Chapter 4: Higher-Order Differential Equations – Part 2

王奕翔

Department of Electrical Engineering National Taiwan University

ihwang@ntu.edu.tw

October 15, 2013

Solving Linear Higher-Order Differential Equations

The steps to find the general solution of a linear *n*-th order DE

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$
 (1)

I Find the general solution of its homogeneous counterpart (g(x) = 0):

$$y_c = c_1 f_1(x) + c_2 f_2(x) + \dots + c_n f_n(x), \ c_i \in \mathbb{R}, \ \forall \ i = 1, 2, \dots, n.$$

Here $\{f_1, f_2, \ldots, f_n\}$ is a fundamental set of solutions.

2 Find a particular solution y_p such that it satisfies (1).

3 The general solution of (1) is

$$y = y_c + y_p = y_p + c_1 f_1(x) + c_2 f_2(x) + \dots + c_n f_n(x), \ c_i \in \mathbb{R}, \ \forall \ i.$$

Types of Equations and Methods to be Covered

Regarding how to find the general solutions of homogeneous linear DE, we have discussed two types of equations so far:

- Linear equations with constant coefficients
- Cauchy-Euler equation

Regarding how to find a particular solution of a nonhomogeneous linear DE, we shall focus on these two kinds as well in this lecture.

We will present two methods of finding a particular solution

- Undetermined Coefficients (4-4, 4-5)
- Variation of Parameters (4-6)

1 Methods of Undetermined Coefficients

2 Variation of Parameters

A System-Level Picture

Consider the equation with constant coefficients

$$a_n \frac{d^n y}{dx^n} + a_{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1 \frac{dy}{dx} + a_0 y = g(x).$$
(2)

Pictorially sketch the problem of finding a particular solution y_p :

$$y_p = ? \longrightarrow \boxed{L := \sum_{i=0}^n a_i D^i} \longrightarrow g(x)$$

If there exists A(D) (polynomial of D) which is a differential operator such that $A \{g(x)\} = 0$, let us concatenate it as follows:

$$y_p = ? \longrightarrow \boxed{L := \sum_{i=0}^n a_i D^i} \longrightarrow g(x) \longrightarrow \boxed{A} \longrightarrow 0$$

A System-Level Picture

$$y_p = ? \longrightarrow L := \sum_{i=0}^{n} a_i D^i \longrightarrow g(x) \longrightarrow A \longrightarrow 0$$

$$|||$$

$$P = LA = AL$$

$$y_p = ? \longrightarrow L := \sum_{i=0}^{n} a_i D^i \longrightarrow g(x) \longrightarrow A \longrightarrow 0$$

Hence, a particular solution y_p of (2), that is, $L\{y_p\} = g(x)$, must also be a solution of the homogeneous linear equation with constant coefficients

$$P\{y\} = 0.$$

The High-Level Idea

$$P = LA = AL$$

$$y_p = ? \longrightarrow L := \sum_{i=0}^{n} a_i D^i \longrightarrow g(x) \longrightarrow A \longrightarrow 0$$

Suppose the degree of the polynomial A(D) is m, while the degree of the polynomial L(D) is n.

Let \mathcal{P} be a fundamental set of solutions of $P\{y\} = 0$, and a subset $\mathcal{L} \subseteq \mathcal{P}$ be a fundamental set of solutions of $L\{y\} = 0$.

Since y_p is a solution of $P\{y\} = 0$, it can be written as follows:

