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Preliminary: Linear Equations
Summary

Higher-Order Differential Equations

Most of this chapter deals with linear higher-order DE (except 4.10)

In our lecture, we skip 4.10 and focus on n-th order linear differential
equations, where n ≥ 2.

an(x)
dny
dxn + an−1(x)

dn−1y
dxn−1

+ · · ·+ a1(x)
dy
dx + a0(x)y = g(x) (1)
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Methods of Solving Linear Differential Equations

We shall gradually fill up this slide as the lecture proceeds.
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Initial-Value Problem (IVP)

An n-th order initial-value problem associate with (1) takes the form:

Solve:

an(x)
dny
dxn + an−1(x)

dn−1y
dxn−1

+ · · ·+ a1(x)
dy
dx + a0(x)y = g(x) (1)

subject to:

y(x0) = y0, y′(x0) = y1, . . . , y(n−1)(x0) = yn−1 (2)

Here (2) is a set of initial conditions.
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Boundary-Value Problem (BVP)

Recall: in Chapter 1, we made 3 remarks on initial/boundary conditions

Remark (Initial vs. Boundary Conditions)
Initial Conditions: all conditions are at the same x = x0.
Boundary Conditions: conditions can be at different x.

Remark (Number of Initial/Boundary Conditions)
“Usually” a n-th order ODE requires n initial/boundary conditions to
specify an unique solution.

Remark (Order of the derivatives in the conditions
Initial/boundary conditions can be the value or the function of 0-th to
(n − 1)-th order derivatives, where n is the order of the ODE.
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Boundary-Value Problem (BVP)

Example (Second-Order ODE)
Consider the following second-order ODE

a2(x)
d2y
dx2 + a1(x)

dy
dx + a0(x)y = g(x) (3)

IVP: solve (3) s.t. y(x0) = y0, y′(x0) = y1.
BVP: solve (3) s.t. y(a) = y0, y(b) = y1.
BVP: solve (3) s.t. y′(a) = y0, y(b) = y1.

BVP: solve (3) s.t.
{
α1y(a) + β1y′(a) = γ1

α2y(b) + β2y′(b) = γ2
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Existence and Uniqueness of the Solution to an IVP

Solve

an(x)
dny
dxn + an−1(x)

dn−1y
dxn−1

+ · · ·+ a1(x)
dy
dx + a0(x)y = g(x) (1)

subject to

y(x0) = y0, y′(x0) = y1, . . . , y(n−1)(x0) = yn−1 (2)

Theorem
If an(x), an−1(x), . . . , a0(x) and g(x) are all continuous on an interval I,
an(x) ̸= 0 is not a zero function on I, and the initial point x0 ∈ I, then
the above IVP has a unique solution in I.
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Existence and Uniqueness of the Solution to an IVP

Solve

an(x)
dny
dxn + an−1(x)

dn−1y
dxn−1

+ · · ·+ a1(x)
dy
dx + a0(x)y = g(x) (1)

subject to

y(x0) = y0, y′(x0) = y1, . . . , y(n−1)(x0) = yn−1 (2)

Throughout this lecture, we assume that on some common interval I,
an(x), an−1(x), . . . , a0(x) and g(x) are all continuous
an(x) is not a zero function, that is, ∃x ∈ I such that an(x) ̸= 0.
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Existence and Uniqueness of the Solution to an BVP

Note: Unlike an IVP, even the n-th order ODE (1) satisfies the
conditions in the previous theorem, a BVP corresponding to (1) may
have many, one, or no solutions.

Example

Consider the 2nd-order ODE d2y
dx2 + y = 0, whose general solution takes

the form y = c1 cos x + c2 sin x. Find the solution(s) to an BVP subject
to the following boundary conditions respectively

y(0) = 0, y(2π) = 0 Plug it in =⇒ c1 = 0, c1 = 0
=⇒ c2 is arbitrary =⇒ infinitely many solutions!
y(0) = 0, y(π/2) = 0 Plug it in =⇒ c1 = 0, c1 + c2 = 0
=⇒ c1 = c2 = 0 =⇒ a unique solution!
y(0) = 0, y(2π) = 1 Plug it in =⇒ c1 = 0, c1 = 1
=⇒ contradiction =⇒ no solutions!
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Homogeneous Equation

Linear n-th order ODE takes the form:

an(x)
dny
dxn + an−1(x)

dn−1y
dxn−1

+ · · ·+ a1(x)
dy
dx + a0(x)y = g(x) (1)

Homogeneous Equation: g(x) in (1) is a zero function:

an(x)
dny
dxn + an−1(x)

dn−1y
dxn−1

+ · · ·+ a1(x)
dy
dx + a0(x)y = 0 (4)

Nonhomogeneous Equation: g(x) in (1) is not a zero function. Its
associated homogeneous equation (4) is the one with the same
coefficients except that g(x) is a zero function

Later in the lecture we will see, when solving a nonhomogeneous
equation, we must first solve its associated homogeneous equation (4).
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Differential Operators

We introduce a differential operator D, which simply represent the
operation of taking an ordinary differentiation:

Differential Operator
For a function y = f(x), the differential operator D transforms the
function f(x) to its first-order derivative: Dy :=

dy
dx .

