Chapter 4：Higher－Order Differential Equations－ Part 1

王奕翔

Department of Electrical Engineering
National Taiwan University
ihwang＠ntu．edu．tw
October 9， 2013

Higher－Order Differential Equations

Most of this chapter deals with linear higher－order DE（except 4．10）
In our lecture，we skip 4.10 and focus on n－th order linear differential equations，where $n \geq 2$ ．

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \tag{1}
\end{equation*}
$$

Methods of Solving Linear Differential Equations

We shall gradually fill up this slide as the lecture proceeds．

1 Preliminary：Linear Equations
－Initial－Value and Boundary－Value Problems
－Homogeneous Equations
－Nonhomogeneous Equations

2 Reduction of Order

3 Homogeneous Linear Equations with Constant Coefficients －Second Order Equations
－n－th Order Equations

4 Summary

Initial－Value Problem（IVP）

An n－th order initial－value problem associate with（1）takes the form：

Solve：

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \tag{1}
\end{equation*}
$$

subject to：

$$
\begin{equation*}
y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}, \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1} \tag{2}
\end{equation*}
$$

Here（2）is a set of initial conditions．

Boundary－Value Problem（BVP）

Recall：in Chapter 1，we made 3 remarks on initial／boundary conditions

Remark（Initial vs．Boundary Conditions）

Initial Conditions：all conditions are at the same $x=x_{0}$ ． Boundary Conditions：conditions can be at different x ．

Remark（Number of Initial／Boundary Conditions）

＂Usually＂a n－th order ODE requires n initial／boundary conditions to specify an unique solution．

Remark（Order of the derivatives in the conditions

Initial／boundary conditions can be the value or the function of 0 －th to （ $n-1$ ）－th order derivatives，where n is the order of the ODE．

Boundary－Value Problem（BVP）

Example（Second－Order ODE）

Consider the following second－order ODE

$$
\begin{equation*}
a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \tag{3}
\end{equation*}
$$

■ IVP：solve（3）s．t．$y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}$ ．
■ BVP：solve（3）s．t．$y(a)=y_{0}, y(b)=y_{1}$ ．
■ BVP：solve（3）s．t．$y^{\prime}(a)=y_{0}, y(b)=y_{1}$ ．
■ BVP：solve（3）s．t．$\left\{\begin{array}{l}\alpha_{1} y(a)+\beta_{1} y^{\prime}(a)=\gamma_{1} \\ \alpha_{2} y(b)+\beta_{2} y^{\prime}(b)=\gamma_{2}\end{array}\right.$

Existence and Uniqueness of the Solution to an IVP

Solve

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \tag{1}
\end{equation*}
$$

subject to

$$
\begin{equation*}
y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}, \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1} \tag{2}
\end{equation*}
$$

Theorem

If $a_{n}(x), a_{n-1}(x), \ldots, a_{0}(x)$ and $g(x)$ are all continuous on an interval I ， $a_{n}(x) \neq 0$ is not a zero function on I ，and the initial point $x_{0} \in I$ ，then the above IVP has a unique solution in I．

Existence and Uniqueness of the Solution to an IVP

Solve

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \tag{1}
\end{equation*}
$$

subject to

$$
\begin{equation*}
y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}, \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1} \tag{2}
\end{equation*}
$$

Throughout this lecture，we assume that on some common interval I ，
－$a_{n}(x), a_{n-1}(x), \ldots, a_{0}(x)$ and $g(x)$ are all continuous
－$a_{n}(x)$ is not a zero function，that is，$\exists x \in I$ such that $a_{n}(x) \neq 0$ ．

Existence and Uniqueness of the Solution to an BVP

Note：Unlike an IVP，even the n－th order ODE（1）satisfies the conditions in the previous theorem，a BVP corresponding to（1）may have many，one，or no solutions．

Example

Consider the 2nd－order ODE $\frac{d^{2} y}{d x^{2}}+y=0$ ，whose general solution takes the form $y=c_{1} \cos x+c_{2} \sin x$ ．Find the solution（s）to an BVP subject to the following boundary conditions respectively