solution of
$$L\{y\} = 0$$

$$y_p = \underbrace{\sum_{i:f_i \in \mathcal{L}} c_i f_i(x)}_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} + \sum_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} c_i f_i(x) = y_c + \underbrace{\sum_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} c_i f_i(x)}_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} + \underbrace{\sum_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} c_i f_i(x)}_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} + \underbrace{\sum_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} c_i f_i(x)}_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} + \underbrace{\sum_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} c_i f_i(x)}_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} + \underbrace{\sum_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} c_i f_i(x)}_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} + \underbrace{\sum_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} c_i f_i(x)}_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} + \underbrace{\sum_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} c_i f_i(x)}_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} + \underbrace{\sum_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} c_i f_i(x)}_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} + \underbrace{\sum_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} c_i f_i(x)}_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} + \underbrace{\sum_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} c_i f_i(x)}_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} + \underbrace{\sum_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} c_i f_i(x)}_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} + \underbrace{\sum_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} c_i f_i(x)}_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} + \underbrace{\sum_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} c_i f_i(x)}_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} + \underbrace{\sum_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} c_i f_i(x)}_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} + \underbrace{\sum_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} c_i f_i(x)}_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} + \underbrace{\sum_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} c_i f_i(x)}_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} + \underbrace{\sum_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} c_i f_i(x)}_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} + \underbrace{\sum_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} c_i f_i(x)}_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} + \underbrace{\sum_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} c_i f_i(x)}_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} + \underbrace{\sum_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} + \underbrace{\sum_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} c_i f_i(x)}_{i:f_i \in \mathcal{P} \setminus \mathcal{L}} + \underbrace{\sum_{i:f_i \in \mathcal{L}} + \underbrace{\sum_{$$

The High-Level Idea

 \mathcal{P} : fundamental set of solutions of $P\{y\} = 0$. $\mathcal{L} \subseteq \mathcal{P}$: fundamental set of solutions of $L\{y\} = 0$.

To find a particular solution y_p of $L\{y\} = g(x)$, we can simply plug in

$$L\left\{\sum_{i:f_i\in\mathcal{P}\setminus\mathcal{L}}c_if_i(x)\right\} = g(x)$$

and find the values of the undetermined coefficients

 $\{c_i \mid i: f_i \in \mathcal{P} \setminus \mathcal{L}\}.$

The High-Level Idea: Summary

Let $L(D) := \sum_{i=0}^{n} a_i D^i$.

Goal: Find a particular solution y_p such that $L\{y_p\} = g(x)$

Assumption: \exists a polynomial of *D*, A(D), such that $A\{g(x)\} = 0$.

Procedure:

- I Find a fundamental set of solutions of $P\{y\} = 0$, \mathcal{P} , where P(D) := L(D)A(D).
- **2** Find a fundamental set of solutions of $L\{y\} = 0$, \mathcal{L} , and $\mathcal{L} \subseteq \mathcal{P}$.
- 3 Plug in $L\{y_p\} = g(x)$ with $y_p = a$ linear combination of the functions in $\mathcal{P} \setminus \mathcal{L}$.
- 4 Solve the undetermined coefficients in the linear combination.

Example

Example

Derive the general solution of $y'' + 3y' + 2y = 4x^2$.

A: This is a nonhomogeneous linear DE. Rewrite it as $L\left\{y\right\}=4x^2$, where

 $L(D) = D^2 + 3D + 2 = (D+1)(D+2)$. Two roots: -1, -2.

- I Find the general solution of $L\{y\} = 0$: $y_c = c_1 e^{-x} + c_2 e^{-2x}$.
- **2** Find that $A \{4x^2\} = 0$, where $A(D) = D^3$.
- **3** Find the general solution of $P\{y\} = 0$, where P(D) = L(D)A(D):

$$y = c_1 e^{-x} + c_2 e^{-2x} + c_3 + c_4 x + c_5 x^2 = y_c + \boxed{c_3 + c_4 x + c_5 x^2}.$$

4 Let $y_p = A + Bx + Cx^2$: $L\{y_p\} = 4x^2 \implies A = 7, B = -6, C = 2.$

5 General Solution: $y = c_1 e^{-x} + c_2 e^{-2x} + 7 - 6x + 2x^2$.

$$\begin{split} y_p' &= B + 2Cx, \ y_p'' = 2C \\ \implies 4x^2 = L\left\{y_p\right\} = 2C + 6Cx + 3B + 2A + 2Bx + 2Cx^2 \\ &= 2Cx^2 + 2(B + 3C)x + (2A + 3B + 2C) \\ \implies \begin{cases} 2C = 4 \\ B + 3C = 0 \\ 2A + 3B + 2C = 0 \\ \implies C = 2, B = -6, A = 7. \end{split}$$

For What Kinds of g(x) will this Work?

$$g(x) \longrightarrow A \longrightarrow 0$$
 A: polynomial of D with constant coefficients

In other words, g(x) is a solution to the homogeneous linear DE with constant coefficients $A \{y\} = 0$.

