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Higher-Order Differential Equations

Most of this chapter deals with linear higher-order DE (except 4.10)

In our lecture, we skip 4.10 and focus on n-th order linear differential
equations, where n > 2.

n m—1
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Methods of Solving Linear Differential Equations

We shall gradually fill up this slide as the lecture proceeds.
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Preliminary: Linear Equations

Initial-Value and Boundary-Value Problems

us Equations

Preliminary: Linear Equations
m Initial-Value and Boundary-Value Problems
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Preliminary: Linear Equations
Initial-Value and Boundary-Value Problems

Initial-Value Problem (IVP)

An n-th order initial-value problem associate with (1) takes the form:

Solve:
d™y dly dy
an(z )dx" + an-1(z )W +oee a1(x)dfx + ag(z)y = g(z) (1)
subject to:
y(10) = Yo, ¥ (20) = y1,-- -, 4" V() = Yo (2)

Here (2) is a set of initial conditions.
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Preliminary: Linear Equations

Initial-Value and Boundary-Value Problems
H us Equations
quations

Boundary-Value Problem (BVP)

Recall: in Chapter 1, we made 3 remarks on initial /boundary conditions

Remark (Initial vs. Boundary Conditions)

Initial Conditions: all conditions are at the same z = .
Boundary Conditions: conditions can be at different .

Remark (Number of Initial/Boundary Conditions)

“Usually” a n-th order ODE requires n initial/boundary conditions to
specify an unique solution.

Remark (Order of the derivatives in the conditions

Initial /boundary conditions can be the value or the function of 0-th to
(n — 1)-th order derivatives, where 7 is the order of the ODE.
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Preliminary: Linear Equations
Initial-Value and Boundary-Value Problems

Boundary-Value Problem (BVP)

Example (Second-Order ODE)
Consider the following second-order ODE

@Y + 0@ + @)y = ofa) )

IVP: solve (3) s.t. y(z0) = 4o, ¥ (20) = 1.
m BVP: solve ( ) s.t. y(a) = vo, ( ) =y1.

m BVP: solve (3) s.t. /(a) = yo, y(b) = 1.
= BVP: solve ( ary(a) + 511‘/((1)
asy(b) + B29/ (b) =
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Preliminary: Linear Equations

Initial-Value and Boundary-Value Problems

Solve
dn d’nfl d
an(2) 2 + a1 (2) g -+ (@) 2+ a0y = g() (1)
subject to
y(20) = y0, ¥(20) =1, .-, ¥ (20) = o1 (2)

Theorem

If an(2), an—1(2), ..., a0(x) and g(z) are all continuous on an interval I,
an(x) # 0 is not a zero function on I, and the initial point zo € I, then
the above IVP has a unique solution in I.
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Preliminary: Linear Equations

Initial-Value and Boundary-Value Problems

tapa (@)Y

an(T)—— dn—1

dn

subject to

y(10) = 0, ¥ () = 1., "D (20) = Yo (2)

Throughout this lecture, we assume that on some common interval 1,
m a,(2), an—1(2),...,a0(z) and g(x) are all continuous
m a,(z) is not a zero function, that is, 3z € I such that a,(z) # 0.
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Preliminary: Linear Equations

Existence and Uniqueness of the Solution to an BVP

Note: Unlike an IVP, even the n-th order ODE (1) satisfies the
conditions in the previous theorem, a BVP corresponding to (1) may
have many, one, or no solutions.

Example

d?y
Consider the 2nd-order ODE 2 + y = 0, whose general solution takes
the form y = ¢; cosz+ cosinz. Find the solution(s) to an BVP subject
to the following boundary conditions respectively
my(0)=0,927)=0 Plugitin = ¢, =0,¢4 =0
= (9 is arbitrary = infinitely many solutions!
m y0)=0,y9(n/2) =0 Plugitin = ¢, =0,c2 =0
=—> ¢; = ¢ =0 == a unique solution!
my0)=0,927)=1 Plugitin = ¢;=0,¢0 =1
—> contradiction = no solutions!
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Preliminary: Linear Equations

Initial-Value and Boundary-Value Problems
Homogeneous Equations

Nonho ous Equations

Preliminary: Linear Equations

m Homogeneous Equations
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Preliminary: Linear Equations
Boundary-Value Problems
mogeneous Equatil
O ua

