Chapter 4：Higher－Order Differential Equations－ Part 3

王奕翔

Department of Electrical Engineering
National Taiwan University
ihwang＠ntu．edu．tw

October 22， 2013

1 Solving Systems of Linear Differential Equations

Systems of Linear Differential Equations

So far we focus on solving an ODE with only one dependent variable．
Ordinary Differential Equation $\Longrightarrow 1$ independent variable． Partial Differential Equation $\Longrightarrow>1$ independent variables．

Here we look at a system of linear ODE（ >1 dependent variables），and see how to solve it

Example：Let t be the independent variable，x, y be dependent variables．

$$
\left\{\begin{array}{l}
x^{\prime \prime}+2 x^{\prime}+y^{\prime \prime}=x+3 y+\sin t \\
x^{\prime}+y^{\prime}=-4 x+2 y+e^{-t}
\end{array} .\right.
$$

How to Solve？

$$
\left\{\begin{array}{l}
x^{\prime \prime}+2 x^{\prime}+y^{\prime \prime}=x+3 y+\sin t \\
x^{\prime}+y^{\prime}=-4 x+2 y+e^{-t}
\end{array}\right.
$$

Let us use the differential operator to rewrite it as follows：

$$
\begin{aligned}
& \left\{\begin{array}{l}
D^{2}\{x\}+2 D\{x\}+D^{2}\{y\}=x+3 y+\sin t \\
D\{x\}+D\{y\}=-4 x+2 y+e^{-t}
\end{array}\right. \\
\Longrightarrow & \begin{cases}\left(D^{2}+2 D-1\right)\{x\}+\left(D^{2}-3\right)\{y\} & =\sin t \\
(D+4)\{x\}+(D-2)\{y\} & =e^{-t}\end{cases}
\end{aligned}
$$

Idea：

■ Eliminate y and get a linear DE of x to solve $x(t)$ ．
■ Eliminate x and get a linear DE of y to solve $y(t)$ ．

Elimination

$$
\left\{\begin{array}{l}
L_{11}\{x\}+L_{12}\{y\}=g_{1}(t) \tag{1}\\
L_{21}\{x\}+L_{22}\{y\}=g_{2}(t)
\end{array}\right.
$$

where $L_{11}=D^{2}+2 D-1, L_{12}=D^{2}-3, L_{21}=D+4, L_{22}=D-2$ ．
To eliminate y ：
$(1) \times L_{22}-(2) \times L_{12} \Longrightarrow\left(L_{11} L_{22}-L_{21} L_{12}\right)\{x\}=L_{22}\left\{g_{1}\right\}-L_{12}\left\{g_{2}\right\}$
To eliminate x ：
$(1) \times L_{21}-(2) \times L_{11} \Longrightarrow\left(L_{12} L_{21}-L_{22} L_{11}\right)\{x\}=L_{21}\left\{g_{1}\right\}-L_{11}\left\{g_{2}\right\}$

A Simple Formula

$$
\left\{\begin{array}{l}
L_{11}\{x\}+L_{12}\{y\}=g_{1}(t) \tag{1}\\
L_{21}\{x\}+L_{22}\{y\}=g_{2}(t)
\end{array}\right.
$$

Similar to the Cramer＇s Rule，after the elimination we get

$$
\left\{\begin{array}{l}
L\{x\}=\widetilde{g}_{1}(t) \\
L\{y\}=\widetilde{g}_{2}(t)
\end{array}\right.
$$

where

$$
L=\left|\begin{array}{ll}
L_{11} & L_{12} \\
L_{21} & L_{22}
\end{array}\right|, \quad \widetilde{g}_{1}(t)=\left|\begin{array}{ll}
g_{1}(t) & L_{12} \\
g_{2}(t) & L_{22}
\end{array}\right|, \quad \widetilde{g}_{2}(t)=\left|\begin{array}{ll}
L_{11} & g_{1}(t) \\
L_{21} & g_{2}(t)
\end{array}\right|
$$

General Procedure

To solve a system of linear differential equations with constant coefficients（ k dependent variables $y_{1}, y_{2}, \ldots, y_{k}, k$ equations）：
1 Convert it into the following form：

$$
\left\{\begin{array}{cccccccc}
L_{11}\left\{y_{1}\right\} & + & L_{12}\left\{y_{2}\right\} & + & \cdots & + & L_{1 k}\left\{y_{k}\right\} & = \\
L_{21}\left\{y_{1}\right\} & + & L_{22}\left\{y_{2}\right\} & + & \cdots & + & L_{2 k}\left\{y_{k}\right\} & = \\
g_{2}(t) \\
\vdots & & \vdots & & & & \vdots & \\
\vdots \\
L_{k 1}\left\{y_{1}\right\} & + & L_{k 2}\left\{y_{2}\right\} & + & \cdots & + & L_{k k}\left\{y_{k}\right\} & \\
& g_{k}(t)
\end{array}\right.
$$

$\boxed{2}$ Use Cramer＇s rule to get $L\left\{y_{j}\right\}=\widetilde{g}_{j}(t), j=1, \ldots, k$ ，where

$$
L=\left|\begin{array}{cccc}
L_{11} & L_{12} & \cdots & L_{1 k} \\
L_{21} & L_{22} & \cdots & L_{2 k} \\
\vdots & \vdots & & \vdots \\
L_{k 1} & L_{k 2} & \cdots & L_{k k}
\end{array}\right|, \quad \widetilde{g}_{j}(t)=\left.L\right|_{j \text { th }} \text { column replaced by }\left[\begin{array}{lll}
g_{1} & \cdots & g_{k}
\end{array}\right]^{T}
$$

3 Solve each $y_{j}(t), j=1, \ldots, k$ ．

Some Properties

－For finding the complimentary solutions of all the dependent variables y_{1}, \ldots, y_{k} ，only need to solve the following once：

$$
L\{y\}=0 .
$$

■ Need k equations to uniquely solve k dependent variables y_{1}, \ldots, y_{k} ．
－The degree of L is typically higher than the degree in each of the original system of equations．

Example

Example

Solve

$$
\left\{\begin{aligned}
x^{\prime \prime}-4 x+y^{\prime \prime} & =t^{2} \\
x^{\prime}+x+y^{\prime} & =0
\end{aligned}\right.
$$

1 Solving Systems of Linear Differential Equations

2 Summary

