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Solving Linear Higher-Order Differential Equations

The steps to find the general solution of a linear n-th order DE

an(x)
dny
dxn + an−1(x)

dn−1y
dxn−1

+ · · ·+ a1(x)
dy
dx + a0(x)y = g(x) (1)

1 Find the general solution of its homogeneous counterpart (g(x) = 0):

yc = c1f1(x) + c2f2(x) + · · ·+ cnfn(x), ci ∈ R, ∀ i = 1, 2, . . . ,n.

Here {f1, f2, . . . , fn} is a fundamental set of solutions.

2 Find a particular solution yp such that it satisfies (1).

3 The general solution of (1) is

y = yc + yp = yp + c1f1(x) + c2f2(x) + · · ·+ cnfn(x), ci ∈ R, ∀ i.
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Types of Equations and Methods to be Covered

Regarding how to find the general solutions of homogeneous linear DE,
we have discussed two types of equations so far:

Linear equations with constant coefficients
Cauchy-Euler equation

Regarding how to find a particular solution of a nonhomogeneous linear
DE, we shall focus on these two kinds as well in this lecture.

We will present two methods of finding a particular solution
Undetermined Coefficients (4-4, 4-5)
Variation of Parameters (4-6)
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A System-Level Picture

Consider the equation with constant coefficients

an
dny
dxn + an−1

dn−1y
dxn−1

+ · · ·+ a1
dy
dx + a0y = g(x). (2)

Pictorially sketch the problem of finding a particular solution yp:

L :=
nX

i=0

aiD
iyp =?

g(x)

If there exists A(D) (polynomial of D) which is a differential operator
such that A {g(x)} = 0, let us concatenate it as follows:

L :=
nX

i=0

aiD
iyp =?

g(x) A 0
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A System-Level Picture

Ag(x)L :=
nX

i=0

aiD
i

L :=
nX

i=0

aiD
iyp =?

g(x) A 0

yp =? 0

P = LA = AL

⌘

Hence, a particular solution yp of (2), that is, L {yp} = g(x), must also be
a solution of the homogeneous linear equation with constant coefficients

P {y} = 0.
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The High-Level Idea

Ag(x)L :=
nX

i=0

aiD
iyp =? 0

P = LA = AL

Suppose the degree of the polynomial A(D) is m, while the degree of the
polynomial L(D) is n.
Let P be a fundamental set of solutions of P {y} = 0, and a subset
L ⊆ P be a fundamental set of solutions of L {y} = 0.
Since yp is a solution of P {y} = 0, it can be written as follows:

yp =

solution of L {y} = 0︷ ︸︸ ︷∑
i:fi∈L

cifi(x) +
∑

i:fi∈P\L

cifi(x) = yc +
∑

i:fi∈P\L

cifi(x)
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The High-Level Idea

P: fundamental set of solutions of P {y} = 0.
L ⊆ P: fundamental set of solutions of L {y} = 0.
To find a particular solution yp of L {y} = g(x), we can simply plug in

L

 ∑
i:fi∈P\L

cifi(x)

 = g(x)

and find the values of the undetermined coefficients

{ci | i : fi ∈ P \ L} .

王奕翔 DE Lecture 6



Methods of Undetermined Coefficients
Variation of Parameters

Summary

The High-Level Idea: Summary

Let L(D) :=
∑n

i=0 aiDi.

Goal: Find a particular solution yp such that L {yp} = g(x)

Assumption: ∃ a polynomial of D, A(D), such that A {g(x)} = 0.

Procedure:
1 Find a fundamental set of solutions of P {y} = 0, P, where

P(D) := L(D)A(D).
2 Find a fundamental set of solutions of L {y} = 0, L, and L ⊆ P.
3 Plug in L {yp} = g(x) with yp = a linear combination of the

functions in P \ L.
4 Solve the undetermined coefficients in the linear combination.
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Example
Example
Derive the general solution of y′′ + 3y′ + 2y = 4x2.

A: This is a nonhomogeneous linear DE. Rewrite it as L {y} = 4x2, where

L(D) = D2 + 3D + 2 = (D + 1)(D + 2). Two roots: − 1,−2.

1 Find the general solution of L {y} = 0: yc = c1e−x + c2e−2x .
2 Find that A

{
4x2

}
= 0, where A(D) = D3.

3 Find the general solution of P {y} = 0, where P(D) = L(D)A(D):

y = c1e−x + c2e−2x + c3 + c4x + c5x2 = yc + c3 + c4x + c5x2 .

