(n2 � 1)cn + (n+ 2)(n+ 1)cn+2

 
x

n
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n=0
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=
1X

n=2

cnn(n� 1)xn�2

=
1X

k=0

ck+2(k + 2)(k + 1)xk

1X

n=0

�
(n2 � 1)cn + (n+ 2)(n+ 1)cn+2

 
x

n
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Recursive Formula of Coefficients in Power Series Solution

Example
Consider a linear second order DE (x2 + 1)y′′ + xy′ − y = 0.
Find two linearly independent power series solution about the ordinary
point x = 0.

Plug in the power series representation y =
∑∞

n=0 cnxn, we get

0 =
∞∑

n=0

{
(n2 − 1)cn + (n + 2)(n + 1)cn+2

}
xn

=⇒ (n2 − 1)cn + (n + 2)(n + 1)cn+2 = 0, n = 0, 1, 2, . . .

=⇒ c2 =
1

2
c0, c3 = 0, cn+2 =

1− n
2 + ncn, n = 2, 3, 4, . . .

=⇒ c2 =
1

2
c0, c4 =

−1

2 · 4
c0, c6 =

1 · 3
2 · 4 · 6

c0, · · ·

c3 = c5 = c7 = · · · = 0.
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(n2 − 1)cn + (n + 2)(n + 1)cn+2 = 0, n ≥ 0

n = 0

−c0 + 2c2 = 0 =⇒ c2 =
1

2
c0

n = 1
0 + 6c3 = 0 =⇒ c3 = 0

n ≥ 2

(n − 1)(n + 1)cn + (n + 2)(n + 1)cn+2 = 0

=⇒ cn+2 =
1− n
2 + ncn
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Wrapping Up

Example
Consider a linear second order DE (x2 + 1)y′′ + xy′ − y = 0.
Find two linearly independent power series solution about the ordinary
point x = 0.

Therefore

y = c0
{
1 +

1

2
x2 + −1

2 · 4
x4 + 1 · 3

2 · 4 · 6
x6 + · · ·

}
+ c1x

Thus we obtain two linearly independent solutions: y1(x) = x, and

y2(x) = 1 +
1

2
x2 +

∞∑
n=2

(−1)n−1 1 · 3 · 5 · · · (2n − 3)

2nn! x2n, |x| < 1.
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Regular and Irregular Singular Points

Focus on homogeneous linear 2nd order DE
a2(x)y′′ + a1(x)y′ + a0(x)y = 0

Rewrite it into its standard form y′′ + P(x)y′ + Q(x)y = 0 .

Definition (Regular and Irregular Singular Points)
A singular point x = x0 of the above DE is regular if both (x − x0)P(x)
and (x − x0)2Q(x) are analytic at x0. Otherwise, x = x0 is an irregular
singular point.

Note: There may not be power series solutions about a singular point
x = x0. However, it is possible to obtain a generalized power series
solution

y(x) = (x − x0)r
∞∑

n=0

cn(x − x0)n
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In other words, at a regular singular point x = x0, we can convert the
standard form

y′′ + P(x)y′ + Q(x)y = 0,

into
(x − x0)2y′′ + (x − x0)p(x)y′ + q(x)y = 0 .

where p(x) = (x − x0)P(x) and q(x) = (x − x0)2Q(x) are both analytic at
x = x0, that is,

p(x) =
∞∑

n=0

an(x − x0)n, q(x) =
∞∑

n=0

bn(x − x0)n, |x − x0| < R

for some R > 0.
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Examples: Classification of Singular Points

1 Cauchy-Euler DE: x2y′′ + xy′ + y = 0. Its has one singular point x = 0.
xP(x) = x 1

x = 1 is analytic at x = 0.
x2Q(x) = x2 1

x2 = 1 is analytic at x = 0.
Hence, x = 0 is a regular singular point.

2 Polynomial Coefficients: a2(x)y′′ + a1(x)y′ + a0(x)y = 0, where
a2(x) ̸= 0, a1(x), a0(x) are all polynomials of x. Let x = x0 be a root of
a2(x) = 0. Hence x = x0 is a singular point.

If in the denominator of the rational function P(x) = a1(x)
a2(x) (after

reduction), the factor (x − x0) appears at most to the first power,
then (x − x0)P(x) is analytic at x = x0.