Higher-order derivatives can be represented compactly with D as well:

d2y
dx2 = D(Dy) =: D2y, dny

dxn =: Dny

an(x)
dny
dxn + an−1(x)

dn−1y
dxn−1

+ · · ·+ a1(x)
dy
dx + a0(x)y =:

{ n∑
i=0

ai(x)Di

}
y
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Differential Operators and Linear Differential Equations

Note: Polynomials of differential operators are differential operators.

Let L :=
∑n

i=0 ai(x)Di be an n-th order differential operator.

Then we can compactly represent the linear differential equation (1) and
the homogeneous linear DE (4) as

L(y) = g(x), L(y) = 0

respectively.

王奕翔 DE Lecture 5



Preliminary: Linear Equations
Summary

Initial-Value and Boundary-Value Problems
Homogeneous Equations
Nonhomogeneous Equations

Linearity and Superposition Principle

L :=
∑n

i=0 ai(x)Di is a linear operator: for two functions f1(x), f2(x),

L(λ1f1 + λ2f2) = λ1L(f1) + λ2L(f2).

For any homogeneous linear equation (4), that is, L(y) = 0, we obtain
the following superposition principle.

Theorem (Superposition Principle: Homogeneous Equations)
Let f1, f2, . . . , fk be solutions to the homogeneous n-th order linear
equation L(y) = 0 on an interval I, that is,

an(x)
dny
dxn + an−1(x)

dn−1y
dxn−1

+ · · ·+ a1(x)
dy
dx + a0(x)y = 0, (4)

then the linear combination f =
∑k

i=1 λifi is also a solution to (4).
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Linear Dependence and Independence of Functions

In Linear Algebra, we learned that one can view the collection of all
functions defined on a common interval as a vector space, where linear
dependence and independence can be defined respectively.

Definition (Linear Dependence and Independence)
A set of functions {f1(x), f2(x), . . . , fn(x)} are linearly dependent on an
interval I if ∃ c1, c2, . . . , cn not all zero such that

c1f1(x) + c2f2(x) + · · ·+ cnfn(x) = 0, ∀ x ∈ I,

that is, the linear combination is a zero function. If the set of functions is
not linearly dependent, it is linearly independent.

Example:
f1(x) = sin2 x, f2(x) = cos2 x, I = (−π, π): Linearly dependent
f1(x) = 1, f2(x) = x, f3(x) = x3, I = R: Linearly independent.

王奕翔 DE Lecture 5



Preliminary: Linear Equations
Summary

Initial-Value and Boundary-Value Problems
Homogeneous Equations
Nonhomogeneous Equations

Linear Independence of Solutions to (4)

Consider the homogeneous linear n-th order DE

an(x)
dny
dxn + an−1(x)

dn−1y
dxn−1

+ · · ·+ a1(x)
dy
dx + a0(x)y = 0, (4)

Given n solutions {f1(x), f2(x), . . . , fn(x)}, we would like to test if they
are independent or not.
Of course we can always go back to the definition but it is clumsy...
Recall: In Linear Algebra, to test if n vectors {v1,v2, . . . ,vn} are
linearly independent, we can compute the determinant of the matrix

V :=
[
v1 v2 · · · vn

]
.

If det V = 0, they are linearly dependent; if det V ̸= 0, they are linearly
independent.
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Criterion of Linearly Independent Solutions
Consider the homogeneous linear n-th order DE

an(x)
dny
dxn + an−1(x)

dn−1y
dxn−1

+ · · ·+ a1(x)
dy
dx + a0(x)y = 0, (4)

To test the linear independence of n solutions {f1(x), f2(x), . . . , fn(x)} to
(4), we can use the following theorem.

Theorem
Let {f1(x), f2(x), . . . , fn(x)} be n solutions to the homogeneous linear
n-th order DE (4) on an interval I. They are linearly independent on I

⇐⇒ W(f1, f2, . . . , fn) :=

∣∣∣∣∣∣∣∣∣
f1 f2 · · · fn
f′1 f′2 · · · f′n
...