■ $y(0)=0, y(2 \pi)=0 \quad$ Plug it in $\Longrightarrow c_{1}=0, c_{1}=0$
$\Longrightarrow c_{2}$ is arbitrary \Longrightarrow infinitely many solutions！
■ $y(0)=0, y(\pi / 2)=0 \quad$ Plug it in $\Longrightarrow c_{1}=0, c_{2}=0$
$\Longrightarrow c_{1}=c_{2}=0 \Longrightarrow$ a unique solution！
■ $y(0)=0, y(2 \pi)=1 \quad$ Plug it in $\Longrightarrow c_{1}=0, c_{1}=1$
\Longrightarrow contradiction \Longrightarrow no solutions！

1 Preliminary：Linear Equations －Initial－Value and Boundary－Value Problems
－Homogeneous Equations
－Nonhomogeneous Equations

2 Reduction of Order

3 Homogeneous Linear Equations with Constant Coefficients －Second Order Equations
－n－th Order Equations

4 Summary

Homogeneous Equation

Linear n－th order ODE takes the form：

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \tag{1}
\end{equation*}
$$

Homogeneous Equation：$g(x)$ in（1）is a zero function：

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0 \tag{4}
\end{equation*}
$$

Nonhomogeneous Equation：$g(x)$ in（1）is not a zero function．Its associated homogeneous equation（4）is the one with the same coefficients except that $g(x)$ is a zero function

Later in the lecture we will see，when solving a nonhomogeneous equation，we must first solve its associated homogeneous equation（4）．

Differential Operators

We introduce a differential operator D ，which simply represent the operation of taking an ordinary differentiation：

Differential Operator

For a function $y=f(x)$ ，the differential operator D transforms the function $f(x)$ to its first－order derivative：$D y:=\frac{d y}{d x}$ ．

Higher－order derivatives can be represented compactly with D as well：
$\frac{d^{2} y}{d x^{2}}=D(D y)=: D^{2} y, \quad \frac{d^{n} y}{d x^{n}}=: D^{n} y$
$a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=:\left\{\sum_{i=0}^{n} a_{i}(x) D^{i}\right\} y$

Differential Operators and Linear Differential Equations

Note：Polynomials of differential operators are differential operators．
Let $L:=\sum_{i=0}^{n} a_{i}(x) D^{i}$ be an n－th order differential operator．
Then we can compactly represent the linear differential equation（1）and the homogeneous linear DE（4）as

$$
L(y)=g(x), \quad L(y)=0
$$

respectively．

Linearity and Superposition Principle

$L:=\sum_{i=0}^{n} a_{i}(x) D^{i}$ is a linear operator：for two functions $f_{1}(x), f_{2}(x)$ ，

$$
L\left(\lambda_{1} f_{1}+\lambda_{2} f_{2}\right)=\lambda_{1} L\left(f_{1}\right)+\lambda_{2} L\left(f_{2}\right)
$$

For any homogeneous linear equation（4），that is，$L(y)=0$ ，we obtain the following superposition principle．

Theorem（Superposition Principle：Homogeneous Equations）

Let $f_{1}, f_{2}, \ldots, f_{k}$ be solutions to the homogeneous n－th order linear equation $L(y)=0$ on an interval I ，that is，

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0 \tag{4}
\end{equation*}
$$

then the linear combination $f=\sum_{i=1}^{k} \lambda_{i} f_{i}$ is also a solution to（4）．

Linear Dependence and Independence of Functions

In Linear Algebra，we learned that one can view the collection of all functions defined on a common interval as a vector space，where linear dependence and independence can be defined respectively．

Definition（Linear Dependence and Independence）

A set of functions $\left\{f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right\}$ are linearly dependent on an interval I if $\exists c_{1}, c_{2}, \ldots, c_{n}$ not all zero such that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0, \forall x \in I
$$

that is，the linear combination is a zero function．If the set of functions is not linearly dependent，it is linearly independent．

Example：

－$f_{1}(x)=\sin ^{2} x, f_{2}(x)=\cos ^{2} x, I=(-\pi, \pi)$ ：Linearly dependent
■ $f_{1}(x)=1, f_{2}(x)=x, f_{3}(x)=x^{3}, I=\mathbb{R}$ ：Linearly independent．

Linear Independence of Solutions to（4）

Consider the homogeneous linear n－th order DE

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0 \tag{4}
\end{equation*}
$$

Given n solutions $\left\{f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right\}$ ，we would like to test if they are independent or not．

Of course we can always go back to the definition but it is clumsy．．．
Recall：In Linear Algebra，to test if n vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ are linearly independent，we can compute the determinant of the matrix

$$
\mathbf{V}:=\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right]
$$

If $\operatorname{det} \mathbf{V}=0$ ，they are linearly dependent；if $\operatorname{det} \mathbf{V} \neq 0$ ，they are linearly independent．

