Chapter 5：Modeling with Higher－Order Differential Equations

王奕翔
Department of Electrical Engineering
National Taiwan University
ihwang＠ntu．edu．tw

October 22， 2013

1 Linear Models：Initial－Value Problems

Modeling with Second Order Linear Differential Equation

We focus on two linear dynamical systems modeled by the following：

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t), y(0)=y_{0}, y^{\prime}(0)=y_{1},
$$

where the initial conditions are at time $t=0$ ．

The two systems are：
－Spring／Mass Systems
－LRC Series Circuits

Hooke＇s Law＋Newton＇s Second Law

（a）
（b）

Assume that the equilibrium position is $x=0$ ，and x 向下為正

Due to Hooke＇s Law，net force $=m g-k(s+x)$ ．

Note that at equilibrium 淨力為零 $\Longrightarrow m g=k s$ ．

Hence，by Newton＇s Second Law，

$$
\begin{aligned}
& m x^{\prime \prime}=m g-k(s+x)=-k x \\
& \Longrightarrow m x^{\prime \prime}+k x=0 \\
& \Longrightarrow x^{\prime \prime}+\frac{k}{m} x=x^{\prime \prime}+\omega^{2} x=0
\end{aligned}
$$

where $\omega=\sqrt{k / m}$ ．

Free Undamped Motion

Solution to $x^{\prime \prime}+\omega^{2} x=0$ ：

$$
x(t)=c_{1} \cos \omega t+c_{2} \sin \omega t \text {. }
$$

Free：No external force \Longleftrightarrow Homogeneous Equation
Undamped：Motion is periodic（period $=\frac{2 \pi}{\omega}$ ），no loss in energy．
Alternative Representation of $x(t)$ ：

$$
x(t)=A \sin (\omega t+\phi)
$$

where
■ $A:=\sqrt{c_{1}^{2}+c_{2}^{2}}$ denotes the amplitude of the motion
■ $\phi:=\tan ^{-1} \frac{c_{1}}{c_{2}}$ denotes the initial phase angle

Free Damped Motion

Assume that the mass is in a surrounding medium with a resisting force proportional to the velocity．

Net force $=m g-k(s+x)-\beta x^{\prime}$ ．
Hence，by Newton＇s Second Law，

$$
\begin{aligned}
& m x^{\prime \prime}=m g-k(s+x)-\beta x^{\prime}=-k x-\beta x^{\prime} \\
& \Longrightarrow x^{\prime \prime}+\frac{\beta}{m} x^{\prime}+\frac{k}{m} x=x^{\prime \prime}+2 \lambda x^{\prime}+\omega^{2} x=0
\end{aligned}
$$

where $\omega=\sqrt{k / m}$ and $\lambda=\beta / 2 m$ ．

Solutions of Free Damped Motion

$D^{2}+2 \lambda D+\omega^{2}$ has two roots $-\lambda \pm \sqrt{\lambda^{2}-\omega^{2}}$.
Solution to $x^{\prime \prime}+2 \lambda x^{\prime}+\omega^{2} x=0$ ：
■ Overdamped $\lambda^{2}>\omega^{2}$ ．

$$
x(t)=e^{-\lambda t}\left(c_{1} e^{\sqrt{\lambda^{2}-\omega^{2}} t}+c_{2} e^{-\sqrt{\lambda^{2}-\omega^{2}} t}\right)
$$

－Critically damped $\lambda^{2}=\omega^{2}$ ：

$$
x(t)=e^{-\lambda t}\left(c_{1}+c_{2} t\right)
$$

■ Underdamped $\lambda^{2}<\omega^{2}$ ：

$$
x(t)=e^{-\lambda t}\left(c_{1} \cos \sqrt{\omega^{2}-\lambda^{2}} t+c_{2} \sin \sqrt{\omega^{2}-\lambda^{2}} t\right)
$$

Driven Motion

Assume that the certain external force $f(t)$ is applied to the system．For example，the support is vertically oscillating．