Homogeneous Equation

Linear n-th order ODE takes the form:

@ T4 @ T @Yt w@y=o@) (1)

dx

Homogeneous Equation: g(z) in (1) is a zero function:

@Y 0y (@Y b @Y s @y =0 @)

dan dazn—1 dz

Nonhomogeneous Equation: ¢(z) in (1) is not a zero function. Its
associated homogeneous equation (4) is the one with the same
coefficients except that g(z) is a zero function

Later in the lecture we will see, when solving a nonhomogeneous
equation, we must first solve its associated homogeneous equation (4).
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Preliminary: Linear Equations

a oundary-Value Problems
mogeneous Equations

Differential Operators

We introduce a differential operator D, which simply represent the
operation of taking an ordinary differentiation:

Differential Operator

For a function y = f(z), the differential operator D transforms the
dy
El.

function f(z) to its first-order derivative: Dy :=

Higher-order derivatives can be represented compactly with D as well:

de d™y
—~2 = D(Dy) =: D? —2 = p"
oz = PDy) Y g y
i nfly d n ;
on(8) g+ 01 (8) gy (o F a0y = ey
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Preliminary: Linear Equations

Differential Operators and Linear Differential Equations

Note: Polynomials of differential operators are differential operators.

Let L:= )", a;(z)D" be an n-th order differential operator.

Then we can compactly represent the linear differential equation (1) and
the homogeneous linear DE (4) as

L(y) = g(z), L(y)=0

respectively.
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Preliminary: Linear Equations

oblems

Linearity and Superposition Principle

L:=3%",a;z)D"is a linear operator: for two functions fi(z), f2(),

L(Aifi + Aafe) = M L(f1) + A2 L(f2).

For any homogeneous linear equation (4), that is, L(y) = 0, we obtain
the following superposition principle.

Theorem (Superposition Principle: Homogeneous Equations)

Let fi, fa, - .., fu be solutions to the homogeneous n-th order linear
equation L(y) = 0 on an interval I, that is,

@Yt ana(@) T Yt o)

dy

dz

then the linear combination f= Zle Aifi is also a solution to (4).
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Preliminary: Linear Equations

Initial-
mogeneous Eq

Linear Dependence and Independence of Functions

In Linear Algebra, we learned that one can view the collection of all
functions defined on a common interval as a vector space, where linear
dependence and independence can be defined respectively.

Definition (Linear Dependence and Independence)

A set of functions {fi (), fo(x), ..., f.(2)} are linearly dependent on an
interval Iif 9 ¢, co, ..., c, not all zero such that

cfi(z) + cafo() + -+ cnfu(z) =0, V€

that is, the linear combination is a zero function. If the set of functions is
not linearly dependent, it is linearly independent.

Example:
m fi(7) =sinz, fo(z) = cos?x, I = (—m,7): Linearly dependent
m fi(z) =1, fo(z) = 7, f5(x) = 23, I = R: Linearly independent.
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Preliminary: Linear Equations

dr dn1 d
@) et a@) T Fa@y =0,  (4)

Given n solutions {fi (), fa(z), ..., fn(2)}, we would like to test if they
are independent or not.

Of course we can always go back to the definition but it is clumsy...

Recall: In Linear Algebra, to test if n vectors {vi,va,...,v,} are
linearly independent, we can compute the determinant of the matrix

V::[vl Vo oc-- Vn].

If det' V =0, they are linearly dependent; if det V £ 0, they are linearly
independent.
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Preliminary: Linear Equations
oblems

Criterion of Linearly Independent Solutions

Consider the homogeneous linear n-th order DE

dny dn—ly dy

—-J —J ... - = 4

(@) T () ot e () L+ a(y=0, (4

To test the linear independence of n solutions {fi(z), f2(z), ..., f.(2)} to
(4), we can use the following theorem.

Theorem

Let {fi(z), fo(x), ..., f.(z)} be n solutions to the homogeneous linear
n-th order DE (4) on an interval 1. They are linearly independent on I

f1 Bp) o fn
f1 f2’ fn/
W(fhf%"'?fﬂ) = : 7é0
f (n 1) f (n 1) . fn('ﬂ:—l)
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Preliminary: Linear Equations
Initial-Value and Boundary-Value Problems
Homogeneous Equations

Fundamental Set of Solutions

We are interested in describing the solution space, that is, the subspace
spanned by the solutions to the homogeneous linear n-th order DE

dar m—1

an(2) 7 + a1 (2)

Y

d
et a@ ) Fa@y=0. (@)

dz
How?