Criterion of Linearly Independent Solutions

Consider the homogeneous linear n－th order DE

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0 \tag{4}
\end{equation*}
$$

To test the linear independence of n solutions $\left\{f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right\}$ to （4），we can use the following theorem．

Theorem

Let $\left\{f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right\}$ be n solutions to the homogeneous linear n－th order DE（4）on an interval I．They are linearly independent on I

$$
\Longleftrightarrow W\left(f_{1}, f_{2}, \ldots, f_{n}\right):=\left|\begin{array}{cccc}
f_{1} & f_{2} & \cdots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \cdots & f_{n}^{\prime} \\
\vdots & \vdots & & \vdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \ldots & f_{n}^{(n-1)}
\end{array}\right| \neq 0 .
$$

Fundamental Set of Solutions

We are interested in describing the solution space，that is，the subspace spanned by the solutions to the homogeneous linear n－th order DE

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0 \tag{4}
\end{equation*}
$$

How？
Recall：In Linear Algebra，we describe a subspace by its basis：any vector in the subspace can be represented by a linear combination of the elements in the basis，and these elements are linearly independent．

Similar things can be done here．

Definition（Fundamental Set of Solutions）

Any set $\left\{f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right\}$ of n linearly independent solutions to the homogeneous linear n－th order DE（4）on an interval I is called a fundamental set of solutions．

General Solutions to Homogeneous Linear DE

General solution to an n－th order ODE：
An n－parameter family of solutions that can contains all solutions．

Theorem

Let $\left\{f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right\}$ be a fundamental set of solutions to the homogeneous linear n－th order $D E$（4）on an interval I．Then the general solution to（4）is

$$
y=c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)
$$

where $\left\{c_{i} \mid i=1,2, \ldots, n\right\}$ are arbitrary constants．

Examples

Example

Consider the DE

$$
\frac{d^{2} y}{d x^{2}}=y
$$

Check that both $y=e^{x}$ and $y=e^{-x}$ are solutions to the equation． Derive the general solution to the DE．

A：The linear $D E$ is homogeneous．
We see that $\frac{d^{2}}{d x^{2}} e^{x}=\frac{d}{d x} e^{x}=e^{x}$ ，and $\frac{d^{2}}{d x^{2}} e^{-x}=\frac{d}{d x}-e^{-x}=e^{-x}$ ．Hence they are both solutions to the homogeneous linear second－order DE．
Since

$$
\left|\begin{array}{cc}
e^{x} & e^{-x} \\
e^{x} & -e^{-x}
\end{array}\right|=-1-1=-2 \neq 0
$$

the two solutions are linearly independent．Hence，the general solution can be written as $y=c_{1} e^{x}+c_{2} e^{-x}, c_{1}, c_{2} \in \mathbb{R}$

1 Preliminary：Linear Equations －Initial－Value and Boundary－Value Problems
－Homogeneous Equations
－Nonhomogeneous Equations

2 Reduction of Order

3 Homogeneous Linear Equations with Constant Coefficients
－Second Order Equations
－n－th Order Equations

4 Summary

General Solutions to Nonhomogeneous Linear DE

Nonhomogeneous linear n－th order ODE takes the form：

$$
\begin{aligned}
& a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \\
& \text { or equivalently, } L(y)=g(x), L:=\sum_{i=0}^{n} a_{i}(x) D^{i}
\end{aligned}
$$

where $g(x)$ is not a zero function．
How to find its general solution？

Idea：

■ Find the general solution y_{c} to the homogeneous equation $L(y)=0$ ．
■ Find a solution y_{p} to the nonhomogeneous equation $L(y)=g(x)$ ．
■ The general solution $y=y_{c}+y_{p}$ ．

General Solutions to Nonhomogeneous Linear DE

Nonhomogeneous ：

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \tag{1}
\end{equation*}
$$

Homogeneous：

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0 \tag{4}
\end{equation*}
$$

Theorem

Let y_{p} be any particular solution to the nonhomogeneous linear n－th order $D E$（1）on an interval I ，and y_{c} be the general solution to the associated homogeneous linear n－th order $D E$（4）on I，then the general solution to（1）is

$$
y=y_{c}+y_{p} .
$$

Proof of the Theorem

Proof：Let $y=f(x)$ be any solution to the nonhomogeneous linear n－th order DE（1），that is，$L(y)=g(x)$ ．