Recall:

$$\begin{array}{ccc} A(D) & g(x) \mbox{ (solution of } A \{y\} = 0) \\ \hline (D-m)^k & e^{mx}, xe^{mx}, \dots, x^{k-1}e^{mx} \\ & \left(D^2 - 2\alpha D + \alpha^2 + \beta^2\right)^k & e^{\alpha x} \sin \beta x, \dots, x^{k-1}e^{\alpha x} \sin \beta x \\ & e^{\alpha x} \cos \beta x, \dots, x^{k-1}e^{\alpha x} \cos \beta x \end{array}$$

If g(x) is a linear combination of the above functions, we can use the method of undetermined coefficients to find a particular solution.

g(x) and its Annihilator A

_

$$g(x) \longrightarrow A \longrightarrow 0^{-A}$$

: polynomial of D with constant coefficients

For $k = 0, 1, \ldots$, and $m, \alpha, \beta \in \mathbb{R}$,

g(x)	A
x^k	D^{k+1}
$x^k e^{mx}$	$(D-m)^{k+1}$
$x^k \sin \beta x$	$\left(D^2+\beta^2\right)^{k+1}$
$x^k \cos \beta x$	$\left(D^2 + \beta^2\right)^{k+1}$
$x^k e^{\alpha x} \sin \beta x$	$\left(D^2 - 2\alpha D + \alpha^2 + \beta^2\right)^{k+1}$
$x^k e^{\alpha x} \cos \beta x$	$\left(D^2 - 2\alpha D + \alpha^2 + \beta^2\right)^{k+1}$

More Examples

Example

Derive the general solution of $y'' + y = x \cos x - \cos x$.

Example

Derive the general solution of $y'' - 3y' = 8e^{3x} + 4\sin x$.

Example

Derive the general solution of $y'' - 2y' + y = 10e^{-2x}\cos x$.

Example

Derive the general solution of y'' - 2y' + y = x.

Nonhomogeneous Cauchy-Euler Equation

$$a_n x^n \frac{d^n y}{dx^n} + a_{n-1} x^{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1 x \frac{dy}{dx} + a_0 y = g(x)$$

With the substitution $x = e^t$, convert the Cauchy-Euler Equation to a linear DE with constant coefficients.

Note: To use the method of undetermined coefficients, we have to make sure that $g(e^t)$ takes the form in the table on the previous slide.

Nonhomogeneous Cauchy-Euler Equation

Example

Derive the general solution of $x^2y'' - xy' + y = \ln x$, x > 0.

A: With $x = e^t$, we have $\ln x = t$ and

$$x^{2}D_{x}^{2} - xD_{x} + 1 = D_{t}(D_{t} - 1) - D_{t} + 1 = (D_{t} - 1)^{2}$$

Hence the original DE becomes $\frac{d^2y}{dt^2} - 2\frac{dy}{dt} + y = t$, and the general solution is

$$y = c_1 e^t + c_2 t e^t + 2 + t = \boxed{c_1 x + c_2 x \ln x + 2 + \ln x}$$

1 Methods of Undetermined Coefficients

2 Variation of Parameters

Overview

Variation of parameters is a powerful method to find a particular solution y_p of **any** linear differential equation

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$
 (1)

given that the general solution of the corresponding homogeneous DE

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = 0$$
(3)

can be found.