Recall: In Linear Algebra, we describe a subspace by its basis: any vector
in the subspace can be represented by a linear combination of the
elements in the basis, and these elements are linearly independent.

Similar things can be done here.

Definition (Fundamental Set of Solutions)

Any set {fi(z), a(z),...,fn(2)} of n linearly independent solutions to the
homogeneous linear n-th order DE (4) on an interval [is called a
fundamental set of solutions.
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Preliminary: Linear Equations

Initial-
mogeneous Eq

General Solutions to Homogeneous Linear DE

General solution to an n-th order ODE:
An n-parameter family of solutions that can contains all solutions.

Theorem

Let {fi(z), f2(x), ..., f.(z)} be a fundamental set of solutions to the
homogeneous linear n-th order DE (4) on an interval I. Then the
general solution to (4) is

y = c1fi(z) + cafo(z) + - - + cnful),

where {c; | i=1,2,...,n} are arbitrary constants.
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Preliminary: Linear Equations
Initial-Value and Boundary-Value Problems
Homogeneous Equations
Nonk s Equations

Examples

Example

Consider the DE
Py

a2 =Y
Check that both y = €* and y = e~ * are solutions to the equation.
Derive the general solution to the DE.

A: The linear DE is homogeneous.

2 2
We see that 4, e? = L% = ¢% and L% = & — ¢% = ¢ Hence
dx . dz dx _dz
they are both solutions to the homogeneous linear second-order DE.
Since
e* e~ T
er _e—m:_1_1:_27é0a

the two solutions are linearly independent. Hence, the general solution

can be written as ‘ y=ce*+ce’ " c1,00 €R ‘
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Preliminary: Linear Equations

Preliminary: Linear Equations

m Nonhomogeneous Equations
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Preliminary: Linear Equations
\lue Problems

Nonhomogeneous Equations

General Solutions to Nonhomogeneous Linear DE

Nonhomogeneous linear n-th order ODE takes the form:

an(x)T + anfl(x)T +---+ al(x)@

o+ ao(z)y = g(z) (1)

n

or equivalently, L(y) = g(z), L:= Z a;(z) D"
=0

where g(x) is not a zero function.

How to find its general solution?

Idea:
m Find the general solution y. to the homogeneous equation L(y) =
m Find a solution y, to the nonhomogeneous equation L(y) = g(a:)

m The general solution y = y. + yp.
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Preliminary: Linear Equations
ry-Value Problem:

Nonhomogeneous Equations

General Solutions to Nonhomogeneous Linear DE

Nonhomogeneous :
dny dnfly dy
an(z )d"+ no1(x )W+-~~+a1(:ﬂ)%+ao(1¢)y=g(x) (1)
Homogeneous :
4" d"*l d
a()ngr an—1(z )W_?+“'+al($)£+%(x}y:0 (4)

Let y, be any particular solution to the nonhomogeneous linear n-th
order DE (1) on an interval I, and y. be the general solution to the
associated homogeneous linear n-th order DE (4) on I, then the general
solution to (1) is

Y= Ye + Yp-
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Preliminary: Linear Equations
ry-Value Problems

Nonhomogeneous Equations

Proof of the Theorem

Proof: Let y = f(z) be any solution to the nonhomogeneous linear n-th
order DE (1), that is, L(y) = g(x).

Now, since both y, and f are solutions to L(y) = g(z), we have

0= L(f) = L(yp) = L(f — p)-
Hence, (f— yp) is a solution to the homogeneous linear n-th order DE (4).

Therefore, any solution to (1) can be represented by the sum of a
solution to (4) and the particular solution y,,.
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Preliminary: Linear Equations
In dary-Value Problems
Hc ons

Nonhomogeneous Equations

Examples

Consider the DE P
y_
P y+9.

Derive the general solution to the DE.

A: The linear DE is nonhomogeneous. The associated homogeneous

d?
equation 4y _ y has the following general solution:

dz?
y=cre"+coe " c1,c0 €ER.
There is an obvious particular solution y = —9.