Now，since both y_{p} and f are solutions to $L(y)=g(x)$ ，we have

$$
0=L(f)-L\left(y_{p}\right)=L\left(f-y_{p}\right) .
$$

Hence，$\left(f-y_{p}\right)$ is a solution to the homogeneous linear n－th order DE（4）．
Therefore，any solution to（1）can be represented by the sum of a solution to（4）and the particular solution y_{p} ．

Examples

Example

Consider the DE

$$
\frac{d^{2} y}{d x^{2}}=y+9 .
$$

Derive the general solution to the DE．
A：The linear DE is nonhomogeneous．The associated homogeneous equation $\frac{d^{2} y}{d x^{2}}=y$ has the following general solution：

$$
y=c_{1} e^{x}+c_{2} e^{-x}, c_{1}, c_{2} \in \mathbb{R} .
$$

There is an obvious particular solution $y=-9$ ．
Hence，the general solution can be written as

$$
y=c_{1} e^{x}+c_{2} e^{-x}-9, c_{1}, c_{2} \in \mathbb{R}
$$

Superposition Principle for Nonhomogeneous Equations

For nonhomogeneous linear differential equations，we have the following superposition principle．

Theorem（Superposition Principle：Nonhomogeneous Equations）

Let $f_{i}(x)$ be a particular solution to the nonhomogeneous n－th order linear equation $L(y)=g_{i}(x)$ on an interval I ，for $i=1,2, \ldots, k$ ．Then the linear combination $f=\sum_{i=1}^{k} \lambda_{i} f_{i}$ is a particular solution to the nonhomogeneous n－th order linear equation

$$
L(y)=\sum_{i=1}^{k} \lambda_{i} g_{i}(x)
$$

1 Preliminary：Linear Equations
－Initial－Value and Boundary－Value Problems
－Homogeneous Equations
－Nonhomogeneous Equations

2 Reduction of Order

3 Homogeneous Linear Equations with Constant Coefficients －Second Order Equations
－n－th Order Equations

4 Summary

Finding a New Solution

Recall：the fundamental set of solutions of the homogeneous linear n－th order DE

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0 \tag{4}
\end{equation*}
$$

contains n linearly independent solutions．
Now suppose we already have $k(1 \leq k<n)$ linearly independent solutions $\left\{f_{1}, f_{2}, \ldots, f_{k}\right\}$ ．How do we find another one f_{k+1} so that the $(k+1)$ solutions $\left\{f_{1}, f_{2}, \ldots, f_{k+1}\right\}$ remain linearly independent？

Second Order Equation

We begin with the simplest case：$n=2$ and $k=1$ ．Consider the following homogeneous linear second order DE

$$
a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

Suppose we already have a solution $y=f_{1}(x)$ ．How do we find another solution $y=f_{2}(x)$ ，such that f_{1} and f_{2} are linearly independent？

Idea：Let $f_{2}(x)=u(x) f_{1}(x)$ ，and make use of the fact that

$$
a_{2}(x) \frac{d^{2}}{d x^{2}} f_{1}+a_{1}(x) \frac{d}{d x} f_{1}+a_{0}(x) f_{1}=0
$$

to reduce the second order DE into a first order DE of u ！

Example

Example

$f_{1}(x)=x^{2}$ is a solution of the second order DE $x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+4 y=0$ ．
Find the general solution of the above DE for $x>0$ ．
A：We need to find a fundamental set of solutions，which contains two linearly independent solutions．Now we have only one．To find a second one，let us set substitute $y=f_{1} u=x^{2} u$ ：

$$
\begin{aligned}
& \frac{d y}{d x}=2 x u+x^{2} u^{\prime}, \frac{d^{2} y}{d x^{2}}=\left(2 u+2 x u^{\prime}\right)+\left(2 x u^{\prime}+x^{2} u^{\prime \prime}\right)=2 u+4 x u^{\prime}+x^{2} u^{\prime \prime} \\
& \Longrightarrow x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+4 y=2 x^{2} u+4 x^{3} u^{\prime}+x^{4} u^{\prime \prime}-6 x^{2} u-3 x^{3} u^{\prime}+4 x^{2} u \\
& \quad=x^{3} u^{\prime}+x^{4} u^{\prime \prime}=0 \\
& \Longrightarrow \\
& \Longrightarrow+x v^{\prime}=0 \quad\left(\text { Set } v:=u^{\prime}\right) \\
& \Longrightarrow \text { one such } v=\frac{1}{x} \Longrightarrow \text { one such } u=\ln x .
\end{aligned}
$$