If in the denominator of the rational function Q(x) = a0(x)
a2(x) (after

reduction), the factor (x − x0) appears at most to the second power,
then (x − x0)2Q(x) is analytic at x = x0.
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Examples: Classification of Singular Points

Example
For the second order DE (x2 − 4)2y′′ + 3(x − 2)y′ + 5y = 0, find the singular
points and classify them into regular and irregular ones.

A: First rewrite the DE into the standard form:

y′′ + 3
x − 2

(x2 − 4)2
y′ +

5

(x2 − 4)2
y = y′′ + P(x)y′ + Q(x)y = 0.

Since P(x) = 3 x−2
(x2−4)2

= 3
(x−2)(x+2)2

and Q(x) = 5
(x2−4)2

= 5
(x−2)2(x+2)2

, we
have two singular points x = 2,−2 for this DE.

x = 2: regular singular point, because (x − 2)P(x) = 3
(x+2)2

and
(x − 2)2Q(x) = 5

(x+2)2
are both analytic at x = 2.

x = −2: irregular singular point because (x + 2)P(x) = 3
(x−2)(x+2)

is not
analytic at x = −2.
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Method of Frobenius

Theorem
Let x = x0 be a regular singular point of a homogenous linear 2nd order
DE. Then, we can find at least one solutions in the following form:

y = (x − x0)r
∞∑

n=0

cn(x − x0)n =
∞∑

n=0

cn(x − x0)n+r,

where r is a constant (not necessarily an integer) to be determined. The
series will converge on some interval 0 < x − x0 < R.

Note 1: Without loss of generality we assume that c0 ̸= 0.
Note 2: We have to determine

The exponent r first,
and then the sequence {cn, n = 1, 2, . . .}.

31 / 43 王奕翔 DE Lecture 9



Review of Power Series
Solutions about Ordinary Points
Solutions about Singular Points

Summary

Method of Frobenius: Calculation

Without loss of generality, assume that the regular singular point is x = 0. We
convert the standard form into

x2y′′ + xp(x)y′ + q(x)y = 0

where p(x) = xP(x) =
∑∞

n=0 anxn and q(x) = x2Q(x) =
∑∞

n=0 bnxn.

Plug in y = xr∑∞
n=0 cnxn =

∑∞
n=0 cnxn+r, we get

x2y′′ + xp(x)y′ + q(x)y = x2
(

∞∑
n=0

cn(n + r)(n + r − 1)xn+r−2

)

+ x
(

∞∑
n=0

anxn

)(
∞∑

n=0

cn(n + r)xn+r−1

)

+

(
∞∑

n=0

bnxn

)(
∞∑

n=0

cnxn+r

)
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Method of Frobenius: Calculation

Without loss of generality, assume that the regular singular point is x = 0. We
convert the standard form into

x2y′′ + xp(x)y′ + q(x)y = 0

where p(x) = xP(x) =
∑∞

n=0 anxn and q(x) = x2Q(x) =
∑∞

n=0 bnxn.

Plug in y = xr∑∞
n=0 cnxn =

∑∞
n=0 cnxn+r, we get

x2y′′ + xp(x)y′ + q(x)y = xr

(
∞∑

n=0

cn(n + r)(n + r − 1)xn

)

+ xr

(
∞∑

n=0

anxn

)(
∞∑

n=0

cn(n + r)xn

)

+ xr

(
∞∑

n=0

bnxn

)(
∞∑

n=0

cnxn

)
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Method of Frobenius: Calculation

Without loss of generality, assume that the regular singular point is x = 0. We
convert the standard form into

x2y′′ + xp(x)y′ + q(x)y = 0

where p(x) = xP(x) =
∑∞

n=0 anxn and q(x) = x2Q(x) =
∑∞

n=0 bnxn.

Plug in y = xr∑∞
n=0 cnxn =

∑∞
n=0 cnxn+r, we get

x2y′′ + xp(x)y′ + q(x)y = xr

(
∞∑

n=0

cn(n + r)(n + r − 1)xn

)

+ xr

(
∞∑

n=0

{ n∑
k=0

an−kck(k + r)
}

xn

)

+ xr

(
∞∑

n=0

{ n∑
k=0

bn−kck

}
xn

)
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Method of Frobenius: Calculation

Without loss of generality, assume that the regular singular point is x = 0. We
convert the standard form into

x2y′′ + xp(x)y′ + q(x)y = 0

where p(x) = xP(x) =
∑∞

n=0 anxn and q(x) = x2Q(x) =
∑∞

n=0 bnxn.