Hence, the general solution can be written as

y=ce"+ce =9 ¢, €R
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Preliminary: Linear Equations
ry-Value Problems

Nonhomogeneous Equations

Superposition Principle for Nonhomogeneous Equations

For nonhomogeneous linear differential equations, we have the following
superposition principle.

Theorem (Superposition Principle: Nonhomogeneous Equations)

Let f;(x) be a particular solution to the nonhomogeneous n-th order
linear equation L(y) = g;(z) on an interval I, for i=1,2,..., k. Then the
linear combination f= Zle Aif; is a particular solution to the
nonhomogeneous n-th order linear equation

k
L(y) = Z Aigi(7)-
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Reduction of Order

Reduction of Order
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Reduction of Order

Finding a New Solution

Recall: the fundamental set of solutions of the homogeneous linear n-th
order DE

d"y dan! d
g (@) @ ay=0 ()

dan—1 dz

an(2)——
contains n linearly independent solutions.
Now suppose we already have k (1 < k < n) linearly independent

solutions {fi, fa, ..., fx}. How do we find another one f11 so that the
(k+ 1) solutions {f1, f2, ..., fit+1} remain linearly independent?
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Reduction of Order

Second Order Equation

We begin with the simplest case: n =2 and k= 1. Consider the
following homogeneous linear second order DE
&y

da?

d
+ al(x)—y + ap(z)y = 0.

a2(2) dz

Suppose we already have a solution y = fi(z). How do we find another
solution y = fo(z), such that f; and f; are linearly independent?

Idea: Let ‘fQ(x) = u(x)f1(x) ‘ and make use of the fact that

a2($)%f1 + a1(x) (%ﬁ +ag(z)fy =0

to reduce the second order DE into a first order DE of u !
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Reduction of Order

Example

Example

fi(z) = 2% is a solution of the second order DE 2° f — 3z +4y=0.
Find the general solution of the above DE for z > 0.

A: We need to find a fundamental set of solutions, which contains two
linearly independent solutions. Now we have only one. To find a second
one, let us set substitute y = fiu = 22u:

j— = 2zu + 22/, Zixz (2u+ 2zu) + (220 + PPu”) = 2u+ 4o’ + 2P’
T

&? dy
= zzdg 3z df+4y—212u+4xu + " — 622u— 3% + 42Pu
=224 + 24 =0
= v+a/ =0 (Setv:=1)
1
— one such v= - — one such u=Inuz.
x
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Reduction of Order

Example

Example

1(x) = is a solution of the second order %’—3:10@—1—41/:0.
f 2 | f th d order DE 222 dy

Find the general solution of the above DE for z > 0.

We find a second solution y = fo(z) = 22 Inz on z € (0,00), and the
general solution is

‘y: o + 621211133‘.

Question:
How about the more complicated case, when n > 2 and k> 17
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Second Order Equati
n-th Order Equati

Homogeneous Linear Equations with Constant Coefficients

Homogeneous Linear Equations with Constant Coefficients
m Second Order Equations
m n-th Order Equations
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d Order Equations
der Equations

Homogeneous Linear Equations with Constant Coefficients

In this section we focus on solving (that is, giving general solutions to)
Homogeneous Linear Equations with Constant Coefficients

dny dnfly dy B
o+ o1 ooy e e a0y =0, (5)

which is a homogeneous linear DE with constant real coefficients.
In the textbook, it tells us (without much reasoning) what the form of
the general solution should look like, and then we analyze the particular

structure of a give equation to derive the exact form.

In this lecture, we try to provide more reasoning, so that you get a clearer
big picture.
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Second Order Equations
n-th Order Equ

Homogeneous Linear Equations with Constant Coefficients

Homogeneous Linear Equations with Constant Coefficients
m Second Order Equations
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Homogeneous Linear Equations with Constant Coefficients

Second Order Equation

We begin with some examples of second order equations.

Example

Find the general solution of % = 3% +2y=0.

A: Let us use the differential operator to rewrite this DE as follows:
(D> —3D+2)y=0.

Note that L:= D?> —3D+2= (D—1)(D—2).