Example

Example

$f_{1}(x)=x^{2}$ is a solution of the second order DE $x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+4 y=0$ ．
Find the general solution of the above DE for $x>0$ ．
We find a second solution $y=f_{2}(x)=x^{2} \ln x$ on $x \in(0, \infty)$ ，and the general solution is

$$
y=c_{1} x^{2}+c_{2} x^{2} \ln x \text {. }
$$

Question：

How about the more complicated case，when $n>2$ and $k>1$ ？

1 Preliminary：Linear Equations
■ Initial－Value and Boundary－Value Problems
－Homogeneous Equations
－Nonhomogeneous Equations

2 Reduction of Order

3 Homogeneous Linear Equations with Constant Coefficients
－Second Order Equations
－n－th Order Equations

4 Summary

In this section we focus on solving（that is，giving general solutions to） Homogeneous Linear Equations with Constant Coefficients

$$
\begin{equation*}
a_{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1} \frac{d y}{d x}+a_{0} y=0 \tag{5}
\end{equation*}
$$

which is a homogeneous linear DE with constant real coefficients．
In the textbook，it tells us（without much reasoning）what the form of the general solution should look like，and then we analyze the particular structure of a give equation to derive the exact form．

In this lecture，we try to provide more reasoning，so that you get a clearer big picture．

1 Preliminary：Linear Equations
－Initial－Value and Boundary－Value Problems
－Homogeneous Equations
－Nonhomogeneous Equations

2 Reduction of Order

3 Homogeneous Linear Equations with Constant Coefficients －Second Order Equations
－n－th Order Equations

4 Summary

Second Order Equation

We begin with some examples of second order equations．

Example

Find the general solution of $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=0$ ．
A：Let us use the differential operator to rewrite this DE as follows：

$$
\left(D^{2}-3 D+2\right) y=0
$$

Note that $L:=D^{2}-3 D+2=(D-1)(D-2)$ ．
We can view the second－order differential operator L as a concatenation of two first－order differential operators：$(D-1)$ and $(D-2)$ ！

$$
y \longrightarrow L:=D^{2}-3 D+2 \longrightarrow \frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y
$$

Second Order Equation

Example

Find the general solution of $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=0$ ．
A：We have found the equivalent forms of the above equation

$$
L y=0 \equiv(D-2)\{(D-1) y\}=0 \equiv(D-1)\{(D-2) y\}=0
$$

where $L:=D^{2}-3 D+2=(D-1)(D-2)$ ．
Observation：
－If f_{1} is a solution to $(D-1) y=0$ ，it is also a solution to $L y=0$ ． A solution：$f_{1}=e^{x}$ ．
－If f_{2} is a solution to $(D-2) y=0$ ，it is also a solution to $L y=0$ ． A solution：$f_{2}=e^{2 x}$ ．

Second Order Equation

Example

Find the general solution of $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=0$ ．
A：So far we have found two solutions to $\left(D^{2}-3 D+2\right) y=0$ ：

$$
\begin{aligned}
& f_{1}=e^{x}, \quad \text { corresponds to }(D-1) y=0 \\
& f_{2}=e^{2 x}, \quad \text { corresponds to }(D-2) y=0 .
\end{aligned}
$$

f_{1} and f_{2} are linearly independent（Exercise：check！）and hence $\left\{f_{1}, f_{2}\right\}$ is a fundamental set of solutions．
\Longrightarrow The general solution：

$$
y=c_{1} f_{1}+c_{2} f_{2}=c_{1} e^{x}+c_{2} e^{2 x}, c_{1}, c_{2} \in \mathbb{R}
$$

How we solve $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=0$

1 Use a polynomial of D ，

$$
L:=p(D)=D^{2}-3 D+2,
$$

to rewrite the DE into the form $L y=0$ ．
2 Factor $p(D)=(D-1)(D-2)$ ．
3 Observe that a solution to either $(D-1) y=0$ or $(D-2) y=0$ will be a solution to $L y=0$ ．

4 Find two solutions $f_{1}=e^{x}$ and $f_{2}=e^{2 x}$ ，corresponding to （ $D-1$ ）$y=0$ and $(D-2) y=0$ respectively．
5 Check that f_{1} and f_{2} are linearly independent，and hence they form a fundamental set of solutions．
6 Finally we get the general solution $y=c_{1} e^{x}+c_{2} e^{2 x}$ ．

