Chapter 4：Higher－Order Differential Equations－ Part 2

王奕翔

Department of Electrical Engineering
National Taiwan University
ihwang＠ntu．edu．tw
October 15， 2013

Solving Linear Higher－Order Differential Equations

The steps to find the general solution of a linear n－th order DE

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \tag{1}
\end{equation*}
$$

1 Find the general solution of its homogeneous counterpart（ $g(x)=0)$ ：

$$
y_{c}=c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x), c_{i} \in \mathbb{R}, \forall i=1,2, \ldots, n
$$

Here $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ is a fundamental set of solutions．
2 Find a particular solution y_{p} such that it satisfies（1）．
3 The general solution of（1）is

$$
y=y_{c}+y_{p}=y_{p}+c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x), c_{i} \in \mathbb{R}, \forall i .
$$

Types of Equations and Methods to be Covered

Regarding how to find the general solutions of homogeneous linear DE， we have discussed two types of equations so far：
－Linear equations with constant coefficients
－Cauchy－Euler equation
Regarding how to find a particular solution of a nonhomogeneous linear DE，we shall focus on these two kinds as well in this lecture．

We will present two methods of finding a particular solution
－Undetermined Coefficients（4－4，4－5）
－Variation of Parameters（4－6）

1 Methods of Undetermined Coefficients

2 Variation of Parameters

3 Summary

A System－Level Picture

Consider the equation with constant coefficients

$$
\begin{equation*}
a_{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1} \frac{d y}{d x}+a_{0} y=g(x) \tag{2}
\end{equation*}
$$

Pictorially sketch the problem of finding a particular solution y_{p} ：

$$
y_{p}=? \longrightarrow L:=\sum_{i=0}^{n} a_{i} D^{i} \longrightarrow g(x)
$$

If there exists $A(D)$（polynomial of D ）which is a differential operator such that $A\{g(x)\}=0$ ，let us concatenate it as follows：

$$
y_{p}=? \longrightarrow L:=\sum_{i=0}^{n} a_{i} D^{i} \longrightarrow g(x) \longrightarrow A \longrightarrow 0
$$

A System－Level Picture

$$
y_{p}=? \longrightarrow L:=\sum_{i=0}^{n} a_{i} D^{i} \longrightarrow g(x) \longrightarrow A \longrightarrow 0
$$

III

Hence，a particular solution y_{p} of（2），that is，$L\left\{y_{p}\right\}=g(x)$ ，must also be a solution of the homogeneous linear equation with constant coefficients

$$
P\{y\}=0 .
$$

The High－Level Idea

Suppose the degree of the polynomial $A(D)$ is m ，while the degree of the polynomial $L(D)$ is n ．

Let \mathcal{P} be a fundamental set of solutions of $P\{y\}=0$ ，and a subset $\mathcal{L} \subseteq \mathcal{P}$ be a fundamental set of solutions of $L\{y\}=0$ ．
Since y_{p} is a solution of $P\{y\}=0$ ，it can be written as follows：
solution of $L\{y\}=0$

$$
y_{p}=\overbrace{\sum_{i: f_{i} \in \mathcal{L}} c_{i} f_{i}(x)}+\sum_{i: f_{i} \in \mathcal{P} \backslash \mathcal{L}} c_{i} f_{i}(x)=y_{c}+\sum_{i: f_{i} \in \mathcal{P} \backslash \mathcal{L}} c_{i} f_{i}(x)
$$

The High－Level Idea

\mathcal{P} ：fundamental set of solutions of $P\{y\}=0$ ．
$\mathcal{L} \subseteq \mathcal{P}$ ：fundamental set of solutions of $L\{y\}=0$ ．
To find a particular solution y_{p} of $L\{y\}=g(x)$ ，we can simply plug in

$$
L\left\{\sum_{i: f_{i} \in \mathcal{P} \backslash \mathcal{L}} c_{i} f_{i}(x)\right\}=g(x)
$$

and find the values of the undetermined coefficients

$$
\left\{c_{i} \mid i: f_{i} \in \mathcal{P} \backslash \mathcal{L}\right\} .
$$