We can view the second-order differential operator L as a concatenation
of two first-order differential operators: (D — 1) and (D — 2)!
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Homogeneous Linear Equations with Constant Coefficients

y — L:=D?>—-3D+2 (—>

_________________________

_________________________

ERM DE Lecture 5

Second Order Equations
n-th Order Equations

d2y dy

CF 3% 4
dx? dx +2y
d?y L dy
SV 3% 4o
dz2  Cdr Y
*y dy

S 3% 4o
dz? dx ey



Second Order Equations

Homogeneous Linear Equations with Constant Coefficients N dar Eetiatione
n-th Order Equations

Second Order Equation

Example

d? d
Find the general solution of o 3_y + 2y =0.
dr? dzx

A: We have found the equivalent forms of the above equation
Ly=0 = (D-2{(D-yb=0 = (D-1){(D-2y}=0
where L:= D?> —3D+2= (D —1)(D - 2).

Observation:
m If i is a solution to (D — 1)y =0, it is also a solution to Ly = 0.
A solution: f; = €*.
m If f5 is a solution to (D —2)y =0, it is also a solution to Ly = 0.
A solution: fo = €2*.
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Homogeneous Linear Equations with Constant Coefficients

Second Order Equation

Example

Find the general solution of dQ = 3%/ +2y=0.

A: So far we have found two solutions to (D? — 3D + 2)y = 0:

fi=¢", correspondsto (D—1)y=0
fo = €%, corresponds to (D — 2)y = 0.

)

f1 and f5 are linearly independent (Exercise: check!) and hence {fi, f2}
is a fundamental set of solutions.

= The general solution:

2
y=alitah=lac+ad] aoek
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Homogeneous Linear Equations with Constant Coefficients

?y dy .
How we solve -5 — 322 + 2y =0

Use a polynomial of D,
L:=p(D)=D*—-3D+2,

to rewrite the DE into the form Ly = 0.
Factor p(D) = (D —1)(D — 2).

Observe that a solution to either (D — 1)y =0 or (D — 2)y =0 will
be a solution to Ly = 0.

Find two solutions f; = e and f, = €%, corresponding to
(D—1)y=0 and (D — 2)y = 0 respectively.

Check that f; and f; are linearly independent, and hence they form a
fundamental set of solutions.

@ Finally we get the general solution ’ y=c1e*+ cpe*®|.
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Second Order

Homogeneous Linear Equations with Constant Coefficients

p(D) = aD? + a1 D + ay Has Two Distinct Real Roots

For a homogeneous linear second order DE with constant coefficients
Ly =0, where (WLOG we assume ay = 1)

L::p(D):a2D2+a1D+a0:D2+a1D+ ap :

If p(D) has two distinct real roots my and ms, then we can use the above
mentioned method to get a general solution

y= c1e™% + cye™.

What if p(D) has
m Two repeated real roots, or

m Two conjugate complex roots?
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Homogeneous Linear Equations with Constant Coefficients

p(D) Has Two Conjugate Complex Roots o + i3

Suppose p(D) has two conjugate complex roots
m1:a+iﬂ7 m2:a_iﬁ7 Oé,,BER.

If we slightly extend our discussion to complex-valued DE, it is not hard
to see that the previous method works again and we get a general
(complex-valued) solution

y= C1e™* 4+ Cye™® (4, Cy € C.
Still we need to get back to the real domain ...

So, let's do some further manipulation by using the fact that

¢? = cos + isin 6.
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Homogeneous Linear Equations with Constant Coefficients

p(D) Has Two Conjugate Complex Roots o + i3

The general solution to Ly = 0 where L = p(D) is

y= Cl e(a+iﬁ)ac + 02 e(a—iﬂ)m — Cl eaxei,ﬁx + 02 eaxe—iﬂ.’t
= (1" (cos fz+ isin fz) + Cre*® (cos Bz — isin fx)
= (C1 + Cy) e*Fcos P+ i (Ch — Co) e*"sin Sz

To get a real-valued solution, there are two choices:

m Pick C1 + G, =1,C) — Cy =0: we get y = fi(z) = e*®cos Sz

m Pick C1 + G5 =0,y — Cy = —i: we get y = fo(z) = e**sin fu.
Since fi; and f; are linearly independent, the general real-valued solution
to Ly =0 where L = p(D) is

‘y: c1€%F cos B+ czeazsinﬂx‘, c1, 00 € R,
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From the previous discussion, we see that y = fi(z) = €™ is a solution
to (D — m)y = 0 and hence it is also a solution to (D — m)?y = 0.