$p(D)=a_{2} D^{2}+a_{1} D+a_{0}$ Has Two Distinct Real Roots

For a homogeneous linear second order DE with constant coefficients $L y=0$ ，where（WLOG we assume $a_{2}=1$ ）

$$
L:=p(D)=a_{2} D^{2}+a_{1} D+a_{0}=D^{2}+a_{1} D+a_{0}:
$$

Fact

If $p(D)$ has two distinct real roots m_{1} and m_{2} ，then we can use the above mentioned method to get a general solution

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}
$$

What if $p(D)$ has
－Two repeated real roots，or
－Two conjugate complex roots？

$p(D)$ Has Two Conjugate Complex Roots $\alpha \pm i \beta$

Suppose $p(D)$ has two conjugate complex roots

$$
m_{1}=\alpha+i \beta, m_{2}=\alpha-i \beta, \alpha, \beta \in \mathbb{R}
$$

If we slightly extend our discussion to complex－valued DE，it is not hard to see that the previous method works again and we get a general （complex－valued）solution

$$
y=C_{1} e^{m_{1} x}+C_{2} e^{m_{2} x}, \quad C_{1}, C_{2} \in \mathbb{C}
$$

Still we need to get back to the real domain ．．．
So，let＇s do some further manipulation by using the fact that

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

$p(D)$ Has Two Conjugate Complex Roots $\alpha \pm i \beta$

The general solution to $L y=0$ where $L=p(D)$ is

$$
\begin{aligned}
y & =C_{1} e^{(\alpha+i \beta) x}+C_{2} e^{(\alpha-i \beta) x}=C_{1} e^{\alpha x} e^{i \beta x}+C_{2} e^{\alpha x} e^{-i \beta x} \\
& =C_{1} e^{\alpha x}(\cos \beta x+i \sin \beta x)+C_{2} e^{\alpha x}(\cos \beta x-i \sin \beta x) \\
& =\left(C_{1}+C_{2}\right) e^{\alpha x} \cos \beta x+i\left(C_{1}-C_{2}\right) e^{\alpha x} \sin \beta x
\end{aligned}
$$

To get a real－valued solution，there are two choices：
－Pick $C_{1}+C_{2}=1, C_{1}-C_{2}=0$ ：we get $y=f_{1}(x)=e^{\alpha x} \cos \beta x$ ．
■ Pick $C_{1}+C_{2}=0, C_{1}-C_{2}=-i$ ：we get $y=f_{2}(x)=e^{\alpha x} \sin \beta x$ ．
Since f_{1} and f_{2} are linearly independent，the general real－valued solution to $L y=0$ where $L=p(D)$ is

$$
y=c_{1} e^{\alpha x} \cos \beta x+c_{2} e^{\alpha x} \sin \beta x, c_{1}, c_{2} \in \mathbb{R}
$$

$p(D)$ Has Two Repeated Real Roots m

Suppose $p(D)$ has two repeat real roots m ，which means that

$$
\begin{gathered}
p(D)=(D-m)^{2} . \\
L=(D-m)^{2} \\
y \rightarrow D-m
\end{gathered}
$$

From the previous discussion，we see that $y=f_{1}(x)=e^{m x}$ is a solution to $(D-m) y=0$ and hence it is also a solution to $(D-m)^{2} y=0$ ．

Question：

How to find another solution $y=f_{2}(x)$ so that f_{1} and f_{2} are linearly independent？

$p(D)$ Has Two Repeated Real Roots m

$f_{1}(x)=e^{m x}$ is a solution to $(D-m)^{2} y=0$ because：

$$
f_{1}(x)=e^{m x} \longrightarrow D-m \longrightarrow D
$$

Why not find some $f_{2}(x)$ such that after the first $D-m$ block，the outcome is $f_{1}(x)=e^{m x}$ ？

$$
f_{2}(x)=? \longrightarrow D-m \xrightarrow{e^{m x}} D D-m \longrightarrow 0
$$