The High－Level Idea：Summary

Let $L(D):=\sum_{i=0}^{n} a_{i} D^{i}$ ．
Goal：Find a particular solution y_{p} such that $L\left\{y_{p}\right\}=g(x)$
Assumption：\exists a polynomial of $D, A(D)$ ，such that $A\{g(x)\}=0$ ．

Procedure：

1 Find a fundamental set of solutions of $P\{y\}=0, \mathcal{P}$ ，where $P(D):=L(D) A(D)$ ．
2 Find a fundamental set of solutions of $L\{y\}=0, \mathcal{L}$ ，and $\mathcal{L} \subseteq \mathcal{P}$ ．
3 Plug in $L\left\{y_{p}\right\}=g(x)$ with $y_{p}=$ a linear combination of the functions in $\mathcal{P} \backslash \mathcal{L}$ ．

4 Solve the undetermined coefficients in the linear combination．

Example

Example

Derive the general solution of $y^{\prime \prime}+3 y^{\prime}+2 y=4 x^{2}$ ．
A：This is a nonhomogeneous linear DE．Rewrite it as $L\{y\}=4 x^{2}$ ，where

$$
L(D)=D^{2}+3 D+2=(D+1)(D+2) . \text { Two roots: }-1,-2 .
$$

1 Find the general solution of $L\{y\}=0: y_{c}=c_{1} e^{-x}+c_{2} e^{-2 x}$ ．
2 Find that $A\left\{4 x^{2}\right\}=0$ ，where $A(D)=D^{3}$ ．
3 Find the general solution of $P\{y\}=0$ ，where $P(D)=L(D) A(D)$ ：

$$
y=c_{1} e^{-x}+c_{2} e^{-2 x}+c_{3}+c_{4} x+c_{5} x^{2}=y_{c}+c_{3}+c_{4} x+c_{5} x^{2} .
$$

4 Let $y_{p}=A+B x+C x^{2}: L\left\{y_{p}\right\}=4 x^{2} \Longrightarrow A=7, B=-6, C=2$ ．
5 General Solution：$y=c_{1} e^{-x}+c_{2} e^{-2 x}+7-6 x+2 x^{2}$ ．

$$
\begin{aligned}
y_{p}{ }^{\prime}= & B+2 C x, y_{p}{ }^{\prime \prime}=2 C \\
\Longrightarrow & 4 x^{2}=L\left\{y_{p}\right\}=2 C+6 C x+3 B+2 A+2 B x+2 C x^{2} \\
& =2 C x^{2}+2(B+3 C) x+(2 A+3 B+2 C)
\end{aligned} \begin{aligned}
& \Longrightarrow\left\{\begin{array}{l}
2 C=4 \\
B+3 C=0 \\
2 A+3 B+2 C=0
\end{array}\right. \\
& \Longrightarrow C=2, B=-6, A=7 .
\end{aligned}
$$

For What Kinds of $g(x)$ will this Work？

$$
g(x) \longrightarrow A \rightarrow 0 \quad \begin{gathered}
A: \text { polynomial of } D \text { with } \\
\text { constant coefficients }
\end{gathered}
$$

In other words，$g(x)$ is a solution to the homogeneous linear DE with constant coefficients $A\{y\}=0$ ．

Recall：

$$
\begin{array}{ll}
A(D) & g(x) \text { (solution of } A\{y\}=0) \\
\hline(D-m)^{k} & e^{m x}, x e^{m x}, \ldots, x^{k-1} e^{m x} \\
\left(D^{2}-2 \alpha D+\alpha^{2}+\beta^{2}\right)^{k} & e^{\alpha x} \sin \beta x, \ldots, x^{k-1} e^{\alpha x} \sin \beta x \\
& e^{\alpha x} \cos \beta x, \ldots, x^{k-1} e^{\alpha x} \cos \beta x
\end{array}
$$

If $g(x)$ is a linear combination of the above functions，we can use the method of undetermined coefficients to find a particular solution．

$g(x)$ and its Annihilator A

$$
g(x) \longrightarrow A \longrightarrow 0 \begin{gathered}
A: \text { polynomial of } D \text { with } \\
\text { constant coefficients }
\end{gathered}
$$