Question:
How to find another solution y = fo(z) so that f; and fo are linearly
independent?
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Homogeneous Linear Equations with Constant Coefficients Sesantl Qi

p(D) Has Two Repeated Real Roots m

fi(z) = €™ is a solution to (D — m)?y = 0 because:

0

fi(z)=€em" —»|D —m D—mp— 0

\ 4

Why not find some fo(z) such that after the first block, the

outcome is fi(z) = e™* 7

em®
fo(x) =7 —»|D —m »D—mt—» 0
We only need to solve a first order linear DE!
1
—_—
—mx —mx max max
e T) = e e dr = ) = ze,
J2(z) e J2(z)
integrating factor integrating factor
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Homogeneous Linear Equations with Constant Coefficients

p(D) Has Two Repeated Real Roots m

We have found two solutions to (D — m)?y = 0:
fl (Z’) = emx7 fZ(x) = mema:7

and they are linearly independent (check!).
Hence the general solution to p(D)y =0 is

y=c1e™ + coxe™ =| (c1 + cox) ™" |.
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Homogeneous Linear Equations with Constant Coefficients

Summary: Second Order Equation as dQ;’ + Y

—|—CLO—0

(I X

Define the following (quadratic) polynomial

p(D) = asD? + a1 D + ap.

Roots of p(D) General Solution

Distinct real roots my, me € R y=c1e"% 4+ cpe™®
Conjugate complex roots a + i3, a, 8 € Ry = ¢1e*sin Bz + c2e*” cos Bz

Repeated real roots m € R y=(c1 + caz)e™
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. . - . Second Order Equatiol
Homogeneous Linear Equations with Constant Coefficients >econd Urder tquations

n-th Order Equations

Homogeneous Linear Equations with Constant Coefficients

m n-th Order Equations
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n-th Order Equation a, 2 + - + a; %

dz™

Second Order Ec

. . - - ns
Homogeneous Linear Equations with Constant Coefficients n-th Order Equatlons

Y+ ay=0

(l 7

Define

p(D) := a, D" + a1 D" P4 @D+ oag = Z a; D

=0
and rewrite the n-th order equation as | p(D)y =0 |.

p(D): a polynomial of order n with real-valued coefficients.
m p(D) has n roots in the complex domain (counting the multiplicity)
m Complex roots of p(D) must appear in conjugate pairs.

Example: p(D) = (D —1)3(D — 2)}(D? — 2D + 2)? is a polynomial of
order 8, and has the following roots

1 multiplicity 3
2 multiplicity 1
1+ multiplicity 2 for each.
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Second Order Equations

Homogeneous Linear Equations with Constant Coefficients -t Gielay Epedns

Finding the General Solution of p(D)y =0

High-level Idea: let p(D) have ny distinct real roots {m; | i € [1 : n1]},
and ny distinct pairs of conjugate complex roots {a; £ i3; | j € [1 : nol}.

Factorize p(D) = Z a;: D’ as
=0

pi(D) 4(D)

H (D2 —2a;D + cu]2 —N—ﬂ]?)lj

i=1 j=1

= an ﬁpi(D) ﬁ ¢;(D), where n = i ki +2 i lj.
i=1 j=1 i=1 =1

p(D)

]
g
—
S
|
3

For each i € [1 : m1], find k; linearly independent solutions of p;(D)y = 0.
For each j € [1: ng], find 2; linearly independent solutions of ¢;(D)y =0
Combine them all to get n linearly independent solutions of p(D)y = 0.

ERM DE Lecture 5



P " " " Second Order Equatiol
Homogeneous Linear Equations with Constant Coefficients >econd Urder tquations

n-th Order Equations

p(D) have n; distinct real roots {m; | i € [1: n1]}, and ny distinct pairs of
conjugate complex roots {«; £ i8; | j € [1: nal}.

Note: The solutions of different blocks in the above diagram will be
linearly independent.

