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Linear Models: Initial-Value Problems

Modeling with Second Order Linear Differential Equation

We focus on two linear dynamical systems modeled by the following:

ay’ + by + cy = g(1), y(0) =y, ¥/ (0) =1,

where the initial conditions are at time ¢t = 0.

The two systems are:
m Spring/Mass Systems

m LRC Series Circuits
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Linear Models: Initial-Value Problems

Hooke's Law + Newton's Second Law
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Assume that the equilibrium position is
z=0,and z @ F AL

Due to Hooke's Law, net force
=mg— k(s+ z).

Note that at equilibrium %/ & %
= mg = ks.

Hence, by Newton's Second Law,

ma’ = mg— k(s+z) = —kx
= mi’' +kr=0

B Exvre)
m
where w = \/k/m.
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Linear Models: Initial-Value Problems

Free Undamped Motion

Solution to 2’/ + w2z = 0:

‘x(t) = c¢1 coswt+ ¢ sinwt‘.

Free: No external force <= Homogeneous Equation
Undamped: Motion is periodic (period = %”) no loss in energy.

Alternative Representation of z(t):

[a(t) = Asin (wt + )]

where
m A:=/c + ¢ denotes the amplitude of the motion
m ¢:=tan"! <L denotes the initial phase angle
2
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Linear Models: Initial-Value Problems

Free Damped Motion

Assume that the mass is in a surrounding medium
with a resisting force proportional to the velocity.

Net force = mg — k(s + z) — S/.

Hence, by Newton's Second Law,

ma’ = mg— k(s+ z) — o’ = —kz — B2/

— l//+él/+£x:’1/’+2/\x'+w2:r:0‘
m m

where w = y/k/m and A = 8/2m.
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Linear Models: Initial-Value Problems

Solutions of Free Damped Motion

D? + 2)\D + w? has two roots —\ + V2 — w2,

Solution to /' + 2\7 + w?z = 0:
= Overdamped )\? > w?:

2(t) = e M (clev A=Wt 4 e )‘2_“2t)

m Critically damped )2 = w?:

2(t) = e M (¢ + eat)

= Underdamped \? < w?:

a(t) = e M (cl cos Vw? — X2t + ¢y sin Vw? — )\Qt)
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Linear Models: Initial-Value Problems

x
t
‘ 1
(a) Overdamped (b) Critically damped
X undamped
underdamped
) Underdamped
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Linear Models:

Driven Motion

Initial-Value Problems

Assume that the certain external force f(t) is
applied to the system. For example, the support is
vertically oscillating.

Net force = mg — k(s+ z) — Sz + f(t).
Hence, by Newton's Second Law,

ma’ = mg—k(s+a:) — B + f(t) = —kz — B2 + f(¥)
B,

= '+ x+—x
m

2" 4 202 + Wiz = F(t) ‘

where w = y/k/m, A = 3/2m, and F(t) = f(t)/m.
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Linear Models: Initial-Value Problems

When F{(t) is Periodic

Solve
2"+ 20\t + w?zx = Fysinyt.

Find the complementary solution:

oAt (01 VN o e—\/>\2—w2t) AZ > 2
z.(t) = e M (e + cot), A2 = w?

e At (01 cos Vw? — A2t + ¢y sin vVw? — )\Qt) . A2 < w?
Find a particular solution:

Asinvt+ Bcosyt, A#0
zp(t) =  Asinyt+ Beosyt, A=0, w? # >
Atsinyt+ Btcosyt, A =0, w? =2
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Linear Models: Initial-Value Problems

Driven Damped Motion: Steady-State vs.Transient

When A # 0, it is a damped system, and the general solution is
(1) = z.(t) + Asin~yt+ Bcos~vt, where

(Cl 6\/)\27w2t + 0287\/)\2719225) , )\2 > w2
—A
xc(t) =e ! (Cl + Cgt), )\2 = w2

(01 cos Vw? — A2t + cosin vw? — )\Qt) , A2 < w?
Note that if A > 0, z.(t) — 0 as t — oo.

c.a(t) = Asinyt+ Beosvt as t — oo. Decompose x(t) into two parts:

z(t) = z.(t) +Asinyt+ Bcosyt
——

transient steady-state
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Linear Models: Initial-Value Problems

Pure Resonance

When )\ = 0 and w? = 4?2, it is a undamped system, and the general
solution is

z(t) = ¢1 coswt+ cysinwt+ Atsinwt+ Btcoswt

Note that z(f) — oo as t — oo, which is because of resonance.

X g
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Linear Models: Initial-Value Problems

Series Circuit

Recall from Chapter 1 that the voltage drop across

the three elements are L‘;—{, IR, and % respectively.

@ R Using the fact that = % and Kirchhoff’s Law, we
have
c L¢"+ Rq + ¢/ C= E(¢).
= Overdamped R? > 4L/C
m Critically damped R? = 4L/C

= Underdamped R? < 4L/C
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Linear Models: Initial-Value Problems

Steady-State Current

il

@ . For the external voltage E(t) = Eysin~t, find the

steady-state current.
c

Observation:
Epsinyt =Im {Eoe”t} = 2% (Eoe”t — Eoefi“’t).