For $k=0,1, \ldots$ ，and $m, \alpha, \beta \in \mathbb{R}$ ，

$g(x)$	A
x^{k}	D^{k+1}
$x^{k} e^{m x}$	$(D-m)^{k+1}$
$x^{k} \sin \beta x$	$\left(D^{2}+\beta^{2}\right)^{k+1}$
$x^{k} \cos \beta x$	$\left(D^{2}+\beta^{2}\right)^{k+1}$
$x^{k} e^{\alpha x} \sin \beta x$	$\left(D^{2}-2 \alpha D+\alpha^{2}+\beta^{2}\right)^{k+1}$
$x^{k} e^{\alpha x} \cos \beta x$	$\left(D^{2}-2 \alpha D+\alpha^{2}+\beta^{2}\right)^{k+1}$

More Examples

Example

Derive the general solution of $y^{\prime \prime}+y=x \cos x-\cos x$ ．

Example

Derive the general solution of $y^{\prime \prime}-3 y^{\prime}=8 e^{3 x}+4 \sin x$ ．

Example

Derive the general solution of $y^{\prime \prime}-2 y^{\prime}+y=10 e^{-2 x} \cos x$ ．

Example

Derive the general solution of $y^{\prime \prime}-2 y^{\prime}+y=x$ ．

Nonhomogeneous Cauchy－Euler Equation

$$
a_{n} x^{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} x^{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1} x \frac{d y}{d x}+a_{0} y=g(x)
$$

With the substitution $x=e^{t}$ ，convert the Cauchy－Euler Equation to a linear DE with constant coefficients．

Note：To use the method of undetermined coefficients，we have to make sure that $g\left(e^{t}\right)$ takes the form in the table on the previous slide．

Nonhomogeneous Cauchy－Euler Equation

Example

Derive the general solution of $x^{2} y^{\prime \prime}-x y^{\prime}+y=\ln x, x>0$ ．
A：With $x=e^{t}$ ，we have $\ln x=t$ and

$$
x^{2} D_{x}^{2}-x D_{x}+1=D_{t}\left(D_{t}-1\right)-D_{t}+1=\left(D_{t}-1\right)^{2} .
$$

Hence the original DE becomes $\frac{d^{2} y}{d t^{2}}-2 \frac{d y}{d t}+y=t$ ，and the general solution is

$$
y=c_{1} e^{t}+c_{2} t e^{t}+2+t=c_{1} x+c_{2} x \ln x+2+\ln x .
$$

1 Methods of Undetermined Coefficients

2 Variation of Parameters

3 Summary

Overview

Variation of parameters is a powerful method to find a particular solution y_{p} of any linear differential equation

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \tag{1}
\end{equation*}
$$

given that the general solution of the corresponding homogeneous DE

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0 \tag{3}
\end{equation*}
$$

can be found．
No restrictions on $g(x)!g(x)$ can be $1 / x, \csc x, \ln x$ ，etc．
This method is due to Joseph－Louis Lagrange．

Joseph－Louis Lagrange （born as Giuseppe Luigi Lagrancia）

First Order DE

In Chapter 2 we use the method of integrating factors to solve

$$
a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) .
$$

Here we use a different method．Let $f_{1}(x)$ be a solution of the homogeneous linear DE（can be found using separation of variables）

$$
a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0 .
$$

To find a particular solution，let $y_{p}=f_{1}(x) u_{1}(x)$ ，and plug it back：

$$
y_{p}^{\prime}=\frac{d f_{1}}{d x} u_{1}+f_{1} \frac{d u_{1}}{d x} \Longrightarrow g(x)=a_{1}(x) f_{1}(x) \frac{d u_{1}}{d x} .
$$

Then a $u_{1}(x)$ can be found by integrating $\frac{g(x)}{a_{1}(x) f_{1}(x)}$ ．

$$
\begin{aligned}
y_{p}^{\prime}=\frac{d f}{d x} u+f \frac{d u}{d x} \Longrightarrow g(x) & =a_{1}(x) y_{p}^{\prime}+a_{0}(x) y_{p} \\
& =a_{1}(x)\left(\frac{d f}{d x} u+f \frac{d u}{d x}\right)+a_{0}(x) f u \\
& =a_{1}(x) f(x) \frac{d u}{d x}+u\left(a_{1}(x) \frac{d f}{d x}+a_{0}(x) f\right) \\
& =a_{1}(x) f(x) \frac{d u}{d x}
\end{aligned}
$$