Plug in y = xr∑∞
n=0 cnxn =

∑∞
n=0 cnxn+r, we get

x2y′′ + xp(x)y′ + q(x)y = xr

(
∞∑

n=0

Lnxn

)

where

Ln := cn(n + r)(n + r − 1) +

n∑
k=0

ck {an−k(k + r) + bn−k} = 0, ∀ n = 0, 1, 2, . . .
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Indicial Equation (Index → Indices → Indicial)

Further manipulate the conditions:

Ln = cn(n + r)(n + r − 1) +
n∑

k=0

ck {an−k(k + r) + bn−k}

= cn{(n + r)(n + r − 1) + a0(n + r) + b0}+
n−1∑
k=0

ck {an−k(k + r) + bn−k}

= cnI (n + r) +
n−1∑
k=0

ck {an−k(k + r) + bn−k} = 0.

For n = 0, the condition reduces to

I (r) = r(r − 1) + a0r + b0 = 0 .

This is called the indicial equation of the problem, and the two roots are
called indicial roots/exponents.
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Roots of the Indicial Equation

Let the two real roots of I(r) = r(r − 1) + a0r + b0 = 0 be r1, r2 and r1 ≥ r2.
P.S. We do not consider the case when r1, r2 are complex conjugate roots.

1 r1 > r2 and r1 − r2 /∈ Z: Two linearly independent solutions can be found:

y1(x) =
∞∑

n=0

cnxn+r1 , c0 ̸= 0, y2(x) =
∞∑

n=0

dnxn+r2 , d0 ̸= 0

2 r1 > r2 and r1 − r2 ∈ Z: Two linearly independent solutions can be found:

y1(x) =
∞∑

n=0

cnxn+r1 , c0 ̸= 0, y2(x) = C︸︷︷︸
can be 0

y1(x) ln x+
∞∑

n=0

dnxn+r2 , d0 ̸= 0.

3 r1 = r2: Two linearly independent solutions can be found:

y1(x) =
∞∑

n=0

cnxn+r1 , c0 ̸= 0, y2(x) = y1(x) ln x +

∞∑
n=1

dnxn+r2 .
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Examples

Example
Solve 2xy′′ + (1 + x)y′ + y = 0.

Example
Solve xy′′ + y = 0.
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4 Summary
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Solve a2(x)y
00
+ a1(x)y

0
+ a0(x)y = 0

about a point x = x0

x0 is ordinary

Yes

Convert it into

y

00
+ P (x)y

0
+Q(x)y = 0

Two linearly independent 
power series solutions

Plug in
y =

P1
n=0 cn(x� x0)n

P (x), Q(x) analytical at x0?
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Solve a2(x)y
00
+ a1(x)y

0
+ a0(x)y = 0

about a point x = x0

x0 is ordinary

No

Yes

Convert it into

(x� x0)
2
y

00
+ (x� x0)p(x)y

0
+ q(x)y = 0

Indicial Equation

r(r � 1) + a0r + b0 = 0

Convert it into

y

00
+ P (x)y

0
+Q(x)y = 0

Two linearly independent 
power series solutions

Plug in
y =

P1
n=0 cn(x� x0)n

x0 is regular singular

Yes
P (x), Q(x) analytical at x0?

p(x), q(x) analytical at x0?

Plug in
y = (x� x0)r

P1
n=0 cn(x� x0)n

Case 1: r1 > r2 and r1 � r2 /2 Z

y1(x) =
1X

n=0

cnu
n+r1

, c0 6= 0, y2(x) =
1X

n=0

dnu
n+r2

, d0 6= 0

Case 2: r1 > r2 and r1 � r2 2 Z

y1(x) =
1X

n=0

cnu
n+r1

, c0 6= 0, y2(x) = C|{z}
can be 0

y1(x) lnu+
1X

n=0

dnu
n+r2

, d0 6= 0.

Case 3: r1 = r2

y1(x) =
1X

n=0

cnu
n+r1

, c0 6= 0, y2(x) = y1(x) lnu+
1X

n=1

dnu
n+r2

.

u := x� x0
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Short Recap

Power Series, Radius of Convergence, Analyticity, Taylor’s Series

Ordinary Points vs. Singular Points

Power Series Solution, Recursive Formula

Regular Singular Point vs. Irregular Singular Point

Generalized Power Series

Method of Frobenius, Indicial Equation
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Self-Practice Exercises

6-1: 1, 7, 13, 15, 19, 23, 25, 29, 35

6-2: 1, 3, 13, 15, 19, 21, 23

6-3: 1, 3, 5, 9, 11, 13, 17, 25, 27, 29, 33
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