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Linear Models: Initial-Value Problems

Modeling with Second Order Linear Differential Equation

We focus on two linear dynamical systems modeled by the following:

ay’ + by + cy = g(t), y(0) = yo, ¥ (0) = y1,

where the initial conditions are at time ¢ = 0.

The two systems are:

m Spring/Mass Systems
m LRC Series Circuits
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Linear Models: Initial-Value Problems

Hooke's Law + Newton's Second Law

Assume that the equilibrium position is
z=0 and z B F AL

Due to Hooke's Law, net force
=mg— k(s+ z).

v Note that at equilibrium 7%/ & %
l == mg=ks.
i

unstretche:

Hence, by Newton's Second Law,

equilibrium
position
—ks=0 r_ _
mg = ks oo ma’ = mg— k(s+ z) = —kx
/!
(a) (b) © = max +kr=0

k
= o'+ o=
m
where w = /k/m.
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Free Undamped Motion

Solution to 2/ + w2z = 0:

‘x(t) = ¢ coswt+ ¢ sinwt‘.

Free: No external force <= Homogeneous Equation

Undamped: Motion is periodic (period = 2Z), no loss in energy.

Alternative Representation of x(t):

‘x(t) = Asin (wt+ ¢) ‘

where
m A:= /¢ + 3 denotes the amplitude of the motion
m ¢ :=tan~! & denotes the initial phase angle
Cc2
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Free Damped Motion

Assume that the mass is in a surrounding medium
with a resisting force proportional to the velocity.

Net force = mg — k(s + z) — f’.
Hence, by Newton's Second Law,

ma’ = mg— k(s+ z) — o = —kx — B2/
B, k

= o'+ =i+ —z=
m m

2o +wr=0

where w = \/k/m and A = 3/2m.

DE Lecture 8



Linear Models: Initial-Value Problems

Solutions of Free Damped Motion

D? 4+ 2)\D + w? has two roots —\ £+ v/ A2 — w2,

Solution to 2/ + 2\’ + w?z = 0:
= Overdamped )\? > w?:

o(t) = e (/P gy )

m Critically damped )2 = w?:

m Underdamped )2 < w?:

a(t) = e M <01 cos Vw? — A2t + ¢y sin Vw? — )\275)

DE Lecture 8



Linear Models: Initial-Value Problems

X
t
‘ t
(a) Overdamped (b) Critically damped
X undamped
underdamped
) Underdamped
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Driven Motion

Assume that the certain external force f(t) is
applied to the system. For example, the support is
vertically oscillating.

Net force = mg — k(s+ z) — Bz + f(1).

Hence, by Newton's Second Law,

ma’ = mg — k(s + z) — B2/ + f(t) = —kz— B’ + f(1)

2" 4202 + Wi = F(t) ‘

= m”—l—ﬁx'—i—ﬁx:
m m

where w = \/k/m, A = 3/2m, and F(t) = f(t)/m.
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When F(t) is Periodic

Solve
2"+ 20\t + w?z = Fysinyt.

Find the complementary solution:

oAt (01 VRt 4 67\/)\27w2t) ’ A2 > 2
Te(t) =S e M (¢ + eot) A2 =w?

e M (c1cos Vw? — N2+ cpsinVw? — A2t) A < w?
Find a particular solution:

Asinyt+ Bcosvyt, A #0
zp(t) =  Asinyt+ Beosyt, A=0, w? # >
Atsinyt+ Btcosyt, A =0, w? =2
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Driven Damped Motion: Steady-State vs.Transient

When X #£ 0, it is a damped system, and the general solution is
2(t) = z.(t) + Asin~yt+ Bcos~yt, where

(cl e\/X"—w?t + C26—\/A2—w2t> , A2 > w2
xc(t) = e_At (Cl + Cgt), )\2 == w2

(01 cos Vw? — A2t + cpsin vVw? — )\Qt) ;A2 < w?
Note that if A > 0, z.(t) — 0 as t — oo.

- z(t) = Asinyt+ Bceosyt as t — oco. Decompose (t) into two parts:

z(t) = z.(t) +Asinyt+ Bcosvyt
~—~—

transient steady-state
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Pure Resonance

When A = 0 and w? = ~2, it is a undamped system, and the general
solution is

z(t) = ¢1 coswit + cosinwt+ Atsinwt + Btcoswt

Note that z(f) — oo as t — oo, which is because of resonance.
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Series Circuit

Recall from Chapter 1 that the voltage drop across

the three elements are L%, IR, and % respectively.

00000
L
@ R Using the fact that I = % and Kirchhoff's Law, we
have
c Ld" + Rqd + q/C = E(t).

m Overdamped R? > 4L/C
m Critically damped R? =4L/C

= Underdamped R? < 4L/C

DE Lecture 8



Linear Models: Initial-Value Problems

Steady-State Current

I

L
R 5
@ For the external voltage E(t) = Eysin~t, find the
steady-state current.
c
Observation:

14 /15

Epsinyt =Im {Eoe”t} = % (Eoem — Eoe_i"t).
We just need to find the particular solution g,.

Superposition principle of nonhomogeneous linear DE: if

gp.1 is a particular solution of Lg”’ + Rq + q/C = Eoe"
gp.2 is a particular solution of L’ + R¢ + ¢/ C = Ege™ 7"
then ¢, := % (gp,1 — gp,2) is a particular solution of the original DE.

¢y.1 = gp,2 and therefore ¢, := % (gp,1 — gp,2) = Im{gp1}.
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Steady-State Current

i

@ 8 For the external voltage E(t) = Eysin~t, find the
steady-state current.

We just need to solve the following:
Ld' + Rd + q/C = Eye"".
Note that the particular solution take the form g,e’. Plug it in we get

) ) Eo it
gs (L(#)” + R(i7) +1/C) = By = qpu(t) = 74— "

( ) i (£ - Lv*) +#R
Hence the steady-state (complex) current

E i
Ip,l(t) — —Ole'yt
R+i(fyL— TO)
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Steady-State Current

I

L
@ 8 For the external voltage E(t) = Eysin~t, find the

16 /15

steady-state current.

Let's further manipulate the steady-state (complex) current

Ey it Eo i
La(t) = et = —e,
’ : 1 R+iX
R+ (’yL — W‘) a
where X := yL — = is called the reactance of the circuit.

The steady-state (real) current is just the imaginary part of the above:

L(t)=Im{l,1(t)} = % (Rsinyt — Xcosvyt) = E—ZO sin (vt — @),

where Z:= v/R? + X2 is called the impedance of the circuit, ¢ = tan~! %.

ERM DE Lecture 8



Summary

DE Lecture 8




	Linear Models: Initial-Value Problems
	Summary