Second Order DE

$$
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=g(x)
$$

Let f_{1}, f_{2} be two linearly independent solutions of the homogeneous linear DE

$$
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0
$$

To find a particular solution，let $y_{p}=u_{1} f_{1}+u_{2} f_{2}$ ，and plug it back． The remaining task is to find $u_{1}(x)$ and $u_{2}(x)$ ．

Observation：for $i=1,2$ ，

$$
\begin{aligned}
\left(u_{i} f_{i}\right)^{\prime} & =u_{i}^{\prime} f_{i}+u_{i} f_{i}^{\prime}=u_{i}^{\prime} f_{i}+u_{i} D\left\{f_{i}\right\} \\
\left(u_{i} f_{i}\right)^{\prime \prime} & =u_{i}^{\prime \prime} f_{i}+2 u_{i}^{\prime} f_{i}^{\prime}+u_{i} f_{i}^{\prime \prime}=\left(u_{i}^{\prime \prime} f_{i}+u_{i}^{\prime} f_{i}^{\prime}\right)+u_{i}^{\prime} f_{i}^{\prime}+u_{i} f_{i}^{\prime \prime} \\
& =\left(u_{i}^{\prime} f_{i}\right)^{\prime}+u_{i}^{\prime} f_{i}^{\prime}+u_{i} f_{i}^{\prime \prime}=D\left\{u_{i}^{\prime} f_{i}\right\}+u_{i}^{\prime} f_{i}^{\prime}+u_{i} D^{2}\left\{f_{i}\right\}
\end{aligned}
$$

Find $u_{1}(x)$ and $u_{2}(x)$

Let $L:=a_{2}(x) D^{2}+a_{1}(x) D+a_{0}(x)$ ．L is a linear operator．
Hence，with $y_{p}=u_{1} f_{1}+u_{2} f_{2}, L\left\{y_{p}\right\}=L\left\{u_{1} f_{1}\right\}+L\left\{u_{2} f_{2}\right\}$ ．
Using the fact that for $i=1,2$ ，

$$
D\left\{u_{i} f_{i}\right\}=u_{i}^{\prime} f_{i}+u_{i} D\left\{f_{i}\right\}, D^{2}\left\{u_{i} f_{i}\right\}=D\left\{u_{i}^{\prime} f_{i}\right\}+u_{i}^{\prime} f_{i}^{\prime}+u_{i} D^{2}\left\{f_{i}\right\}
$$

we have

$$
\begin{aligned}
L\left\{u_{i} f_{i}\right\}= & a_{2}(x) D^{2}\left\{u_{i} f_{i}\right\}+a_{1}(x) D\left\{u_{i} f_{i}\right\}+a_{0}(x) u_{i} f_{i} \\
= & a_{2}(x)\left(D\left\{u_{i}^{\prime} f_{i}\right\}+u_{i}^{\prime} f_{i}^{\prime}+u_{i} D^{2}\left\{f_{i}\right\}\right) \\
& +a_{1}(x)\left(u_{i}^{\prime} f_{i}+u_{i} D\left\{f_{i}\right\}\right)+a_{0}(x) u_{i} f_{i} \\
= & u_{i} L\left\{f_{i}\right\}+\left(a_{2}(x) D+a_{1}(x)\right)\left\{u_{i}^{\prime} f_{i}\right\}+a_{2}(x) u_{i}^{\prime} f_{i}^{\prime} \\
= & u_{i} L\left\{f_{i}\right\}+L_{1}\left\{u_{i}^{\prime} f_{i}\right\}+a_{2}(x) u_{i}^{\prime} f_{i}^{\prime}
\end{aligned}
$$

Find $u_{1}(x)$ and $u_{2}(x)$

$L:=a_{2}(x) D^{2}+a_{1}(x) D+a_{0}(x)$ ．With $y_{p}=u_{1} f_{1}+u_{2} f_{2}$ ，where f_{1} and f_{2} are two linearly independent solutions of $L\{y\}=0$ ，we have

$$
\begin{aligned}
L\left\{y_{p}\right\} & =L\left\{u_{1} f_{1}\right\}+L\left\{u_{2} f_{2}\right\} \\
& =L_{1}\left\{u_{1}^{\prime} f_{1}+u_{2}^{\prime} f_{2}\right\}+a_{2}(x)\left(u_{1}^{\prime} f_{1}^{\prime}+u_{2}^{\prime} f_{2}^{\prime}\right) \\
& =g(x) .
\end{aligned}
$$