We only need to solve a first order linear DE！

$p(D)$ Has Two Repeated Real Roots m

We have found two solutions to $(D-m)^{2} y=0$ ：

$$
f_{1}(x)=e^{m x}, \quad f_{2}(x)=x e^{m x}
$$

and they are linearly independent（check！）．
Hence the general solution to $p(D) y=0$ is

$$
y=c_{1} e^{m x}+c_{2} x e^{m x}=\left(c_{1}+c_{2} x\right) e^{m x}
$$

Summary：Second Order Equation $a_{2} \frac{d^{2} y}{d x^{2}}+a_{1} \frac{d y}{d x}+a_{0}=0$

Define the following（quadratic）polynomial

$$
p(D):=a_{2} D^{2}+a_{1} D+a_{0} .
$$

Roots of $p(D)$	General Solution
Distinct real roots $m_{1}, m_{2} \in \mathbb{R}$	$y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}$
Conjugate complex roots $\alpha \pm i \beta, \alpha, \beta \in \mathbb{R}$	$y=c_{1} e^{\alpha x} \sin \beta x+c_{2} e^{\alpha x} \cos \beta x$
Repeated real roots $m \in \mathbb{R}$	$y=\left(c_{1}+c_{2} x\right) e^{m x}$

1 Preliminary：Linear Equations
－Initial－Value and Boundary－Value Problems
－Homogeneous Equations
－Nonhomogeneous Equations

2 Reduction of Order

3 Homogeneous Linear Equations with Constant Coefficients －Second Order Equations
－n－th Order Equations

4 Summary

n－th Order Equation $a_{n} \frac{d^{n} y}{d x^{n}}+\cdots+a_{1} \frac{d y}{d x}+a_{0}=0$

Define

$$
p(D):=a_{n} D^{n}+a_{n-1} D^{n-1}+\cdots+a_{1} D+a_{0}=\sum_{i=0}^{n} a_{i} D^{i}
$$

and rewrite the n－th order equation as

$$
p(D) y=0 \text {. }
$$

$p(D)$ ：a polynomial of order n with real－valued coefficients．
－$p(D)$ has n roots in the complex domain（counting the multiplicity）
－Complex roots of $p(D)$ must appear in conjugate pairs．
Example：$p(D)=(D-1)^{3}(D-2)^{1}\left(D^{2}-2 D+2\right)^{2}$ is a polynomial of order 8 ，and has the following roots

1	multiplicity 3
2	multiplicity 1
$1 \pm i$	multiplicity 2 for each．

Finding the General Solution of $p(D) y=0$

High－level Idea：let $p(D)$ have n_{1} distinct real roots $\left\{m_{i} \mid i \in\left[1: n_{1}\right]\right\}$ ， and n_{2} distinct pairs of conjugate complex roots $\left\{\alpha_{j} \pm i \beta_{j} \mid j \in\left[1: n_{2}\right]\right\}$ ．
1 Factorize $p(D)=\sum_{i=0}^{n} a_{i} D^{i}$ as

$$
\begin{aligned}
p(D) & =a_{n}(\prod_{i=1}^{n_{1}} \overbrace{\left(D-m_{i}\right)^{k_{i}}}^{p_{i}(D)})(\prod_{j=1}^{n_{2}} \overbrace{\left(D^{2}-2 \alpha_{j} D+\alpha_{j}^{2}+\beta_{j}^{2}\right)^{b_{j}}}^{q_{j}(D)}) \\
& =a_{n} \prod_{i=1}^{n_{1}} p_{i}(D) \prod_{j=1}^{n_{2}} q_{j}(D), \text { where } n=\sum_{i=1}^{n_{1}} k_{i}+2 \sum_{j=1}^{n_{2}} l_{j} .
\end{aligned}
$$

2 For each $i \in\left[1: n_{1}\right]$ ，find k_{i} linearly independent solutions of $p_{i}(D) y=0$ ．
3 For each $j \in\left[1: n_{2}\right]$ ，find $2 l_{j}$ linearly independent solutions of $q_{j}(D) y=0$ ．
4 Combine them all to get n linearly independent solutions of $p(D) y=0$ ．

$$
p(D):=\sum_{i=0}^{n} a_{i} D^{i}, a_{n}=1
$$

$p_{i}(D):=\left(D-m_{i}\right)^{k_{i}}, i \in\left[1: n_{1}\right] ; \quad q_{j}(D):=\left(D^{2}-2 \alpha_{j} D+\alpha_{j}^{2}+\beta_{j}^{2}\right)^{l_{j}}, j \in\left[1: n_{2}\right]$.
$p(D)$ have n_{1} distinct real roots $\left\{m_{i} \mid i \in\left[1: n_{1}\right]\right\}$ ，and n_{2} distinct pairs of conjugate complex roots $\left\{\alpha_{j} \pm i \beta_{j} \mid j \in\left[1: n_{2}\right]\right\}$ ．

