Chapter 4: Higher-Order Differential Equations – Part 1

王奕翔

Department of Electrical Engineering National Taiwan University

ihwang@ntu.edu.tw

October 3, 2013

Higher-Order Differential Equations

Most of this chapter deals with linear higher-order DE (except 4.10)

In our lecture, we skip 4.10 and focus on *n*-th order linear differential equations, where $n \ge 2$.

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$
(1)

Methods of Solving Linear Differential Equations

We shall gradually fill up this slide as the lecture proceeds.

1 Preliminary: Linear Equations

Initial-Value and Boundary-Value Problems

- Homogeneous Equations
- Nonhomogeneous Equations

Initial-Value and Boundary-Value Problems Homogeneous Equations Nonhomogeneous Equations

Initial-Value Problem (IVP)

An n-th order initial-value problem associate with (1) takes the form:

Solve:

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x) \quad (1)$$
subject to:

$$y(x_0) = y_0, \ y'(x_0) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1} \quad (2)$$

Here (2) is a set of initial conditions.

Initial-Value and Boundary-Value Problems Homogeneous Equations Nonhomogeneous Equations

Boundary-Value Problem (BVP)

Recall: in Chapter 1, we made 3 remarks on initial/boundary conditions

Remark (Initial vs. Boundary Conditions)

Initial Conditions: all conditions are at the same $x = x_0$. Boundary Conditions: conditions can be at **different** x.

Remark (Number of Initial/Boundary Conditions)

"Usually" a n-th order ODE requires n initial/boundary conditions to specify an unique solution.

Remark (Order of the derivatives in the conditions

Initial/boundary conditions can be the value or the function of 0-th to (n-1)-th order derivatives, where n is the order of the ODE.

Initial-Value and Boundary-Value Problems Homogeneous Equations Nonhomogeneous Equations

Boundary-Value Problem (BVP)

Example (Second-Order ODE)

Consider the following second-order ODE

$$a_2(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$
(3)

- IVP: solve (3) s.t. $y(x_0) = y_0, y'(x_0) = y_1$.
- **BVP:** solve (3) s.t. $y(a) = y_0, y(b) = y_1$.
- BVP: solve (3) s.t. $y'(a) = y_0, y(b) = y_1$.

BVP: solve (3) s.t.
$$\begin{cases} \alpha_1 y(a) + \beta_1 y'(a) = \gamma_1 \\ \alpha_2 y(b) + \beta_2 y'(b) = \gamma_2 \end{cases}$$

Existence and Uniqueness of the Solution to an IVP

Solve

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x) \quad (1)$$
subject to

$$y(x_0) = y_0, \ y'(x_0) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1} \quad (2)$$

Theorem

If $a_n(x), a_{n-1}(x), \ldots, a_0(x)$ and g(x) are all continuous on an interval I, $a_n(x) \neq 0$ is not a zero function on I, and the initial point $x_0 \in I$, then the above IVP has a unique solution in I.

Existence and Uniqueness of the Solution to an IVP

Solve

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x) \quad (1)$$
subject to

$$y(x_0) = y_0, \ y'(x_0) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1} \quad (2)$$

Throughout this lecture, we assume that on some common interval I,

- $a_n(x), a_{n-1}(x), \ldots, a_0(x)$ and g(x) are all continuous
- $a_n(x)$ is not a zero function, that is, $\exists x \in I$ such that $a_n(x) \neq 0$.

Existence and Uniqueness of the Solution to an BVP

Note: Unlike an IVP, even the n-th order ODE (1) satisfies the conditions in the previous theorem, a BVP corresponding to (1) may have many, one, or no solutions.

Example

Consider the 2nd-order ODE $\frac{d^2y}{dx^2} + y = 0$, whose general solution takes the form $y = c_1 \cos x + c_2 \sin x$. Find the solution(s) to an BVP subject to the following boundary conditions respectively

• $y(0) = 0, y(2\pi) = 0$ Plug it in $\implies c_1 = 0, c_1 = 0$ $\implies c_2$ is arbitrary \implies infinitely many solutions!

•
$$y(0) = 0, y(\pi/2) = 0$$
 Plug it in $\implies c_1 = 0, c_1 + c_2 = 0$
 $\implies c_1 = c_2 = 0 \implies$ a unique solution!

•
$$y(0) = 0, y(2\pi) = 1$$
 Plug it in $\implies c_1 = 0, c_1 = 1$
 \implies contradiction \implies no solutions!

1 Preliminary: Linear Equations

Initial-Value and Boundary-Value Problems

Homogeneous Equations

Nonhomogeneous Equations

Homogeneous Equation

Linear *n*-th order ODE takes the form:

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$
 (1)

Homogeneous Equation: g(x) in (1) is a zero function:

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = 0$$
 (4)

Nonhomogeneous Equation: g(x) in (1) is **not** a zero function. Its *associated homogeneous equation* (4) is the one with the same coefficients except that g(x) is a zero function

Later in the lecture we will see, when solving a nonhomogeneous equation, we must first solve its associated homogeneous equation (4).