No restrictions on g(x)! g(x) can be 1/x, $\csc x$, $\ln x$, etc.

This method is due to Joseph-Louis Lagrange.

Joseph-Louis Lagrange (born as Giuseppe Luigi Lagrancia)

First Order DE

In Chapter 2 we use the method of integrating factors to solve

$$a_1(x)\frac{dy}{dx} + a_0(x)y = g(x).$$

Here we use a different method. Let $f_1(x)$ be a solution of the homogeneous linear DE (can be found using separation of variables)

$$a_1(x)\frac{dy}{dx} + a_0(x)y = 0.$$

To find a particular solution, let $y_p = f_1(x)u_1(x)$, and plug it back:

$$y_p' = \frac{df_1}{dx}u_1 + f_1\frac{du_1}{dx} \implies g(x) = a_1(x)f_1(x)\frac{du_1}{dx}.$$

Then a $u_1(x)$ can be found by integrating $\frac{g(x)}{a_1(x)f_1(x)}$.

$$y_p' = \frac{df}{dx}u + f\frac{du}{dx} \implies g(x) = a_1(x)y_p' + a_0(x)y_p$$
$$= a_1(x)\left(\frac{df}{dx}u + f\frac{du}{dx}\right) + a_0(x)fu$$
$$= a_1(x)f(x)\frac{du}{dx} + u\left(a_1(x)\frac{df}{dx} + a_0(x)f\right)$$
$$= a_1(x)f(x)\frac{du}{dx}$$

Second Order DE

$$a_2(x)y'' + a_1(x)y' + a_0(x)y = g(x).$$

Let f_1, f_2 be two **linearly independent** solutions of the homogeneous linear DE

$$a_2(x)y'' + a_1(x)y' + a_0(x)y = 0.$$

To find a particular solution, let $y_p = u_1f_1 + u_2f_2$, and plug it back. The remaining task is to find $u_1(x)$ and $u_2(x)$.

Observation: for i = 1, 2,

$$(u_i f_i)' = u_i' f_i + u_i f_i' = \underbrace{u_i' f_i + u_i D\{f_i\}}_{(u_i f_i)''} = u_i'' f_i + 2u_i' f_i' + u_i f_i'' = (u_i'' f_i + u_i' f_i') + u_i' f_i' + u_i f_i'' = (u_i' f_i)' + u_i' f_i' + u_i f_i'' = \boxed{D\{u_i' f_i\} + u_i' f_i' + u_i D^2\{f_i\}}$$

Find $\overline{u_1(x)}$ and $\overline{u_2(x)}$

Let $L := a_2(x)D^2 + a_1(x)D + a_0(x)$. L is a linear operator. Hence, with $y_p = u_1f_1 + u_2f_2$, $L\{y_p\} = L\{u_1f_1\} + L\{u_2f_2\}$.

Using the fact that for i = 1, 2,

$$D\{u_if_i\} = u_i'f_i + u_iD\{f_i\}, \ D^2\{u_if_i\} = D\{u_i'f_i\} + u_i'f_i' + u_iD^2\{f_i\},$$

we have

$$\begin{split} L\left\{u_{i}f_{i}\right\} &= a_{2}(x)D^{2}\left\{u_{i}f_{i}\right\} + a_{1}(x)D\left\{u_{i}f_{i}\right\} + a_{0}(x)u_{i}f_{i} \\ &= a_{2}(x)\left(D\left\{u_{i}'f_{i}\right\} + u_{i}'f_{i}' + u_{i}D^{2}\left\{f_{i}\right\}\right) \\ &+ a_{1}(x)\left(u_{i}'f_{i} + u_{i}D\left\{f_{i}\right\}\right) + a_{0}(x)u_{i}f_{i} \\ &= u_{i}L\left\{f_{i}\right\} + (a_{2}(x)D + a_{1}(x))\left\{u_{i}'f_{i}\right\} + a_{2}(x)u_{i}'f_{i}' \\ &= \underbrace{u_{i}L\left\{f_{i}\right\}} + L_{1}\left\{\underbrace{u_{i}'f_{i}}\right\} + a_{2}(x)u_{i}'f_{i}' \end{split}$$