Note：The solutions of different blocks in the above diagram will be linearly independent．

Solve $(D-m)^{k} y=0$

$k=2$ ：two linearly independent solutions $f_{1}(x)=e^{m x}$ and $f_{2}(x)=x e^{m x}$ ．
$k=3$ ：Look at the diagram below：

$$
f_{3}(x)=? \rightarrow D e^{x e^{m x}} \xrightarrow{(D-m)^{2}} \longrightarrow 0
$$

We only need to solve a first order linear DE！

We can drop the factor of 2 and pick $f_{3}(x)=x^{2} e^{m x}$ ．

Solve $(D-m)^{k} y=0$

$$
f_{i+1}(x)=? \rightarrow D-m \longrightarrow 0
$$

We can repeat this procedure and find k linearly independent solutions：

$$
f_{1}(x)=e^{m x}, f_{2}(x)=x e^{m x}, f_{3}(x)=x^{2} e^{m x}, \ldots, f_{k}(x)=x^{k-1} e^{m x} \text {. }
$$

Solve $\left(D^{2}-2 \alpha D+\alpha^{2}+\beta^{2}\right)^{l} y=0$

$$
\begin{aligned}
& D^{2}-2 \alpha D+\alpha^{2}+\beta^{2}=(D-m)(D-\bar{m}), \text { where } m=\alpha+i \beta \in \mathbb{C} . \\
\therefore & \left(D^{2}-2 \alpha D+\alpha^{2}+\beta^{2}\right)^{l}=(D-m)^{l}(D-\bar{m})^{l}
\end{aligned}
$$

We can repeat the previous discussion and get $2 l$ linearly independent solutions（in \mathbb{C} ）：

$$
\begin{aligned}
& F_{1}(x)=e^{m x}, \quad F_{2}(x)=x e^{m x}, \ldots, F_{l}(x)=x^{l-1} e^{m x} \\
& \bar{F}_{1}(x)=e^{\bar{m} x}, \bar{F}_{2}(x)=x e^{\bar{m} x}, \ldots, \bar{F}_{l}(x)=x^{l-1} e^{\bar{m} x}
\end{aligned}
$$

For each $j \in[1: l]$ ，use F_{j} and \bar{F}_{j} to generate two real－valued solutions：

$$
\begin{aligned}
f_{2 j-1}(x) & =\frac{1}{2} F_{j}(x)+\frac{1}{2} \bar{F}_{j}(x)=\operatorname{Re}\left\{F_{j}(x)\right\}=x^{j-1} e^{\alpha x} \cos \beta x \\
f_{2 j}(x) & =\frac{-i}{2} F_{j}(x)+\frac{i}{2} \bar{F}_{j}(x)=\operatorname{Im}\left\{F_{j}(x)\right\}=x^{j-1} e^{\alpha x} \sin \beta x .
\end{aligned}
$$

Solve $\left(D^{2}-2 \alpha D+\alpha^{2}+\beta^{2}\right)^{l} y=0$

Here are $2 l$ linearly independent real－valued solutions：

$$
\left\{x^{j-1} e^{\alpha x} \cos \beta x, x^{j-1} e^{\alpha x} \sin \beta x \mid j=1,2, \ldots, l\right\}
$$

Examples

Example

Solve the IVP $4 y^{\prime \prime}+4 y^{\prime}+17 y=0, y(0)=-1, y^{\prime}(0)=2$ ．

1 Preliminary：Linear Equations
－Initial－Value and Boundary－Value Problems
－Homogeneous Equations
－Nonhomogeneous Equations

2 Reduction of Order

3 Homogeneous Linear Equations with Constant Coefficients
－Second Order Equations
－n－th Order Equations

4 Summary

Short Recap

■ Initial－Value Problems（IVP）vs．Boundary－Value Problems（BVP）
－Homogeneous vs Nonhomogeneous Linear ODE
－Fundamental set of solutions and General Solutions
■ Linearity and Superposition Principle
－General Solution of Homogeneous Linear Equation with Constant Coefficients－Usage of Polynomial of Differential Operator D

Self－Practice Exercises

4－1： $1,9,13,17,21,25,35$
4－3：3，5，17，21，25，31，37，51， 57