Initial-Value and Boundary-Value Problems Homogeneous Equations Nonhomogeneous Equations

Differential Operators

We introduce a **differential operator** *D*, which simply represent the operation of taking an ordinary differentiation:

Differential Operator

For a function y = f(x), the differential operator D transforms the function f(x) to its first-order derivative: $Dy := \frac{dy}{dx}$.

Higher-order derivatives can be represented compactly with D as well:

$$\frac{d^2 y}{dx^2} = D(Dy) =: D^2 y, \quad \frac{d^n y}{dx^n} =: D^n y$$
$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y =: \left\{\sum_{i=0}^n a_i(x)D^i\right\}y$$

Differential Operators and Linear Differential Equations

Note: Polynomials of differential operators are differential operators.

Let $L := \sum_{i=0}^{n} a_i(x) D^i$ be an *n*-th order differential operator.

Then we can compactly represent the linear differential equation (1) and the homogeneous linear DE (4) as

$$L(y) = g(x), \quad L(y) = 0$$

respectively.

Linearity and Superposition Principle

 $L := \sum_{i=0}^{n} a_i(x) D^i$ is a **linear operator**: for two functions $f_1(x), f_2(x)$,

$$L(\lambda_1 f_1 + \lambda_2 f_2) = \lambda_1 L(f_1) + \lambda_2 L(f_2).$$

For any homogeneous linear equation (4), that is, L(y) = 0, we obtain the following superposition principle.

Theorem (Superposition Principle: Homogeneous Equations)

Let f_1, f_2, \ldots, f_k be solutions to the homogeneous *n*-th order linear equation L(y) = 0 on an interval *I*, that is,

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = 0,$$
 (4)

then the linear combination $f = \sum_{i=1}^{k} \lambda_i f_i$ is also a solution to (4).

Linear Dependence and Independence of Functions

In Linear Algebra, we learned that one can view the collection of all *functions* defined on a common interval as a **vector space**, where linear dependence and independence can be defined respectively.

Definition (Linear Dependence and Independence)

A set of functions $\{f_1(x), f_2(x), \ldots, f_n(x)\}$ are linearly dependent on an interval I if $\exists c_1, c_2, \ldots, c_n$ not all zero such that

$$c_1 f_1(x) + c_2 f_2(x) + \dots + c_n f_n(x) = 0, \ \forall \ x \in I,$$

that is, the linear combination is a zero function. If the set of functions is not linearly dependent, it is linearly independent.

Example:

■
$$f_1(x) = \sin^2 x$$
, $f_2(x) = \cos^2 x$, $I = (-\pi, \pi)$: Linearly dependent
■ $f_1(x) = 1$, $f_2(x) = x$, $f_3(x) = x^3$, $I = \mathbb{R}$: Linearly independent.

Linear Independence of Solutions to (4)

Consider the homogeneous linear n-th order DE

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = 0,$$
 (4)

Given n solutions $\{f_1(x), f_2(x), \ldots, f_n(x)\}$, we would like to test if they are independent or not.

Of course we can always go back to the definition but it is clumsy...

Recall: In Linear Algebra, to test if n vectors $\{v_1, v_2, ..., v_n\}$ are linearly independent, we can compute the determinant of the matrix

$$\mathbf{V} := \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix}.$$

If det $\mathbf{V} = 0$, they are linearly dependent; if det $\mathbf{V} \neq 0$, they are linearly independent.

Criterion of Linearly Independent Solutions

Consider the homogeneous linear n-th order DE

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = 0,$$
 (4)

To test the linear independence of n solutions $\{f_1(x), f_2(x), \ldots, f_n(x)\}$ to (4), we can use the following theorem.

Theorem

Let $\{f_1(x), f_2(x), \ldots, f_n(x)\}$ be *n* solutions to the homogeneous linear *n*-th order DE (4) on an interval *I*. They are linearly independent on *I*

$$\iff W(f_1, f_2, \dots, f_n) := \begin{vmatrix} f_1 & f_2 & \cdots & f_n \\ f_1' & f_2' & \cdots & f_n' \\ \vdots & \vdots & & \vdots \\ f_1^{(n-1)} & f_2^{(n-1)} & \cdots & f_n^{(n-1)} \end{vmatrix} \neq 0$$

Fundamental Set of Solutions

We are interested in describing the *solution space*, that is, the subspace spanned by the solutions to the homogeneous linear n-th order DE

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = 0.$$
 (4)

How?

Recall: In Linear Algebra, we describe a subspace by its *basis*: any vector in the subspace can be represented by a linear combination of the elements in the basis, and these elements are linearly independent.

Similar things can be done here.