Find $u_1(x)$ and $u_2(x)$

 $L := a_2(x)D^2 + a_1(x)D + a_0(x)$. With $y_p = u_1f_1 + u_2f_2$, where f_1 and f_2 are two linearly independent solutions of $L\{y\} = 0$, we have

$$L \{y_p\} = L \{u_1 f_1\} + L \{u_2 f_2\}$$

= $L_1 \{u_1' f_1 + u_2' f_2\} + a_2(x) (u_1' f_1' + u_2' f_2')$
= $g(x)$.

Here $L_1 := a_2(x)D + a_1(x)$.

If u_1, u_2 satisfy the following, then $L\left\{y_p\right\} = g(x)$:

$$\begin{cases} u_1'f_1 + u_2'f_2 = 0\\ u_1'f_1' + u_2'f_2' = \frac{g(x)}{a_2(x)} \end{cases} \implies \begin{cases} u_1' = \frac{W_1}{W}\\ u_2' = \frac{W_2}{W} \end{cases},$$

$$W = \begin{vmatrix} f_1 & f_2 \\ f_1' & f_2' \end{vmatrix} \neq 0: \text{ Wronskian of } f_1, f_2, \quad W_1 = \begin{vmatrix} 0 & f_2 \\ \frac{g}{a_2} & f_2' \end{vmatrix}, \quad W_2 = \begin{vmatrix} f_1 & 0 \\ f_1' & \frac{g}{a_2} \end{vmatrix}$$

n-th Order DE $L \{y\} = g(x), L := \sum_{i=0}^{n} a_i(x)D^i$

Suppose $\{f_1, f_2, \ldots, f_n\}$ form a fundamental set of solutions of the homogeneous linear DE $L\{y\} = 0$.

Then a particular solution $y_p = \sum_{i=0}^n u_i(x)f_i(x)$ can be found by the following formula regarding $\{u_1', u_2', \dots, u_n'\}$:

$$u_{i}' = \frac{W_{i}}{W}, \quad W = \begin{vmatrix} f_{1} & \dots & f_{n} \\ f_{1}' & \dots & f_{n}' \\ \vdots & & \vdots \\ f_{1}^{(n-1)} & \dots & f_{n}^{(n-1)} \end{vmatrix}$$

 W_i is W with the *i*-th column replaced by $\begin{bmatrix} 0 & 0 & \cdots & 0 & \frac{g(x)}{a_n(x)} \end{bmatrix}^T$.

A Key Fact

Fact

For k = 1, 2, ..., n,

$$D^{k} \{ u_{i}f_{i} \} = u_{i}D^{k} \{ f_{i} \} + \sum_{j=0}^{k-1} D^{j} \left\{ u_{i}'f_{i}^{(k-1-j)} \right\},$$

which implies

$$L\{u_i f_i\} = \sum_{j=1}^{n-1} L_j \left\{ u_i' f_i^{(j-1)} \right\} + a_n(x) u_i' f_i^{(n-1)},$$

where $L_j := \sum_{l=j}^n a_l(x) D^{l-j}$.

Proof: Exercise.

Examples

Example

Derive the general solution of $4y'' + 36y = \csc 3x$.

Example

Derive the general solution of $y'' - y = \frac{1}{x}$.

Example

Derive the general solution of $x^2y'' - 3xy' + 3y = 2x^4e^x$.

1 Methods of Undetermined Coefficients

2 Variation of Parameters

Short Recap

- Method of Undetermined Coefficients
- Annihilator Operator
- Variation of Parameters

Self-Practice Exercises

4-4: 1, 7, 13, 27, 29, 35

4-5: 15, 21, 25, 49, 65, 69, 71

4-6: 1, 3, 5, 9, 17, 21, 25, 27

4-7: 21, 29, 35