Here $L_{1}:=a_{2}(x) D+a_{1}(x)$ ．
If u_{1}, u_{2} satisfy the following，then $L\left\{y_{p}\right\}=g(x)$ ：

$$
\left\{\begin{array} { l }
{ u _ { 1 } ^ { \prime } f _ { 1 } + u _ { 2 } ^ { \prime } f _ { 2 } = 0 } \\
{ u _ { 1 } ^ { \prime } f _ { 1 } ^ { \prime } + u _ { 2 } ^ { \prime } f _ { 2 } ^ { \prime } = \frac { g (x) } { a _ { 2 } (x) } }
\end{array} \Longrightarrow \left\{\begin{array}{l}
u_{1}^{\prime}=\frac{W_{1}}{W} \\
u_{2}^{\prime}=\frac{W_{2}}{W}
\end{array},\right.\right.
$$

$W=\left|\begin{array}{cc}f_{1} & f_{2} \\ f_{1}{ }^{\prime} & f_{2}{ }^{\prime}\end{array}\right| \neq 0:$ Wronskian of $f_{1}, f_{2}, \quad W_{1}=\left|\begin{array}{cc}0 & f_{2} \\ \frac{g}{a_{2}} & f_{2}{ }^{\prime}\end{array}\right|, \quad W_{2}=\left|\begin{array}{ll}f_{1} & 0 \\ f_{1}{ }^{\prime} & \frac{g}{a_{2}}\end{array}\right|$

n－th Order DE $L\{y\}=g(x), L:=\sum_{i=0}^{n} a_{i}(x) D^{i}$

Suppose $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ form a fundamental set of solutions of the homogeneous linear DE $L\{y\}=0$ ．

Then a particular solution $y_{p}=\sum_{i=0}^{n} u_{i}(x) f_{i}(x)$ can be found by the following formula regarding $\left\{u_{1}{ }^{\prime}, u_{2}{ }^{\prime}, \ldots, u_{n}{ }^{\prime}\right\}$ ：

$$
u_{i}{ }^{\prime}=\frac{W_{i}}{W}, \quad W=\left|\begin{array}{ccc}
f_{1} & \cdots & f_{n} \\
f_{1}{ }^{\prime} & \cdots & f_{n}{ }^{\prime} \\
\vdots & & \vdots \\
f_{1}{ }^{(n-1)} & \cdots & f_{n}{ }^{(n-1)}
\end{array}\right|
$$

W_{i} is W with the i－th column replaced by $\left[\begin{array}{lllll}0 & 0 & \cdots & 0 & \frac{g(x)}{a_{n}(x)}\end{array}\right]^{T}$ ．

A Key Fact

Fact

For $k=1,2, \ldots, n$ ，

$$
D^{k}\left\{u_{i} f_{i}\right\}=u_{i} D^{k}\left\{f_{i}\right\}+\sum_{j=0}^{k-1} D^{j}\left\{u_{i}^{\prime} f_{i}^{(k-1-j)}\right\}
$$

which implies

$$
L\left\{u_{i} f_{i}\right\}=\sum_{j=1}^{n-1} L_{j}\left\{u_{i}^{\prime} f_{i}^{(j-1)}\right\}+a_{n}(x) u_{i}^{\prime} f_{i}^{(n-1)}
$$

where $L_{j}:=\sum_{l=j}^{n} a_{l}(x) D^{l-j}$ ．
Proof：Exercise．

Examples

Example

Derive the general solution of $4 y^{\prime \prime}+36 y=\csc 3 x$ ．

Example

Derive the general solution of $y^{\prime \prime}-y=\frac{1}{x}$ ．

Example

Derive the general solution of $x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=2 x^{4} e^{x}$ ．

1 Methods of Undetermined Coefficients

2 Variation of Parameters

3 Summary

Short Recap

－Method of Undetermined Coefficients
－Annihilator Operator
－Variation of Parameters

Self－Practice Exercises

4－4：1，7，13，27，29， 35

4－5：15，21，25，49，65，69， 71
4－6：1，3，5，9，17，21，25， 27
4－7：21，29， 35