ERM DE Lecture 5



Second Order Equations

Homogeneous Linear Equations with Constant Coefficients -t Gielay Epedns

Solve (D — m)* y =0

k= 2: two linearly independent solutions f;(z) = ¢™® and fo(z) = xe

k= 3: Look at the diagram below:

fa(z)=7 — D—m > (D—m)?—> 0

We only need to solve a first order linear DE!

x
e M z) = e M ze™ dr — ) = 22 €™ /2.
e fi(w) & f3(2) /
integrating factor integrating factor

We can drop the factor of 2 and pick f3(z) = 7%e™.
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Second Order Equations

Homogeneous Linear Equations with Constant Coefficients -t Gielay Epedns

Solve (D — m)* y =0

mz— 1 ema:

fir1(x)=7— D—-m > (D—m)i —» 0

We can repeat this procedure and find £ linearly independent solutions:

fl(:v) = ema:’ f2($) = xemmv fg(.ﬁL’) = ‘/‘UQemIv cee fk(x) = Z.k—lemw .
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Second Order Ec

. . - - ns
Homogeneous Linear Equations with Constant Coefficients n-th Order Equatlons

Solve (D2 — 20D+ o + /32)1 y=20

D? —2aD+ o 4 B2 = (D — m)(D — m), where m = a + if € C.
- (D?—2aD+a®+ %) = (D—m){(D—m)'
We can repeat the previous discussion and get 21 linearly independent
solutions (in C):
Fi(z) = €™, Fy(z) = ze™®,..., Fi(z) = al71em®
Fi(z) = €™, Fy(z) = xe™, ..., Fy(z) =2 1e™

For each je [1 use F; and f‘j to generate two real-valued solutions:

1,
foj—1(z) = %F(x) + %F’j(m) = Re{Fj(z)} = 2/ e*" cos Bz

foj(z) = F( z) + %Fj(x) =Im {Fj(2)} = 2/ e*“sin Bz
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Second Order Equations

Homogeneous Linear Equations with Constant Coefficients -t Gielay Epedns

Solve (D2 — 20D+ o + /32)1 y=20

Here are 2/ linearly independent real-valued solutions:

{mj_le”cosﬁx, P e sinfr | j= 172,...,1}
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Second Order Ec
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Homogeneous Linear Equations with Constant Coefficients n-th Order Equatlons

Examples

Example
Solve the IVP 4y + 4y + 17y =0, y(0) = -1, ¢/ (0) =

A: Write down the associated polynomial
p(D) =4D* +4D +17 = (2D + 1)? + 16.

p(D) has two roots: —3 + 2i. Hence according to the previous
discussion, the general solutlon is y = c1fi(x) + cofo(z), where

1 1
filz) = e 2%cos 2z, fo(z) = e 2%sin2z.
Plug in the initial conditions, we get

{lel(o) + c2f2(0) = —1

= c=-1l,co=—
lell(O) + CQfQI(O) =2 ! 2
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Second Order Ec

. . - - ns
Homogeneous Linear Equations with Constant Coefficients n-th Order Equatlons

Examples

Solve the IVP ¢/ + /' — 2y =0, y(0) =1, ¥/(0) = 2, ¥’(0) =
A: Write down the associated polynomial
p(D)=D*+D*—-2=(D—1)(D*+2D+2).

p(D) has three roots: 1, —1 4 i. Hence according to the previous
discussion, the general solution is y = c1f1(z) + cafo(x) + c3fs(x), where

file) =¢€", fo(zx) =e Fcosz, f3(z)=e “sinuz.
Plug in the initial conditions, we get

c1fi(0) + c2£2(0) + ¢3f3(0) = 1
lell(O) + CQle(O) + Cgfgl(()) =2 — (1 = 2, Co = —1, C3 = —1.
cthi”(0) + 2" (0) + e3fs”(0) = 4
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Cauchy-Euler Equation

Cauchy-Euler Equation
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Cauchy-Euler Equation

Homogeneous Linear DE with Variable Coefficients

In general, a homogeneous linear differential equation

@ Tt aa@ T b @)Yt ay=0  (4)

may have variable coefficients, that is, a;(z) is not a constant function,
fori=0,1,...,n

If the coefficients are not constants, it is usually hard to find closed-form
solutions. Instead, we shall see in Chapter 6 that the best we expect is to

find a solution in the form of infinite series.

There is one exception: when

ai(z) = ag’, Vi=0,1,...,n.
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Cauchy-Euler Equation

Cauchy-Euler Equation

Leonhard Euler Augustin-Louis Cauchy
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Cauchy-Euler Equation

Cauchy-Euler Equation

Definition (Cauchy-Euler Equation)

A linear differential equation of the form

d"y B dn—ly

d
+- 4w + agy = g(a)
is called a Cauchy-Euler equation.