Definition (Fundamental Set of Solutions)

Any set $\{f_1(x), f_2(x), \ldots, f_n(x)\}$ of *n* linearly independent solutions to the homogeneous linear *n*-th order DE (4) on an interval *I* is called a fundamental set of solutions.

General Solutions to Homogeneous Linear DE

General solution to an *n*-th order ODE:

An *n*-parameter family of solutions that can contains *all* solutions.

Theorem

Let $\{f_1(x), f_2(x), \ldots, f_n(x)\}\$ be a fundamental set of solutions to the homogeneous linear *n*-th order DE (4) on an interval *I*. Then the **general solution** to (4) is

$$y = c_1 f_1(x) + c_2 f_2(x) + \dots + c_n f_n(x),$$

where $\{c_i \mid i = 1, 2, ..., n\}$ are arbitrary constants.

Initial-Value and Boundary-Value Problems Homogeneous Equations Nonhomogeneous Equations

Examples

Example

Consider the DE

$$\frac{d^2y}{dx^2} = y.$$

Check that both $y = e^x$ and $y = e^{-x}$ are solutions to the equation. Derive the general solution to the DE.

A: The linear DE is homogeneous. We see that $\frac{d^2}{dx^2}e^x = \frac{d}{dx}e^x = e^x$, and $\frac{d^2}{dx^2}e^{-x} = \frac{d}{dx} - e^{-x} = e^{-x}$. Hence they are both solutions to the homogeneous linear second-order DE. Since

$$\begin{vmatrix} e^x & e^{-x} \\ e^x & -e^{-x} \end{vmatrix} = -1 - 1 = -2 \neq 0,$$

the two solutions are linearly independent. Hence, the general solution can be written as $y = c_1 e^x + c_2 e^{-x}$, $c_1, c_2 \in \mathbb{R}$.

1 Preliminary: Linear Equations

- Initial-Value and Boundary-Value Problems
- Homogeneous Equations
- Nonhomogeneous Equations

General Solutions to Nonhomogeneous Linear DE

Nonhomogeneous linear *n*-th order ODE takes the form:

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$
(1)
or equivalently, $L(y) = g(x), \ L := \sum_{i=0}^n a_i(x)D^i$

where g(x) is not a zero function.

How to find its general solution?

Idea:

- Find the general solution y_c to the *homogeneous* equation L(y) = 0.
- Find a solution y_p to the *nonhomogeneous* equation L(y) = g(x).
- The general solution $y = y_c + y_p$.

General Solutions to Nonhomogeneous Linear DE

Nonhomogeneous :

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$
 (1)

Homogeneous :

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = 0$$
(4)

Theorem

Let y_p be any particular solution to the nonhomogeneous linear *n*-th order DE (1) on an interval I, and y_c be the general solution to the associated homogeneous linear *n*-th order DE (4) on I, then the general solution to (1) is

$$y = y_c + y_p.$$

Proof of the Theorem

Proof: Let y = f(x) be any solution to the nonhomogeneous linear *n*-th order DE (1), that is, L(y) = g(x).

Now, since both y_p and f are solutions to L(y) = g(x), we have

$$0 = L(f) - L(y_p) = L(f - y_p).$$

Hence, $(f - y_p)$ is a solution to the homogeneous linear *n*-th order DE (4). Therefore, any solution to (1) can be represented by the sum of a solution to (4) and the particular solution y_p .

Examples

Example

Consider the DE

$$\frac{d^2y}{dx^2} = y + 9.$$

Derive the general solution to the DE.

A: The linear DE is nonhomogeneous. The associated homogeneous equation $\frac{d^2y}{dx^2} = y$ has the following general solution:

$$y = c_1 e^x + c_2 e^{-x}, \ c_1, c_2 \in \mathbb{R}.$$

There is an obvious particular solution y = -9.

Hence, the general solution can be written as

$$y = c_1 e^x + c_2 e^{-x} - 9, \ c_1, c_2 \in \mathbb{R}$$

Superposition Principle for Nonhomogeneous Equations

For nonhomogeneous linear differential equations, we have the following superposition principle.

Theorem (Superposition Principle: Nonhomogeneous Equations)

Let $f_i(x)$ be a particular solution to the nonhomogeneous *n*-th order linear equation $L(y) = g_i(x)$ on an interval *I*, for i = 1, 2, ..., k. Then the linear combination $f = \sum_{i=1}^{k} \lambda_i f_i$ is a particular solution to the nonhomogeneous *n*-th order linear equation

$$L(y) = \sum_{i=1}^{k} \lambda_i g_i(x).$$

1 Preliminary: Linear Equations

- Initial-Value and Boundary-Value Problems
- Homogeneous Equations
- Nonhomogeneous Equations

Short Recap

- Initial-Value Problems (IVP) vs. Boundary-Value Problems (BVP)
- Homogeneous vs Nonhomogeneous Linear ODE
- Fundamental set of solutions and General Solutions

Self-Practice Exercises

4-1: 1, 9, 13, 17, 21, 25, 35