Net force $=m g-k(s+x)-\beta x+f(t)$ ．
Hence，by Newton＇s Second Law，

$$
\begin{gathered}
m x^{\prime \prime}=m g-k(s+x)-\beta x^{\prime}+f(t)=-k x-\beta x^{\prime}+f(t) \\
\Longrightarrow x^{\prime \prime}+\frac{\beta}{m} x^{\prime}+\frac{k}{m} x=x^{\prime \prime}+2 \lambda x^{\prime}+\omega^{2} x=F(t)
\end{gathered}
$$

where $\omega=\sqrt{k / m}, \lambda=\beta / 2 m$ ，and $F(t)=f(t) / m$ ．

When $F(t)$ is Periodic

Solve

$$
x^{\prime \prime}+2 \lambda x^{\prime}+\omega^{2} x=F_{0} \sin \gamma t
$$

1 Find the complementary solution：

$$
x_{c}(t)= \begin{cases}e^{-\lambda t}\left(c_{1} e^{\sqrt{\lambda^{2}-\omega^{2}} t}+c_{2} e^{-\sqrt{\lambda^{2}-\omega^{2}} t}\right), & \lambda^{2}>\omega^{2} \\ e^{-\lambda t}\left(c_{1}+c_{2} t\right), & \lambda^{2}=\omega^{2} \\ e^{-\lambda t}\left(c_{1} \cos \sqrt{\omega^{2}-\lambda^{2}} t+c_{2} \sin \sqrt{\omega^{2}-\lambda^{2}} t\right), & \lambda^{2}<\omega^{2}\end{cases}
$$

2 Find a particular solution：

$$
x_{p}(t)= \begin{cases}A \sin \gamma t+B \cos \gamma t, & \lambda \neq 0 \\ A \sin \gamma t+B \cos \gamma t, & \lambda=0, \omega^{2} \neq \gamma^{2} \\ A t \sin \gamma t+B t \cos \gamma t, & \lambda=0, \omega^{2}=\gamma^{2}\end{cases}
$$

Driven Damped Motion：Steady－State vs．Transient

When $\lambda \neq 0$ ，it is a damped system，and the general solution is $x(t)=x_{c}(t)+A \sin \gamma t+B \cos \gamma t$ ，where

$$
x_{c}(t)=e^{-\lambda t} \begin{cases}\left(c_{1} e^{\sqrt{\lambda^{2}-\omega^{2}} t}+c_{2} e^{-\sqrt{\lambda^{2}-\omega^{2}} t}\right), & \lambda^{2}>\omega^{2} \\ \left(c_{1}+c_{2} t\right), & \lambda^{2}=\omega^{2} \\ \left(c_{1} \cos \sqrt{\omega^{2}-\lambda^{2}} t+c_{2} \sin \sqrt{\omega^{2}-\lambda^{2}} t\right), & \lambda^{2}<\omega^{2}\end{cases}
$$

Note that if $\lambda>0, x_{c}(t) \rightarrow 0$ as $t \rightarrow \infty$ ．
$\therefore x(t) \rightarrow A \sin \gamma t+B \cos \gamma t$ as $t \rightarrow \infty$ ．Decompose $x(t)$ into two parts：

$$
x(t)=\underbrace{x_{c}(t)}_{\text {transient }}+\underbrace{A \sin \gamma t+B \cos \gamma t}_{\text {steady-state }}
$$

Pure Resonance

When $\lambda=0$ and $\omega^{2}=\gamma^{2}$ ，it is a undamped system，and the general solution is

$$
x(t)=c_{1} \cos \omega t+c_{2} \sin \omega t+A t \sin \omega t+B t \cos \omega t
$$

Note that $x(t) \rightarrow \infty$ as $t \rightarrow \infty$ ，which is because of resonance．

Series Circuit

Recall from Chapter 1 that the voltage drop across the three elements are $L \frac{d I}{d t}, I R$ ，and $\frac{q}{C}$ respectively．

Using the fact that $I=\frac{d q}{d t}$ and Kirchhoff＇s Law，we have

$$
L q^{\prime \prime}+R q^{\prime}+q / C=E(t)
$$

－Overdamped $R^{2}>4 L / C$
－Critically damped $R^{2}=4 L / C$
■ Underdamped $R^{2}<4 L / C$

Steady－State Current

Example

For the external voltage $E(t)=E_{0} \sin \gamma t$ ，find the steady－state charge across the capacitor and the steady－state current．

1 Linear Models：Initial－Value Problems

2 Summary