We just need to find the particular solution g,.

Superposition principle of nonhomogeneous linear DE: if
gp,1 is a particular solution of L’ + Rq + q/C = Eoe!
gp.2 is a particular solution of Lg’ + R¢ + q/C = Ege” ™"
then ¢, := % (gp,1 — gp,2) is a particular solution of the original DE.

qz,l = ¢p,2 and therefore g, := % (‘Ip,l - ‘Ip,2) = Im{‘]pyl}-
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Linear Models: Initial-Value Problems

Steady-State Current

L

@ . For the external voltage E(t) = Eysin~t, find the

steady-state current.
c

We just need to solve the following:
L{' + Rqd + ¢/ C = Eye™".
Note that the particular solution take the form g.e™*. Plug it in we get

, , Ey iyt
s (L(#)* 4+ R(#y) +1/C) = By = gpa(t) = ———————— ",
q((’Y) (7) / ) 0 qpl() (%—L’yz)—‘ri’}/R
Hence the steady-state (complex) current
Eo

R+i(7L—$C)

iyt

Ipyl(t) = €
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Linear Models: Initial-Value Problems

Steady-State Current

il

@ . For the external voltage E(t) = Eysin~t, find the

steady-state current.
c

Let's further manipulate the steady-state (complex) current

E() iyt _ EO ez’fyt
R+iX~

Ia(t) = ) 1
where X :=yL — ~ is called the reactance of the circuit.

The steady-state (real) current is just the imaginary part of the above:

L(t) =Im{L,1(t)} = ]pEﬁ (Rsinyt — Xcos~t) = E—ZO sin (vt — ¢),

where Z:= v/R2 + X2 is called the impedance of the circuit, ¢ = tan™! %.
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Nonlinear Models

Nonlinear Models
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Nonlinear Models

Suspended Cable

Since dy =tanf = &2,
1

dy

dz —

W_

Tn T

2
p [ dy "_ P 2
L 1 - = — 1 .
/0\/ tog =y =y (W)

Consider a suspended cable with the weight per unit
length = p. We would like to find the shape of the
cable, that is, the function y(z).

At a point (z,y) of the suspended cable, we have

W= ps= T2sinf, Vertical Net Force =0

Here s = / 1/1 + d:v is the total cable length
) and (

between (

{T1 = Ts cos, Horizontal Net Force = 0

we get
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Nonlinear Models

Suspended Cable

Solve y" = £-/1+ (v/)? (dependent variable y
missing) by substituting u:= y/:

du p
ulip 1+u2:>/7: —dz
T: V14 w2 T:
= sinhtu= L2+

Since u(0) = ¢/(0) = 0, we have ¢; = 0. Therefore,

;o T
u =y = sinh (% ) = yzfcosh(%x) + ca.

1 1

Since y(0) = a, we have c2 = a — %. Hence,
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Suspended Cable

Nonlinear Models

You can also solve " = £-4/1+ (¢/)? (independent
variable z missing) by substituting v := ¥/:

du p udu p
wp =T — [ [
dy T V14 w2 T

== 1+u2:£y+cl.
T

dy

Since u(0) = ¢/(0) =0, y(0) = a, we have

-1 - £
C1—1 T1a'
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Nonlinear Models

Escape Velocity of a Rocket

Consider a rocket (mass = m) launched vertically from the
ground. Ignore air resistance. When its fuel is used up, the
distance from the center of Earth is yo =~ R, the radius of
Earth, and the velocity is vp.

We would like to learn how large vy the motion of the rocket
after its fuel is used up. By Newton's law of universal
gravitation, we have: (M := the mass of Earth, R := the radius
of Earth, G := the gravitational constant)

" GMm " GM

my = -y =
y? Y2

Since near the surface of Earth, mg = Ggﬁm = GM= ng,

we have

" gR2
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Nonlinear Models

Escape Velocity of a Rocket

2
Again, solve 3’ = fgfz

(independent variable z missing) by
substituting v := v/:
vd—y = —gRng2 = wvdv = —gR2y72dy

2gR?
:>U2= gy +a

Since v(0) = vy, ¥(0) = yo =~ R, we have ¢; = 4§ — 2gR.
Hence,

20R?
1)2:1)84—%—25}}2.

In order to reach y = oo, we require | 1o > /2¢gR |.
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Summary

B Summary
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Summary

Short Recap

m Free vs. Driven Motion <=- Homogeneous vs. Nonhomogeneous
Linear DE

m Overdamped, Critically Damped, Underdamped, Undamped
m Transient vs. Steady State

m Nonlinear Models
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Summary

Self-Practice Exercises

5-1: 1, 7, 13, 21, 35, 49, 57

5-3: 7,15, 17, 19
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