...
...

f(n−1)
1 f(n−1)

2 · · · f(n−1)
n

∣∣∣∣∣∣∣∣∣ ̸= 0.
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Fundamental Set of Solutions
We are interested in describing the solution space, that is, the subspace
spanned by the solutions to the homogeneous linear n-th order DE

an(x)
dny
dxn + an−1(x)

dn−1y
dxn−1

+ · · ·+ a1(x)
dy
dx + a0(x)y = 0. (4)

How?
Recall: In Linear Algebra, we describe a subspace by its basis: any vector
in the subspace can be represented by a linear combination of the
elements in the basis, and these elements are linearly independent.
Similar things can be done here.

Definition (Fundamental Set of Solutions)
Any set {f1(x), f2(x), . . . , fn(x)} of n linearly independent solutions to the
homogeneous linear n-th order DE (4) on an interval I is called a
fundamental set of solutions.
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General Solutions to Homogeneous Linear DE

General solution to an n-th order ODE:
An n-parameter family of solutions that can contains all solutions.

Theorem
Let {f1(x), f2(x), . . . , fn(x)} be a fundamental set of solutions to the
homogeneous linear n-th order DE (4) on an interval I. Then the
general solution to (4) is

y = c1f1(x) + c2f2(x) + · · ·+ cnfn(x),

where {ci | i = 1, 2, . . . ,n} are arbitrary constants.
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Examples

Example
Consider the DE

d2y
dx2 = y.

Check that both y = ex and y = e−x are solutions to the equation.
Derive the general solution to the DE.

A: The linear DE is homogeneous.
We see that d2

dx2 ex = d
dx ex = ex, and d2

dx2 e−x = d
dx − e−x = e−x. Hence

they are both solutions to the homogeneous linear second-order DE.
Since ∣∣∣∣ex e−x

ex −e−x

∣∣∣∣ = −1− 1 = −2 ̸= 0,

the two solutions are linearly independent. Hence, the general solution
can be written as y = c1ex + c2e−x, c1, c2 ∈ R .
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General Solutions to Nonhomogeneous Linear DE

Nonhomogeneous linear n-th order ODE takes the form:

an(x)
dny
dxn + an−1(x)

dn−1y
dxn−1

+ · · ·+ a1(x)
dy
dx + a0(x)y = g(x) (1)

or equivalently, L(y) = g(x), L :=
n∑

i=0

ai(x)Di

where g(x) is not a zero function.
How to find its general solution?
Idea:

Find the general solution yc to the homogeneous equation L(y) = 0.
Find a solution yp to the nonhomogeneous equation L(y) = g(x).
The general solution y = yc + yp.
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General Solutions to Nonhomogeneous Linear DE

Nonhomogeneous :

an(x)
dny
dxn + an−1(x)

dn−1y
dxn−1

+ · · ·+ a1(x)
dy
dx + a0(x)y = g(x) (1)

Homogeneous :

an(x)
dny
dxn + an−1(x)

dn−1y
dxn−1

+ · · ·+ a1(x)
dy
dx + a0(x)y = 0 (4)

Theorem
Let yp be any particular solution to the nonhomogeneous linear n-th
order DE (1) on an interval I, and yc be the general solution to the
associated homogeneous linear n-th order DE (4) on I, then the general
solution to (1) is

y = yc + yp.
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Proof of the Theorem

Proof: Let y = f(x) be any solution to the nonhomogeneous linear n-th
order DE (1), that is, L(y) = g(x).

Now, since both yp and f are solutions to L(y) = g(x), we have

0 = L(f)− L(yp) = L(f − yp).

Hence, (f− yp) is a solution to the homogeneous linear n-th order DE (4).
Therefore, any solution to (1) can be represented by the sum of a
solution to (4) and the particular solution yp.
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Examples

Example
Consider the DE

d2y
dx2 = y + 9.

Derive the general solution to the DE.

A: The linear DE is nonhomogeneous. The associated homogeneous
equation d2y

dx2 = y has the following general solution:

y = c1ex + c2e−x, c1, c2 ∈ R.

There is an obvious particular solution y = −9.
Hence, the general solution can be written as

y = c1ex + c2e−x − 9, c1, c2 ∈ R
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Superposition Principle for Nonhomogeneous Equations

For nonhomogeneous linear differential equations, we have the following
superposition principle.

Theorem (Superposition Principle: Nonhomogeneous Equations)
Let fi(x) be a particular solution to the nonhomogeneous n-th order
linear equation L(y) = gi(x) on an interval I, for i = 1, 2, . . . , k. Then the
linear combination f =

∑k
i=1 λifi is a particular solution to the

nonhomogeneous n-th order linear equation

L(y) =
k∑

i=1

λigi(x).
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Short Recap

Initial-Value Problems (IVP) vs. Boundary-Value Problems (BVP)

Homogeneous vs Nonhomogeneous Linear ODE

Fundamental set of solutions and General Solutions
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Self-Practice Exercises

4-1: 1, 9, 13, 17, 21, 25, 35
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