4 Let yp = A + Bx + Cx2: L {yp} = 4x2 =⇒ A = 7,B = −6,C = 2.

5 General Solution: y = c1e−x + c2e−2x + 7− 6x + 2x2 .
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yp
′ = B + 2Cx, yp

′′ = 2C
=⇒ 4x2 = L {yp} = 2C + 6Cx + 3B + 2A + 2Bx + 2Cx2

= 2Cx2 + 2(B + 3C)x + (2A + 3B + 2C)

=⇒


2C = 4

B + 3C = 0

2A + 3B + 2C = 0

=⇒ C = 2,B = −6,A = 7.
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For What Kinds of g(x) will this Work?

g(x) A 0 A : polynomial of D with

constant coe�cients

In other words, g(x) is a solution to the homogeneous linear DE with
constant coefficients A {y} = 0.
Recall:

A(D) g(x) (solution of A {y} = 0)

(D − m)k emx, xemx, . . . , xk−1emx(
D2 − 2αD + α2 + β2

)k eαx sinβx, . . . , xk−1eαx sinβx
eαx cosβx, . . . , xk−1eαx cosβx

If g(x) is a linear combination of the above functions, we can use the
method of undetermined coefficients to find a particular solution.
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g(x) and its Annihilator A

g(x) A 0 A : polynomial of D with

constant coe�cients

For k = 0, 1, . . ., and m, α, β ∈ R,

g(x) A

xk Dk+1

xkemx (D − m)k+1

xk sinβx
(
D2 + β2

)k+1

xk cosβx
(
D2 + β2

)k+1

xkeαx sinβx
(
D2 − 2αD + α2 + β2

)k+1

xkeαx cosβx
(
D2 − 2αD + α2 + β2

)k+1
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More Examples

Example
Derive the general solution of y′′ + y = x cos x − cos x.

Example
Derive the general solution of y′′ − 3y′ = 8e3x + 4 sin x.

Example
Derive the general solution of y′′ − 2y′ + y = 10e−2x cos x.

Example
Derive the general solution of y′′ − 2y′ + y = x.
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Nonhomogeneous Cauchy-Euler Equation

anxn dny
dxn + an−1xn−1 dn−1y

dxn−1
+ · · ·+ a1xdy

dx + a0y = g(x)

With the substitution x = et, convert the Cauchy-Euler Equation to a
linear DE with constant coefficients.

Note: To use the method of undetermined coefficients, we have to
make sure that g(et) takes the form in the table on the previous slide.
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Nonhomogeneous Cauchy-Euler Equation

Example
Derive the general solution of x2y′′ − xy′ + y = ln x, x > 0.

A: With x = et, we have ln x = t and

x2D2
x − xDx + 1 = Dt(Dt − 1)− Dt + 1 = (Dt − 1)

2
.

Hence the original DE becomes d2y
dt2 − 2dy

dt + y = t, and the general
solution is

y = c1et + c2tet + 2 + t = c1x + c2x ln x + 2 + ln x .
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Overview

Variation of parameters is a powerful method to find a particular solution
yp of any linear differential equation

an(x)
dny
dxn + an−1(x)

dn−1y
dxn−1

+ · · ·+ a1(x)
dy
dx + a0(x)y = g(x) (1)

given that the general solution of the corresponding homogeneous DE

an(x)
dny
dxn + an−1(x)

dn−1y
dxn−1

+ · · ·+ a1(x)
dy
dx + a0(x)y = 0 (3)

can be found.

No restrictions on g(x)! g(x) can be 1/x, csc x, ln x, etc.

This method is due to Joseph-Louis Lagrange.
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Joseph-Louis Lagrange
(born as Giuseppe Luigi Lagrancia)
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First Order DE

In Chapter 2 we use the method of integrating factors to solve

a1(x)
dy
dx + a0(x)y = g(x).

Here we use a different method. Let f1(x) be a solution of the
homogeneous linear DE (can be found using separation of variables)

a1(x)
dy
dx + a0(x)y = 0.

To find a particular solution, let yp = f1(x)u1(x) , and plug it back:

yp
′ =

df1
dx u1 + f1

du1

dx =⇒ g(x) = a1(x)f1(x)
du1

dx .

Then a u1(x) can be found by integrating g(x)
a1(x)f1(x) .
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yp
′ =

df
dxu + fdu

dx =⇒ g(x) = a1(x)yp
′ + a0(x)yp

= a1(x)
(

df
dxu + fdu

dx

)
+ a0(x)fu

= a1(x)f(x)
du
dx + u

(
a1(x)

df
dx + a0(x)f

)
= a1(x)f(x)

du
dx
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Second Order DE

a2(x)y′′ + a1(x)y′ + a0(x)y = g(x).