We first focus on finding the general solution of a homogeneous
Cauchy-Euler equation (see below) in this lecture. In the next lecture we
discuss how to find a particular solution of a nonhomogeneous
Cauchy-Euler equation.

m m—1

"y
n n—1
n dzn + 17 dzn—1

d
+~-~+a1x—y—|—aoy:0
dx
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Cauchy-Euler Equation

Change of Variable

Goal: Find the general solution of a homogeneous Cauchy-Euler equation
on the interval (0, c0).

m m—1

"y
n n—1
n dz™ +On-1® dan—1

d
+~-~+a1x—y—|—aoy:0
dz

Idea: Convert a Cauchy-Euler equation into a linear equation with

- N dz
constant coefficients, by substituting = i el =z|.
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Cauchy-Euler Equation

Observation

With the substitution = %: et =z
dy _dedy _ dy o dy _dy
dt - dtdr Cde O Ca T oa TP
dr d dy dy Py Py
Diy=—— 42 ) =Dy+ P —2
0¥ dtda:(xd> "”(d TR W e
Py
?—= = Dy(Dy —
dr d Py Py @y
DD, —1)y= — — 20— + 2% ——
(D= Dy = (ﬁdﬁ> I( T2 T d:z3)
d3y
=2Dy(Dy — 1
i )y+a° 0B
= 3Ly _ Dy(Dy — 1)(D; — 2)
T i3 t\ Lt t Y
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Cauchy-Euler Equation

Conversion

With z = €', 2*D¥ = Dy(D; — 1) -+ - (Dy — k+ 1), for all integer k > 1.
Proof: For k=1, the fact is true. Suppose the fact holds for k= h > 1.
Then we have "D" y = Dy(D; — 1)+ (D; — h+1) y

Take the derivative with respect to = on both sides, we get

(hxh*1D2 + thZH) y= jt

— (h:phD’; + xh“Dﬁ“) y=D*(Dy—1)---(Di— h+ 1)y

D}(Dy—1)--- (Dt — h+ 1)y

— (th(th1)---(Dt7h+1)+xh+1Dﬁ+1>y:D?(thl)---(Dt7h+1)y
= TIDM = DDy — 1) (Dy — h+1)(Dy — h)

Hence we prove the fact by induction.
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Cauchy-Euler Equation

Convert into a Equation with Constant Coefficients

Based on the above fact, with the substitution , we convert a

Cauchy-Euler Equation

nd’ dnt d
dij+an 12" 1dmn_31/+~~-—|—a1:rd—i—|—aoy20

into a linear differential equation (with respect to t) with constant
coefficients

Lt y:O, Lt :ZalDt(Dt—l)(Dt—z—&— 1)
=0

Mapping of Solutions: with z = ¢,

t Domain  tFem t*Fet cos Bt tFe*t sin Bt

zDomain  (In2)*2m  (Inz)* 2% cos (BInz) (Inz)" 22 sin (B1Inz)
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Cauchy-Euler Equation

Solutions for z < 0

So far we give the general solution of the Cauchy-Euler equation for
z € (0,00). How about the solution for z < 07

Idea: Change of variable — substitute z = —u, and solve the new
Cauchy-Euler Equation for u > 0.

Conversion:
DY = (—1)"DF

T u*
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Summary

Summary

EEM DE Lecture 5



Summary

Short Recap

m Initial-Value Problems (IVP) vs. Boundary-Value Problems (BVP)
m Homogeneous vs Nonhomogeneous Linear ODE
m Fundamental set of solutions and General Solutions

Linearity and Superposition Principle

m General Solution of Homogeneous Linear Equation with Constant
Coefficients: Usage of Polynomial of Differential Operator D

m General Solution of Homogeneous Cauchy-Euler Equation:
Substitution z = e’ and "Dk = Hle (Dy—i+1)
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Summary

Self-Practice Exercises

4-1: 1,9, 13,17, 21, 25, 35
4-2: 1, 3,13,17, 19
4-3: 3, 5,17, 21, 25, 31, 37, 51, 57

4-7: 1,5, 15, 25, 31, 41
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