Let f1, f2 be two linearly independent solutions of the homogeneous
linear DE

a2(x)y′′ + a1(x)y′ + a0(x)y = 0.

To find a particular solution, let yp = u1f1 + u2f2 , and plug it back.
The remaining task is to find u1(x) and u2(x).
Observation: for i = 1, 2,

(uifi)′ = ui
′fi + uifi′ = ui

′fi + uiD {fi} ,

(uifi)′′ = ui
′′fi + 2ui

′fi′ + uifi′′ =
(
ui

′′fi + ui
′fi′

)
+ ui

′fi′ + uifi′′

= (ui
′fi)′ + ui

′fi′ + uifi′′ = D {ui
′fi}+ ui

′fi′ + uiD2 {fi}
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Find u1(x) and u2(x)

Let L := a2(x)D2 + a1(x)D + a0(x). L is a linear operator.
Hence, with yp = u1f1 + u2f2, L {yp} = L {u1f1}+ L {u2f2}.
Using the fact that for i = 1, 2,

D {uifi} = ui
′fi + uiD {fi}, D2 {uifi} = D {ui

′fi}+ ui
′fi′ + uiD2 {fi},

we have

L {uifi} = a2(x)D2 {uifi}+ a1(x)D {uifi}+ a0(x)uifi
= a2(x)

(
D {ui

′fi}+ ui
′fi′ + uiD2 {fi}

)
+ a1(x) (ui

′fi + uiD {fi}) + a0(x)uifi
= uiL {fi}+ (a2(x)D + a1(x)) {ui

′fi}+ a2(x)ui
′fi′

=����uiL {fi}+ L1 {ui
′fi}+ a2(x)ui

′fi′
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Find u1(x) and u2(x)

L := a2(x)D2 + a1(x)D + a0(x). With yp = u1f1 + u2f2, where f1 and f2
are two linearly independent solutions of L {y} = 0, we have

L {yp} = L {u1f1}+ L {u2f2}
= L1 {u1

′f1 + u2
′f2}+ a2(x)

(
u1

′f1′ + u2
′f2′

)
= g(x).

Here L1 := a2(x)D + a1(x).
If u1, u2 satisfy the following, then L {yp} = g(x):{

u1
′f1 + u2

′f2 = 0

u1
′f1′ + u2

′f2′ = g(x)
a2(x)

=⇒
{

u1
′ = W1

W
u2

′ = W2

W
,

W =

∣∣∣∣ f1 f2
f1′ f2′

∣∣∣∣ ̸= 0 : Wronskian of f1, f2, W1 =

∣∣∣∣ 0 f2
g

a2
f2′

∣∣∣∣ , W2 =

∣∣∣∣ f1 0
f1′ g

a2

∣∣∣∣
王奕翔 DE Lecture 6



Methods of Undetermined Coefficients
Variation of Parameters

Summary

n-th Order DE L {y} = g(x), L :=
∑n

i=0 ai(x)Di

Suppose {f1, f2, . . . , fn} form a fundamental set of solutions of the
homogeneous linear DE L {y} = 0.

Then a particular solution yp =
∑n

i=0 ui(x)fi(x) can be found by the
following formula regarding {u1

′, u2
′, . . . , un

′}:

ui
′ =

Wi
W , W =

∣∣∣∣∣∣∣∣∣
f1 . . . fn
f1′ · · · fn′

...
...

f1(n−1) · · · fn(n−1)

∣∣∣∣∣∣∣∣∣
Wi is W with the i-th column replaced by

[
0 0 · · · 0 g(x)

an(x)

]T
.
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A Key Fact

Fact
For k = 1, 2, . . . ,n,

Dk {uifi} = uiDk {fi}+
k−1∑
j=0

Dj
{

ui
′fi(k−1−j)

}
,

which implies

L {uifi} =
n−1∑
j=1

Lj

{
ui

′fi(j−1)
}
+ an(x)ui

′fi(n−1),

where Lj :=
∑n

l=j al(x)Dl−j.

Proof: Exercise.
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Examples

Example
Derive the general solution of 4y′′ + 36y = csc 3x.

Example
Derive the general solution of y′′ − y = 1

x .

Example
Derive the general solution of x2y′′ − 3xy′ + 3y = 2x4ex.
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Short Recap

Method of Undetermined Coefficients

Annihilator Operator

Variation of Parameters
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Self-Practice Exercises

4-4: 1, 7, 13, 27, 29, 35

4-5: 15, 21, 25, 49, 65, 69, 71

4-6: 1, 3, 5, 9, 17, 21, 25, 27

4-7: 21, 29, 35
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